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Abstract

Most modern industrial materials are obtained by processing several substances in

a fluid state. This procedure is limited by the flow instabilities. Since 1960, a large

class of numerical methods was used to compute the flow of complex fluids . In the case

of the Oldroyd-B fluid, characterized by the Weissenberg numbers Wi, the numerical

methods have usually failed for Wi = O(1). Here we study the linear stability of the

displacement of an Oldroyd-B fluid by air in a Hele-Shaw cell. We consider a particular

class of perturbations, by neglecting some terms in the constitutive relations, due to

the very small thickness of the considered Hele-Shaw cell. An approximate formula of

the growth rate is presented, displaying a blow-up for (W1−W2) ≈ 0.408. This result is

in agreement with the numerical data obtained by Wilson [18]. Therefore, for the flow

geometry considered here, we see that the higher Weissenberg number instability is due

to the model, and not to the computational methods. When (W1 = W2), our growth

rate is quite similar to the Saffman-Taylor formula for a Newtonian liquid displaced by

air.

1 Introduction

We consider the flow in a Hele-Shaw cell - that means the flow between two parallel plates

with the gap b, b << l, where l is the Hele-Shaw length. An important parameter of the

problem is ε = b/l << 1.

∗e-mail: prabir.daripa@math.tamu.edu
†email: gelu.pasa@imar.ro
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Hele-Shaw [7] neglected the velocity component in the direction orthogonal on the plates

and the partial derivatives (of other two velocity components) in the directions contained

in the plates plane. Then the averaged velocities (across the plates) of a Stokes flow are

verifying an equation quite similar with the Darcy law for the flow in a porous medium.

This model is described in [1] and [2].

The flow of two immiscible fluids, separated by a sharp interface, in a Hele-Shaw cell, can

be considered as a model for a displacement process. In [14] was studied the linear stability

of the interface between two fluids of Darcy type. A formula for the growth constant was

obtained and the well-known Saffman-Taylor stability criterion was given: if the displacing

fluid is less viscous, then the interface is unstable.

The above displacement model can be used for the study of oil recovery from a hori-

zontal porous medium, the displacing fluid being some polymer-solute (the gravity effect is

neglected). The constitutive relations between the stress and the strain-rate tensors of such

polymer-solute fluids being non linear, we have non-Newtonian displacing fluids. As well,

the oil in the porous reservoir can often be considered as a non-Newtonian fluid.

The non-Newtonian fluids are studied in a large number of papers - see [6], [13], [15],

[16]. A particular type of non-Newtonian fluids, called second order fluids, are studied in

[5], [2], [8]. Non-Newtonian flows in Hele-Shaw cells are studied in [12] and [19]. Some

numerical methods are used in [9], [10], [18] for study the displacement of Oldroyd-B and

Maxwell upper-convected fluids by air in a Hele-Shaw cell. In these papers was obtained a

strong destabilizing effect due to the non-Newtonian constitutive relations, compared with

the case of a Newtonian fluid displaced by air. In the case of the Oldroyd-B fluid characterized

by the Weissenberg numbers Wi, the numerical methods have usually failed for Wi = O(1).

In [18] was reported a (possible) blow-up of the growth constant for W2 = 0,W1 > 2.5. This

possible singularity may be related with the fractures observed in the flows of some complex

fluids in Hele-Shaw cells - see [12, 19, 11].

In this paper we consider an Oldroyd-B fluid displaced by air in a Hele-Shaw cell and we

study the modal linear stability of the interface. The constitutive relations are depending

on the Weissenberg numbers Wi and we consider here the case Wi = O(1). A basic steady

solution is presented, with a constant pressure gradient in the displacement direction. As

in Wilson [18], we consider the full system containing the flow equations and the consti-

tutive relations. In the frame of the linear stability, we get the perturbation system. We

consider a particular Fourier expansion of velocity perturbations, depending on the arbitrary

parameter α. With some conditions imposed on α - see (42) - we can neglect some terms
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in the constitutive relations and we get approximate expressions of some components of the

extra-stress tensor. The average (across the plates) of these components are inserted in the

Laplace’s law and it yields an approximate formula of the growth constant. The growth rate

formula obtained in this paper gives a blow-up for W1 −W2 ≈ 0.408. Then we get a strong

destabilizing effect, compared with the case of a Newtonian fluid displaced by air studied in

[14]. Our dispersion curves are similar with those obtained (by using numerical methods) in

[18]. The condition (42) imposed on α is used also for justify the form of the amplitude f of

the velocity perturbations - see (25) and Proposition 6.

The same method and the same constitutive constitutive relations were used in the talks

[3] and [4] given by P. Daripa and G. Paşa, where only the caseWi = O(ε) was considered and

a different Fourier expansion was used for the velocity perturbations. The same destabilizing

effect was obtained, compared with the case studied in [14].

The most important result of the present paper is following: we present a particular

perturbation which leads to the blow-up of the growth constant for W1−W2 ≈ 0.408. Then

all other (possible) perturbations can lead only to a worse situation. Hence, it is possible

to have blow-up of the growth constant only for W1 −W2 < 0.408. Therefore, at least for

the flow geometry considered here, the higher Weissenberg number instability is due to the

model, and not to the computational methods.

The paper is laid out as follows. In section 2 we present the constitutive equations for

Oldroyd-B fluids. In section 3 we present the basic flow about which the stability calculations

are performed. The governing system for perturbations is derived in section 4. The linear

stability analysis is performed in section 5, leading to the explicit dimensionless dispersion

relation (47). This formula is quite similar to the Saffman-Taylor formula for the Newtonian

fluid when W1 = W2. Thus we provide a natural extension of the Saffman-Taylor formula to

the Oldroyd-B fluid which quantifies the effect of elasticity of Oldroyd-B fluid. Finally, we

conclude in section 6.

2 The Oldroyd-B fluid

We consider a Hele-Shaw cell with plates parallel with the xOy plane. The Oz axis is

orthogonal on the plates. The gravity effect is neglected. The displacement process occurs

in the positive direction of Ox. The gap between plates is denoted by b and the length of

the Hele-Shaw cell is l. Our problem is characterized by the small parameter ε = b/l << 1.

We use the following notations:
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The extra-stress and strain-rate tensors are τ ,S; the velocity, pressure and the fluid vis-

cosity are denoted by µ, u = (u, v, w), p . The relaxation and retardation time constants

are denoted by λ1, λ2 . V is the matrix containing the velocity derivatives. We have

S :=
1

2
(V + VT ), (Vij)

T := Vji.

The flow equations, the free-divergence relation and the constitutive relations are

−∇p+∇ · τ = 0, ux + vy + wz = 0, (1)

τ + λ1τ
∇ = 2µ[S + λ2S

∇], λ1 > λ2 ≥ 0. (2)

We consider a steady flow (as in [3] and [4]) then the upper convected derivatives

involved in (2) become

τ∇ = u · ∇τ − (Vτ + τVT ), (3)

S∇ = u · ∇S− (VS + SVT ).

The flow equations containing the components of the extra-stress tensor are

p
x

= τ 11,x + τ 12,y + τ 13,z

p
y

= τ 21,x + τ 22,y + τ 23,z, p
z

= τ 31,x + τ 32,y + τ 33,z, (4)

where τ 11,x is denoting the x partial derivative of τ 11.

As boundary conditions, we consider:

a) No-slip condition for the velocity components on the plates.

b) Laplace’s law on the (basic) air-fluid interface.

3 The basic flow

We study the linear stability of the following basic flow, denoted by the super index 0:

∇p0 = (p0x(x), 0, 0), v0 = (u0(z), 0, 0), (5)

then it follows

V0
13 = u0z; V0

ij = 0 ∀(ij) 6= (13); S0 =
1

2
(V0 + V0T ). (6)

The basic extra-stress tensor is given by the following equation

τ 0 − λ1(V0τ 0 + τ 0V0T ) = µ{2S0 − λ2(2V0S0 + 2S0V0T )}, (7)
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where

V0τ 0 + τ 0V0T =


2u0zτ

0
31 u0zτ

0
32 u0zτ

0
33

u0zτ
0
32 0 0

u0zτ
0
33 0 0

 ;

2[V0S0 + S0V0T ] =


2(u0z)

2 0 0

0 0 0

0 0 0

 .

Therefore the components of the basic extra-stress are

τ 033 = 0, τ 022 = 0, τ 023 = 0, τ 012 = 0, (8)

τ 013 = µu0z, τ 011 = 2(λ1 − λ2)µ(u0z)
2 (9)

and we get the basic flow equations:

p0x = τ 011,x + τ 012,y + τ 013,z, p0y = τ 021,x + τ 022,y + τ 023,z, p0z = τ 031,x + τ 032,y + τ 033,z. (10)

The equations (5) - (10) (used also in [18], [3], [4]) give us

p0z = 0, p0y = 0, p0x(x) = τ 013,z(z). (11)

We conclude that a negative constant G exists such that p0x(x) = µu0zz = G, therefore the

basic velocity u0 can be obtained in terms of G:

u0 =
1

µ
p0x(z2 − bz)/2 = (1/µ)G(z2 − bz)/2. (12)

The following characteristic velocity U is introduced

U =< u0 >:=
1

b

∫ b

0

u0dz = − b2

12µ
p0x, (13)

then it follows

u0 = (G/2µ)z(z − b) = −(6U/b2)z(z − b). (14)

The (basic) steady air-fluid interface is

x =< u0 > t = Ut. (15)

The basic pressure can depend on the time t, as in [18], [3], [4]:

p0 = G(x− < u0 > t) = G(x− Ut), x > < u0 > t = Ut. (16)

In the following we consider the coordinate system moving with the velocity U ; with no

confusion, the basic interface in the new system is x = 0.
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4 The perturbations system

The small perturbations of the basic solution are denoted by u, v, w, p and τ , S, V. The

perturbation of the basic interface is η. We believe that a fluid element that was originally

on the interface remains here, then it follows

ηt = u (17)

(in other words, the interface is material).

In the frame of linear stability, the free-divergence relation is also verified by the compo-

nents of the velocity perturbation, then ux + vy + wz = 0. We integrate across the plates,

we use the condition w = 0 on z = 0, z = b, then we get∫ b

0

(ux + vy) = 0.

In this paper we consider the particular perturbations such that

ux + vy = 0, w = 0.

In [3], [4], the above solution is obtained by using an asymptotic analysis involving the

small parameter ε; w = 0 is obtained by a numerical method in [18].

We introduce the small perturbations in the constitutive equations and in the expressions

of the upper convected derivatives and get

τ 0 + τ + λ1(τ
0 + τ)∇ = 2µ[S0 + S + λ2(S

0 + S)∇], (18)

(τ 0 + τ)∇ = u0τx − [V0τ 0 + τ 0V0T ]− [V0τ + Vτ 0 + τ 0VT + τV0T ], (19)

(S0 + S)∇ = u0Sx − [V0S0 + S0V0T ]− [V0S + VS0 + S0VT + SV0T ]. (20)

In the frame of the linear stability (by neglecting the second order terms in perturbations)

it follows

τ + λ1(u
0τx − E) = µ{2S + λ2(u

02Sx − F)}, (21)

with following expressions for E,F:

E := V0τ + Vτ 0 + τ 0VT + τV0T ,

F := 2[V0S + (V0S)T + VS0 + (VS0)T ]. (22)

We have

τ 0VT = (Vτ 0)T , τV0T = (V0τ)T , S0VT = (VS0)T , SV0T = (V0S)T ,
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where

V0τ =


0 0 u0z

0 0 0

0 0 0




τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


u0zτ31 u0zτ32 u0zτ33

0 0 0

0 0 0

 ;

Vτ 0 =


ux uy uz

vx vy vz

0 0 0




τ 011 0 τ 013

0 0 0

τ 031 0 0

 =


uxτ

0
11 + uzτ

0
31 0 uxτ

0
13

vxτ
0
11 + vzτ

0
31 0 vxτ

0
13

0 0 0

 ;

2V0S =


0 0 u0z

0 0 0

0 0 0




2ux uy + vx uz

uy + vx 2vy vz

uz vz 0

 =


u0zuz u0zvz 0

0 0 0

0 0 0

 ;

2VS0 =


ux uy uz

vx vy vz

0 0 0




0 0 u0z

0 0 0

u0z 0 0

 =


uzu

0
z 0 uxu

0
z

vzu
0
z 0 vxu

0
z

0 0 0

 .

Therefore we get the following expressions of E, F, S in terms of u0 and u:

E =
2(u0zτ31 + uxτ

0
11 + τ 013uz) (u0zτ32 + vxτ

0
11 + vzτ

0
13) (u0zτ33 + uxτ

0
13)

(u0zτ32 + vxτ
0
11 + vzτ

0
13) 0 τ 013vx

(u0zτ33 + uxτ
0
13) τ 013vx 0

 , (23)

F =


4u0zuz 2u0zvz uxu

0
z

2u0zvz 0 vxu
0
z

uxu
0
z vxu

0
z 0

 , 2S =


2ux (uy + vx) uz

(uy + vx) 2vy vz

uz vz 0

 . (24)

5 Modal linear stability analysis

We introduce the following Fourier expansion:

u = f(z)EXP cos(ny), v = f(z)EXP sin(ny), EXP = exp(−n[α + x] + σt),
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f(z) = βu0(z), β = O(ε2), dimension of α = length. (25)

This Fourier expansion was not used in [3], [4], [18]. Near the (perturbed) interface we

use the following Laplace’s law as in [18] (see also (13) and (17)):

(G < η > + < p >)− < τ11 >= γ (< ηyy + ηzz >), η = u/σ, (26)

where (ηyy + ηzz) is the approximate expression of the total curvature of the perturbed

interface and γ is the surface tension From here we get the growth constant expression σ:

σ =
γ < uyy + uzz > −G < u >

< p− τ11 >
.

The problem is to compute < p − τ11 > in terms of the basic and perturbed velocities.

For this, in the following we search a particular solution τ13, τ23, τ12, px, pz, τ11 in terms of

u, v, u0, v0.

The following dimensionless quantities are introduced

x′ = x/l, y′ = y/l, z′ = z/b, ε = b/l << 1, u′ = u/U, v′ = v/U,

p′ = p(l/µU), γ′ = γ(1/µU), n′ = nl, σ′ = σ(l/U), α′ = α/l, t′ = t(U/l),

{τ ′11, τ ′12, τ ′22} = {τ11, τ12, τ22}(l/µU), {τ ′13, τ ′23, τ ′33} = {τ13, τ23, τ33}(b/µU),

Wi = λi(U/b), (27)

where Wi are the Weissenberg numbers. From (12), (13) and (25) we get

u′ = βu0
′
EXP ′ cos(n′y′) = β6z′(1− z′)EXP ′ cos(n′y′),

v′ = βu0
′
EXP ′ cos(n′y′) = β6z′(1− z′)EXP ′ sin(n′y′),

EXP ′ = exp(−n′[α′ + x′] + σ′t′).

In the following we use only dimensionless quantities, then we omit the ′.

The flow equations and the dimensionless quantities (27) give us

px
µU

l2
− τ11,x

µU

l2
= τ12,y

µU

l2
+ τ13,z

µU

b2
, px − τ11,x = τ12,y + τ13,z

1

ε2
, (28)

p− τ11 = (−1/n){τ12,y + τ13,z
1

ε2
}. (29)
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5.1 A particular solution

Proposition 1. We prove that

τ33 = 0, τ31 = uz, τ32 = vz are possible solutions. (30)

Proof. From (21) and (27) we get

τ33 +W1εu
0τ33,x = 0, (31)

τ31 +W1εu
0τ31,x −W1ε(u

0
zτ33 + uxτ

0
13) = uz +W2ε(u

0uzx − uxu0z), (32)

τ32 +W1ε(u
0τ32,x − τ 013vx) = vz +W2ε(u

0vzx − vxu0z). (33)

The equation (31) gives us the possible solution τ33 = 0. We use (25) and get (u0uzx−u0zux) =

0, (u0vzx − vxu0z) = 0. If τ31 = uz and τ32 = vz, then in the l.h.s. of (32), (33) we have

u0τ31,x − uxτ 013 = u0uzx − uxu0z = 0,

u0τ32,x − vxτ 013 = u0vzx − vxu0z = 0.

Therefore the above constitutive relations (32) - (33) for τ31, τ32 are verified if the formulas

(30) hold. �

As a consequence, we get

pz = τ31,x + τ32,y = µ(uzx + vzy) = 0. (34)

From (30)2 we get τ31,z = uzz. We use (13), (29) and (26), then we obtain the dimen-

sionless from of the Laplace’s law as follows:

−12µU

b2
· < Uu >

σ(U/l)
+
µU

l
< p− τ11 >=

γµU

σ(U/l)
[< Uuyy >

1

l2
+ < Uuzz >

1

b2
],

−12

b2
l
< u >

σ
+

1

l
< p− τ11 >= l

γ

σ
[< uyy >

1

l2
+ < uzz >

1

b2
],

−12

b2
l2
< u >

σ
+ < p− τ11 >= l2

γ

σ
< uyy

1

l2
+ uzz

1

b2
>,

−12

ε2
< u >

σ
+ (−1/n){τ12,y + uzz

1

ε2
} =

γ

σ
< uyy + uzz

1

ε2
> . (35)

The term < uyy > can not be neglected (is related with the curvature of the perturbed

interface).
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Proposition 2. If exp(σt) < 1, then

MAXn{ux} =
3β

2αe
, MAXn{uxx} =

6β

α2e2
, MAXn{uxxx} =

81β

2α3e3
. (36)

Proof. Recall (14). We have u0 = 6z(1− z) ≤ 6 · (1/4) = 3/2, then it follows

ux ≤ (3β/2)n exp(−nα), uxx ≤ (3β/2)n2 exp(−nα), uxxx ≤ (3β/2)n3 exp(−nα).

Consider the functions F1(n) = n exp(−nα), F2 = n2 exp(−nα), F3 = n3 exp(−nα), then

F1n = (n − nα) exp(−nα); F2n = (2n − n2α) exp(−nα); F3n = (3n2 − n3α) exp(−nα),

where FIn, I = 1, 2, 3 are the derivatives in terms of n. We compute the maximal values of

FI and obtain the relations (36). �

As a consequence, we get

α > 81/(12e)⇒MAXn{uxxx} < MAXn{uxx}.

In Figures 1, 2, 3, 4 we plot F2 = 2n2 exp(−αn), F4 = εn3 exp(−αn) when α = 2, 1.6 and

ε = 0.02, 0.002. We see that F4 can be neglected in front of F2.

Proposition 3. If exp(σt) < 1, β = O(ε2), (W1 −W2) = O(1), α > 11(W2 −W1)/e, then

τ12,y can be approximated by the formula

τ12,y = (uy + vx)y + 2(W1 −W2)u
0
zvzy/ε. (37)

Proof. The constitutive relations (21) and the dimensionless quantities (27) give us

τ12,y
µU

l2
+ λ1u

0τ12,xy
µU2

l3
− λ1[u0zµvzy

U2

b2l
+ vxy2µ(λ1 − λ2)(u0z)2

U3

l2b2
+ µu0zvzy

U2

b2l
] =

µ{(uy + vx)y
U

l2
+ λ2u

0(uy + vx)xy
U2

l3
− 2λ2u

0
zvzy

U2

b2l
}.

Recall Wi = λiU/b, ε = b/l, then we get

τ12,y +W1u
0τ12,xyε−W1[2u

0
zvzy/ε+ 2(W1 −W2)vzy(u

0
z)

2] = (38)

(uy + vx)y +W2u
0(uy + vx)xyε− 2W2u

0
zvzy/ε.

We introduce the expression (37) in (38) and get

τ12,y = −W1u
0ε{(uy + vx)yx + 2(W1 −W2)u

0
zvzyx/ε}+ (39)

(uy + xx)y + 2(W1 −W2)u
0
zvzy/ε+ 2W1(W1 −W2)vxy(u

0
z)

2 +W2u
0(uy + vx)xyε.
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From the Fourier expansion (25) we have 2W1(W1 −W2)[vxy(u
0
z)

2 − u0u0zvzyx] = 0, then the

last relation (39) becomes

τ12,y = (uy + vx)y + 2(W1 −W2)u
0
zvzy/ε+ (W2 −W1)u

0(uy + vx)xyε. (40)

The equation (14) and the dimensionless quantities (27) give us u0 = 6(z−z2) ≤ 3/2, u0z =

6(1− 2z) ≤ 6. From Proposition 2 it follows

MAXn(uy + vx)y = 2 · 3β

2
· 4

α2e2
=

12β

α2e2
, MAXn(W1 −W2)u

0
zvzy

1

ε
= (W1 −W2)

36β

αeε
,

MAXn(W2 −W1)u
0(uy + vx)xyε = |W2 −W1|

9β

2
· 27

α3e3
ε = |W2 −W1|

243β

2α3e3
ε. (41)

The condition

α > 11|W2 −W1|/e (42)

gives us

α >
243|W2 −W1|

24e
,

243β|W2 −W1|
2α3e3

ε <
12β

α2e2
ε. (43)

From (42) - (43) we get

MAXn(W2 −W1)u
0(uy + vx)xyε < MAXn(uy + vx)yε << MAXn(uy + vx)y.

We conclude that (W2 −W1)u
0(uy + vx)xyε can be neglected in front of (uy + vx)y and (40)

gives the relation (37). uyxy, vxxy, uyy, vxy are bounded on terms of n and (W2−W1) = O(1).

Then, for large enough α, the last and first terms in (40) are of order ε3 and ε2. �

Remark 1. The above result is an important improvement compared with [3], [4], [18],

where instead of (25) was used the expansion

u = f(z) exp(−nx+ σt cos(ny), v = f(z) exp(−nx+ σt) sin(ny), f(z) = z(z − b). (44)

By using (44), the second partial derivatives of (u, v) with respect to x, y contains the factor

n2 exp(−nx + σt). The expression n2 exp(−nx) is not bounded in terms of n when x → 0.

Indeed, consider the function I(n, x) = n2 exp(−nx), then his derivative with respect to n is

dI/dn = (2n− n2x) exp(−nx) and we have I(n = 2/x, x) = MAXn{I(n, x)} = 4/(x2e2).

From (44) we see also that uxxx contains the factor −n3 exp(−nx). Consider the function

J(n, x) = −n3 exp(−nx), we have MAXn|J(n, x)| = 27/(x3e3). Then near x = 0 we have

MAXn|uxxx| >> MAXn|uxx|. It follows that in the equation (40) we can not neglect the
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term (W2 − W1)εu
0(uy + vx)x in front of (uy + vx)y and we not obtain the approximate

expression (37) for τ12y.

On the page 414 of [18] is mentioned that ”the representation of the flow field as basic

parallel flow plus small disturbances must fail very close to the interface, probably within

a distance of order ε (in our notation)” and ”this places a restriction on the disturbance

wavelength to which the theory can be expected to apply”. We have

x = pε⇒MAXn|J(n, pε)| < MAXnI(n, pε) iff pε > 27/(4e).

Then, for neglecting |uxxx| in front of |uxx|, is not enough to avoid a distance ”of order ε”

from x = 0, but a distance of order 27/(4e) ≈ 2.48 >> ε.

The expansion (25) and the condition (42) are useful for avoid the singularity near x = 0

and for neglecting (in a rigorous way) some terms in the constitutive relations. �

5.2 The growth constant formula

The relations (28), (37) give us

p− τ = (−1/n){(uy + vx)y + 2(W1 −W2)u
0
zvzy

1

ε
+ uzz

1

ε2
} =

(−1/n)[O(ε2) +O(ε) +O(1)]. (45)

Consider O(γ) = 1. Then (35) and (45) gives the magnitudes of the terms appearing in the

dimensionless Laplace’s law :

O(1)

σ
− 1

n
{O(ε2) +O(ε) +O(1)} =

O(1)

σ
{O(ε2) +O(1)}. (46)

We insert (45) in (35). As < u0 >= 1, < (u0z)
2 >= 12, we get

−12

ε2σ
+ (−1/n){−2n2 + 24n(W1 −W2)

1

ε
− 12

1

ε2
} =

γ

σ
(−n2 − 12

1

ε2
).

The last relation is giving the following

Proposition 4. The growth rate σ corresponding to the approximate solution (37) is

σ =
12n− γε2n3 − 12γn

2n2ε2 − 24n(W1 −W2)ε+ 12
,

σ =
n(1− γ)− γ(ε2/12)n3

n2(ε2/6)− 2n(W1 −W2)ε+ 1
(47)

�

12



Remark 2. In the case exp(σt) < 1, from (47) we obtain the following important results :

a) The denominator of (47) is 6= 0 for W1 −W2 < 1/
√

6 ≈ 0.408. Indeed , we have

W1 −W2 < 1/
√

6⇒ ∆ = (W1 −W2)ε
2 − (ε2/6) < 0.

b) σ →∞ when W2 = 0, W1 < 1/
√

6, W1 → 1/
√

6.

c) If 0.3 < W1 < 0.408 and W2 = 0 we have a destabilization effect compared with the

Saffman-Taylor growth constant σS−T below:

σS−T = n− γ(ε2/12)n3 < σ <∞. (48)

In Figures 5, 6 we plot σ given by (47) (on the vertical axis) in terms of n (on the horizontal

axis), for γ = 0.9, ε = 0.006, W2 = 0 and W1 increasing from 0.15 until 0.404. The

plots are similar with the numerical results given in [18] . In Figure 5 is also plotted the

Saffman-Taylor growth rate (48). �

5.3 Justification for f used in (25)

Proposition 5. If the hypothesis of Proposition 3 hold, then τ11x can be the approximated

by the formula

τ11x = 2uxx + 4(W1 −W2)u
0
zuzx/ε. (49)

Proof. The dimensionless form of the constitutive relations (21) is

τ11,x
µU

l2
+ λ1u

0τ11,xx
µU2

l3
− 2λ1[u

0
zµuzx

U2

b2l
+ uxx2µ(λ1 − λ2)(u0z)2

U3

l2b2
+ µu0zuzx

U2

b2l
] =

µ{2uxx
U

l2
+ λ2u

02uxxx
U2

l3
− 4λ2u

0
zuzx

U2

b2l
},

then we obtain

τ11,x +W1u
0τ11,xxε− 2W1[u

0
zuzx/ε+ uxx2(W1 −W2)(u

0
z)

2 + u0zuzx/ε] =

2uxx + 2W2u
0uxxxε− 4W2u

0
zuzx/ε.

We insert the expression (49) in the last relation and get

τ11,x +W1εu
0[2uxxx +4(W1−W2)u

0
zuzxx/ε]−2W1[u

0
zuzx/ε+uxx2(W1−W2)(u

0
z)

2 +u0zuzx/ε] =

2uxx + 2W2u
0uxxxε− 4W2u

0
zuzx/ε.

As f(z) = βu0, we have u0u0zuzxx − uxx(u0z)
2 = 0, then it follows

τ11,x = 2uxx + 4(W1 −W2)u
0
zuzx/ε+ 2(W2 −W1)εu

0
zuxxx.

13



As in Proposition 3, the condition (42) allows us to neglect {2(W2 −W1)εu
0
zuxxx} in front

of {2uxx}. Then the last above expresion of τ11,x gives us the equation (49). �

We compute now the expression of px, by using (37) and (49) :

px = τ11,x + τ12,y + τ13,z/ε
2 =

2uxx + 4(W1 −W2)u
0
zuzx/ε+ (uy + vx)y + 2(W1 −W2)u

0
zvzy/ε+ uzz/ε

2.

As uxx + uyy = 0, uxx + vxy = 0, uzx + vzy = 0, it follows

px = 2(W1 −W2)u
0
zuzx/ε+ uzz/ε

2.

We obtained pz = 0 - see (34) - then the last above relation gives us

pxz = 2(W1 −W2)(u
0
zuzx)z/ε+ uzzz/ε

2 = 0. (50)

Proposition 6. As before, we suppose exp(σt) < 1, (W1 −W2) = O(1). If the condition

(42) holds and

β = ε2/27, (51)

then f(z) = βu0(z) verifies (50) with the precision order O(ε).

Proof. We have MAXn{n exp(−nα)} = 1/(αe), then (u0zuzx)z ≤ 144β/(αe). It follows

PXZ1 := 2(W1 −W2)(u
0
zuzx)z

1

ε
≤ 2(W1 −W2)144

ε

27
· 1

11(W1 −W2)
< ε << 1.

Therefore the conditions (42) and (51) allow us to neglect PXZ1 in the equation (50). As

u0zzz = 0, we conclude that f(z) = βu0(z) verifies (50) with the precision order O(ε). The

condition (51) is in agreement with the hypothesis β = O(ε2) used in the decomposition (25).

�

6 Conclusions

We study the modal linear stability of the displacement of an Oldroyd-B fluid by air in a

Hele-Shaw cell. The full system of flow equations and constitutive relations are used. The

basic flow (8)-(16) is considered. In the frame of linear stability, we obtain the perturbation

system (21)-(24).

Roughly speaking, the decomposition (25) gives us bounded values for uyxy, vxxy, uyy, vxy

in terms of n,∀x ≥ 0. For large enough α, the last and first terms in (40) are of order ε3

14



and ε2 and we get the approximate expression (37) for τ12,y. Therefore, the condition (42)

imposed on the parameter α, appearing in the Fourier decomposition (25) for the velocity

perturbations, allows us to obtain the following results:

- the approximate expressions of τ12,y, τ11,x are given in Propositions 3 and 5;

- τ12,y is used in the Laplace’s law (35) and we get the growth constant (47);

- we justify the form of the amplitude f appearing in (25) - see Proposition 6.

If α = 0, then the Fourier decomposition (25) lead us to very high values of the derivatives

of the velocity perturbations near the interface x = 0. In this case, the estimates and the

expressions given in Propositions 3 and 5 can not be obtained - also Remark 1. The

amplitude of the perturbations introduced by (25) is very small.

The main result is the following. The growth constant formula (47) gives us a strong

destabilization effect, compared with the case studied in [14], when W1 −W2 ≈ 0.408 - see

Remark 2 and Figures 5 - 6. Most of the numerical results concerning the flow of Oldroyd-B

fluids failed when the Weissenberg is near 1. We prove that, for the flow geometry considered

here, the higher Weissenberg number instability is due to the model, and not to the numerical

methods.

When W1 = W2, the growth rate according to our formula (47) is quite similar with

the Saffman-Taylor formula for a Newtonian fluid displaced by air in a Hele-Shaw cell. In

this case, due to our 3D approach and Fourier modes decomposition (25), the formula (47)

contains the new term (−γn) in the numerator and the new term n2(ε2/6) in the denominator.

In Appendix we prove that our basic flow is Newtonian if W1 = W2.
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Appendix: When λ1 = λ2

Proposition 7. The basic steady flow is Newtonian if λ1 = λ2.

Proof. The constitutive relations (7) become

τ 0 − λ1(V0τ 0 + τ 0V0T ) = µ{2S0 − λ1(V02S0 + 2S0V0T )}. (52)

We introduce A = τ 0 − µ2S0 = aij, then A = AT and we get

A− λ1(V0A + AV0T ) = 0. (53)

We claim that from (53) it follows A = 0. Indeed, we have:

V0 =


0 0 u0z

0 0 0

0 0 0

 , V0A + AV0T =


2u0za31 u0za32 u0za33

u0za32 0 0

u0za33 0 0

 (54)

and (53) becomes 
a11 − 2λ1u

0
za31 a12 − λ1u0za32 a13 − λ1u0za33

a21 − λ1u0za32 a22 a23

a31 − λ1u0za33 a32 a33

 = 0. (55)

First we get a22 = a23 = a33 = 0. The third row entries of the above relation give a31 = 0.

Using these values in the second row entries gives a21 = 0. Finally, the first row entries give

a11 = 0. Thus we have proved that A = 0 which means τ 0 − µ2S0 = 0. Then the basic flow

is indeed Newtonian when λ1 = λ2.

�
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Figure 1: n2 exp(−nα)(upper) and εn3 exp(−nα)(lower) for α = 2, ε = 0.02.

Figure 2: εn3 exp(−nα) for α = 2, ε = 0.002.
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Figure 3: n2 exp(−nα)(upper) and εn3 exp(−nα)(lower) for α = 1.6, ε = 0.02.

Figure 4: εn3 exp(−nα) for α = 1.6, ε = 0.002.
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(48)

Figure 5: Plot of (47) compared with (48). ε = 0.006, γ = 0.9,

W2 = 0,W1 = 0.05(lower), 0.15, 0.2, 0.25, 0.3, 0.35, 0.37(upper)

Figure 6: Plot of (47). ε = 0.006, γ = 0.9,

W2 = 0,W1 = 0.38(lower), 0.39, 0.4, 0.401, 0.402, 0.403, 0.404(upper)
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