
INSTITUTUL DE MATEMATICA
“SIMION STOILOW”

AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS
OF THE ROMANIAN ACADEMY

____________________________________________________________________________

       ISSN 0250 3638

UNDECIDABILITY OF THE ELEMENTARY 
THEORY OF FINITE   COMMUTATIVE LOOPS

by 

   Vasile I. Ursu 

  Preprint nr. 1/2018

  BUCURESTI   



UNDECIDABILITY OF THE ELEMENTARY 
THEORY OF FINITE COMMUTATIVE LOOPS

by 

   Vasile I. Ursu 

  Preprint nr. 1/2018

                                                              March 2018

Simion Stoilow  Institute of Matematics  of the Romanian Academy and Technical University of Moldova     
E-mail: Vasile.Ursu@imar.ro



UNDECIDABILITY OF THE ELEMENTARY
THEORY OF FINITE COMMUTATIVE LOOPS

VASILE I. URSU

Abstract : It is proved that the elementary theory of the class of all finite commutative loops
is undecidability. As a consequence, we establish the undecidability of elementary theories
of certain classes of finite commutative loops, as well as certain classes of commutative
quasigroups, and the groupoid.

Key words: loupe class, closed formula, elementary theory, nilpotent loop, metaabel loop,
associator.

1. INTRODUCTION

Let K be a class of models of finite signature σ. As usual, by the elementary theories
T (K) we mean the collection of all formulas of signature σ true on all models from K. Since
the signature σ is a finite set, then under this assumption all the formulas of the narrow
predicate calculus of the signature can be numbered in a natural way. It is said that the class
K, or that the elementary theory T (K) of class K is recursively undecidable (or unsolvable)
if the collection of numbers of all formulas of the narrow predicate calculus that are true
on K is a recursive set of natural numbers. Otherwise, the elementary theory T (K) is said
to be recursively undecidable (or unsolvable). An important question connected with the
study of elementary theories of various classes of algebras is the question of the algorithmic
decidability of the class of all finite algebras. At present, many classes of finite classical
algebras with an undecidability theory are known (see [1]). The author in [3] pointed out
that among such classes with undecidability theories is the class of all finite quasigroups of
any nonassociative variety of commutative Moufang loops (resp., distributive quasigroups or
CH-quasigroups).

In this paper we establish a correspondence between commutative rings with unity and
automorphic loops. In this correspondence to a class of commutative rings with unity and
characteristic p, where p is any prime number, there corresponds an certainly axiomatizable
class Jp of commutative automorphic loops with identity xp = 1. An effective method is
given, that allows for each formula, a narrow predicate calculus related to commutative rings
with unity, to obtain a formula corresponding to loops such that the truth of the first formula
on the ring is equivalent to the truth of the second formula in the corresponding commutative
automorphic loop. Then from the fact that the elementary theory of all finite commutative
rings with unity simple characteristic is undecidable (see [2, 5]), from which the following
theorem follows directly: an elementary theory of the class Jp of commutative automor-
phic loops is undecidable. The class Jp of commutative automorphic loops indicated in this
theorem is a finitely axiomatizable subclass of the class of all finite commutative loops (re-
spectively Jordan loops or automorphic commutative loops), the class of all finite 2-nilpotent
commutative loops (respectively Jordan loops or automorphic commutative loops), the class
of all commutative groupoids etc. Therefore, the elementary theories of all the mentioned
classes are undecidable.

The basic concepts of loupes can be found in the monograph Bruck R.H. [6] or V.D.
Belousova [7]. The results of [1] are also used in the proof.
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2. DIRECT MAPPING φφφ

Let K the class of all commutative rings and K be an arbitrary ring from K. In the set
φ(K) of quaternions (a, b, c, d) of elements of K, which we denote by L, we introduce two
operations - multiplication and division, denoted by symbols · and /, formulas:

(2.1) (a, b, c, d) · (x, y, z, t) =
(
a+ x, b+ y, c+ z + ax · (b+ y), z + t+ by · (a+ x)

)
;

(2.2) (a, b, c, d)/(x, y, z, t) =
(
a− x, b− y, c− z + b · x(x− a), d− t+ a · y(y − b)

)
.

It is easy to verify that the set L together with certain operations of multiplication and
division by the definite formulas (2.1) and (2.2) is a commutative loop with unit element
quaternion of the form (0, 0, 0, 0), which we denote by e. It follows from (2.1) that quater-
nion’s of the form (0, 0, c, d) and only they are elements of the center Z(L) of the loop,
i.e.

Z(L) = {(0, 0, c, d) | c, d ∈ K}.
From formulas (2.1) and (2.2) it is easy to obtain that for elements (a, b, c, d), (m,n, p, q)
and (x, y, z, t) from L, the associator of these elements

(2.3)
(
(a, b, c, d), (m,n, p, q), (x, y, z, t)

)
=

(
0, 0, mx · b−ma · y, ny · a− nb · x

)
is contained in the center Z(L). Therefore, the commutative loop L is nilpotent of class 2.
According to formulas (2.1) and (2.3)(

(a, b, c, d)2, (m,n, p, q), (a, b, c, d)
)

=
(
(2a, 2b, 2c+ 2a2b, 2d+ 2b2a), (m,n, p, q), (a, b, c, d)

)
= (0, 0, 0, 0),

i.e. in L, the identity x2 · yx = x2y · x is true, but this means that the commutative loop L
of Jordan. Hence, L = φ(K) - the Jordan metabelian loop.

Suppose K1, K2 that there are two classes of models. We shall say from Maltsev, which
K1 is syntactically contained in K2 if there is an algorithm that allows for each formula Φ1

of the signature K1 to construct some formula Φ2 of a signature K2 so that the truth of
the formula Φ2 on all K2 - models implies the truth of the formula Φ2 on all K2 - models.
Classes K1, K2 are syntactically equivalent if each of them is syntactically contained in the
other.

In the case of syntactic equivalence, we have that each closed formula Φi ∈ T (Ki) if
and only if the corresponding closed formula Φ1 ∈ T (K1). It is immediately seen that if
the elementary theory K1 is undecidability and K1, K2 syntactically equivalent, then the
elementary theory K2 is also decidability.

We now consider some closed formula of the narrow predicate calculus

Φ = (Q1x1) . . . (Qnxn)Φ0(x1, . . . , xn) (Qi = ∃, ∀),

the open part Φ0 of which contains only two extra-logical symbols - the signs of multiplication
and division. The requirement that on φ(K) the formula Φ be true is equivalent to some
requirement stated on the ring K. This last requirement can be rewritten in the form of a
formula φ(Φ) of the narrow predicate calculus. For this it is sufficient to replace in Φ four
quantifiers (Qix

′
i)(Qix

′′
i )(Qix

′′′
i )(Qix

′v
i ) in each quantifier (Qixi), replace each expression

xixj = xk by the formula

x′i + x′j = x′k & x′′i + x′′j = x′′k & x′′′i + x′′′j + x′ix
′
j · (x′′i + x′′j ) = x′′′k

& x′vi + x′vj + x′′i x
′′
j · (x′i + x′j) = x′vk ,

and each expression xi/ xj = xk is replaced by the formula

x′i − x′j = x′k & x′′i − x′′j = x′′k & x′′′i − x′′′j + x′′i · x′j (x′j − x′i) = x′′′k

& x′vi − x′vj + x′i · x′′j (x′′j − x′′i ) = x′vk .
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Therefore, the mapping Φ → φ(Φ) is a syntactic embedding of a class φ(K) in the class
K. In particular, if any given class of rings K has a decidable elementary theory, then the
undecidability elementary theory will also have a corresponding class of loops φ(K).

3. THE CLASS OF JORDAN LOOPS WITH SELECTED ELEMENTS

Further we assume that the ringK under consideration has unity 1. Then the metabelian
Jordan loop L = φ(K) is naturally identified with elements

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0).

Therefore, a Jordan loupe L will be considered as a signature < · , /, e1, e2 > algebra con-
sisting of functional binary · , / and zero operations e1, e2, which we sometimes call a Jordan
loupe with selected elements e1, e2 or simply an enriched Jordan loupe. We denote the class
of all such enriched Jordan loops L = φ(K) by L, and denote by K1 the class of all com-
mutative rings with unity 1. So, if the ring K is from a class K1, then L = φ(K) it is a
Jordan loupe with the selected elements e1, e2 from the class L. Under the sub-loop, center,
or internal substitution of the Jordan enriched loupe L, we mean the sub-loop, center, or
internal substitution of the Jordan loop L. It is easy to verify that any enriched Jordan loop
L ∈ L has the following properties:

P1) subsets

L1 = {x ∈ L | xe1 · e1 = x · e1e1 (⇔ e1e2 · x = e1 · e2x)},

L2 = {x ∈ L | xe2 · e2 = x · e2e2(⇔ e2e1 · x = e2 · e1x)}

with respect to the multiplication of a loop L are abelian groups, are normal in L, for which
the equations L1 ∩ L2 = Z(L), L1L2 = L are true and

(3.4) (x, y, z) = (x, z, y), (y, x, z) = e

for any x ∈ L and any y, z ∈ Li (i = 1, 2);

P2) subsets

Z1 = {x ∈ Z(L) | (∃y ∈ L1) (e2, e1, y) = x}, Z2 = {x ∈ Z | (∃y ∈ L2)(e1, e2, y) = x}

are the central sub-loop L for which

Z1 = 1x ∈ Z(L) | (∃y ∈ L2)(y, e1, e1) = x}, Z2 = {x ∈ Z | (∃y ∈ L1)(y, e2, e2) = x},

Z(L) = Z1Z2, Z1 ∩ Z2 = {e};

P3) into L a true quasi-identity:

(x1, e1, e1) = e & (y1, e1, e1) = e & (e2, e1, x2) = e & (e2, e1, y2) = e

& (e2, e1, x1) = z1 & (e2, e1, y1) = z1 & (x2, e1, e1) = z2(3.5)

& (y2, e1, e1) = z2 ⇒ (x2, e1, x1) = (y2, e1, y1);

P4) for each pair of elements z1, z2 ∈ Z1 there L exist elements x1 ∈ L1, x2 ∈ L2

satisfying the relations

(3.6) (e2, e1, x1) = z2, (x2, e1, e1) = z2;
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P5) there are homeomorphisms λ : Z1 → L2, µ : Z1 → L1 and an isomorphism
ν : Z1 → Z2 such that λ(c) = e2, µ(c) = e1 where c = (e2, e1, e1) the following equalities
hold:

(3.7)
(
λ(z), e1, e1

)
= z,

(
e2, e1, µ(z)

)
= z;

(3.8) ν
(
λ(z1z2), µ(z3), µ(z4)

)
=

(
µ(z1z2), λ(z3), λ(z4)

)
;

(3.9)
(
λ(z1), e1, µ([λ(z2), e1, µ(z3)])

)
=

(
λ(z1), µ(z2), µ(z3)

)
.

4. REVERSE MAPPING ψψψ

We denote by L4 the subclass of the class L of all Jordan loops from the properties
P1)−P4) considered in the signature < · , /, e1, e2 >. Since properties P1)−P4) can easily
be written in the formulas of a narrow predicate calculus, L4 is a finitely axiomatizable class.
Let L there be some Jordan loop from class L4. Let Z = Z1Z2 the center of the loop L. We
define new binary operations in the central subloop ⊕ and × suppose for z1, z2 ∈ Z1

(4.10) z1 ⊕ z2 = z1 · z2,

(4.11) z1 × z2 = (x2, e1, x1),

where x1, x2 ∈ L the following conditions:

(4.12) (e2, e1, x1) = z1, x1e1 · e1 = x1 · e1e1,

(4.13) (x2, e1, e1) = z2, x2e2 e2 = x2 · e2e2.

Let us prove that
set Z1 together with certain operations of addition ⊕ and multiplication × by means of

formulas (4.12) and (4.13) is a commutative ring with unit e = (e2, e1, e1).

Proof. First we note that the addition of Z1 coincides with the loop multiplication, and
therefore Z1 with respect to addition it is an abelian group. Further, according to condition
P4), there exist elements x1 ∈ L1, x2 ∈ L2 satisfying conditions (4.12) and (4.13) exist.
Let y1, y2 some other solution for (4.12) and (4.13). According to P1), from the equality
y1e1 · e1 = y1 · e1e1, y2e2 · e2 = y2 · e2e2 follows y1 ∈ L1, y2 ∈ L2 and y1/x1 ∈ L1, y2/x2 ∈ L2.
Because the

(e2, e1, y1) = (e2, e1, x1), (y2, e1, e1) = (x2, e1, e1),

then
(e2, e1, y1) · (e2, e1, x1)−1 = e, (y2, e1, e1) · (x2, e1, e1)−1 = e,

from where follows
(e2, e1, y1/x1) = e, (y2/x2, e1, e1) = e.

But the first of the last two equalities, according to the construction L2, is equivalent
to (y1/x1, e2, e2) = e. So, we got

(y1/x1, e2, e2) = e, (y2/x2, e1, e1) = e,

but this means, according to P1) that y1/x1 ∈ L2, y2/x2 ∈ L1. But since y1/x1 ∈ L1,
y2/x2 ∈ L2, then y1/x1, y2/x2 ∈ L1 ∩ L2 = Z(L). Hence y1 = x1z1, y2 = x2z2 for some
z1, z2 ∈ Z and, consequently,

(e2, y1, e1) = (e2, x1z, e1) = (e2, x1, e1) = z1,
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(y2, e1, e1) = (x2z2, e1, e1) = (x2, e1, e1) = z2.

Thus, the multiplication operation × is always feasible and unambiguous.
Let us prove that × a commutative operation. Let

z1 × z2 = (x2, e1, x1) and z2 × z1 = (y2, e1, y1),

where the elements x1, y1 ∈ L1 and x2, y2 ∈ L2 satisfy the requirements (4.12) and (4.13).
But then, according to (3.5), we obtain the equality (x1, e1, x2) = (y1, e1, y2), i.e. z1 × z2 =
z2 × z1.

According to the definition of the operation of multiplication by direct calculation, it is
verified that c = (e2, e1, e1) is a neutral element with respect to the operation of multiplica-
tion: c× z = z × c = z for any z ∈ Z1.

To prove the distributive relations

(4.14) (u⊗ v)× w = u× w ⊗ v × w, w × (u⊗ v) = w × u⊗ w × v,

we put
u = (e2, e1, x), v = (e2, e1, y), w = (z, e1, e1), x, y ∈ L1, z ∈ L2.

We have
u⊕ v = (e2, e1, x) · (e2, e1, y) = (e2, e1, xy),

but then,
(u⊕ v)× w = (z, e1, e1)× (e2, e1, xy)

= (z, e1, xy) = (z, e1, x) · (z, e1, y) = u× w ⊕ v × w.

The second equality in (4.14) is proved similarly.

A mapping associating with each Jordan loop L ∈ L4 a commutative ring Z1 defined in
this way will be denoted by ψ.

If Ψ = (Q1x1) . . . (Qnxn)Ψ0(x1, . . . , xn) - any closed formula of the elementary theory of
a commutative ring with unity, then ψ(Ψ) we agree to denote by the symbol the elementary
theory of commutative loops, which are obtained from Ψ the replacement of quantors Q1x1
by specialized quantifiers Qρ

1x1, symbol 1 in Ψ - by the expression (e2, e1, e), each expression
xi + xj = xk - by the formula xi ⊕ xj = xk and each expression xi × xj = xk - by the
formula

(∃u)(∃v)((v, e1, u) = xk) & ue1 · e1 = u · e1e1 & ve2 · e2 = v · e2e2 & (e2, e1, xi) = u

&(xj , e1, e1) = v).

The predicate ρ(x) in the quantifier Qρ
i x is defined by the formula

ρ(x) = (∀u)(∀v)(∃w)
(
x · uv = xu · v & we1 · e = w · e1e1 & (e2, e2, w) = x

)
.

It is clear that Ψ is true on the ring ψ(L) if and only if ψ(Ψ) is true on the loop L, and
therefore the elementary theory of the ring ψ(L) is syntactically contained in the elementary
theory of the Jordan rich enrichment loop L. From this it follows, in particular, that if the
elementary theory of the ring ψ(L) is undecidability, then the elementary theory of the loop
L is also undecidability.

5. RECIPROCITY OF MAPPINGS φφφ AND ψψψ

From the preceding results it follows that for any commutative ring K with unity

ψ(φ(K)) ∼= K.

5



Let us show that for the corresponding syntactic transformations there is an isomorphism

φ(ψ(L)) ∼= L.

Indeed, let L loop of the class L5 and Z1 its central subloop. Using formulas (2.1) and
(2.2), in L we introduce operations ⊕, × and for the obtained commutative ring Z1 = ψ(L)
we construct a loop φ(Z1), formed by quaternions of elements of Z1. We need to find an
isomorphism of φ(Z1) on L.

By hypothesis, there exists a homomorphism λ : Z1 → L2, µ : Z1 → L1 and an
isomorphism ν : Z1 → Z2 having properties P5). We affix each element k = (k1, k2, k3, k4)
of the loop φ(Z1), to the corresponding the element τ(k) = µ(k1)λ(k2)k3ν(k4) of the loop L.
We show that the mapping τ is a homomorphism φ(Z1) on L. First we note that if z1, z2 ∈ Z1

then according to (3.7) (λ(z2), e1, e1) = z2 and (e2, e1, µ(z1)) = z1, and then we have

(5.15) z1 × z2 =
(
λ(z2), e1, µ(z1)

)
.

Now let k = (k1, k2, k3, k4) and l = (l, l2, l3, l4) be an arbitrary elements of L. According to
(5.15) and (3.9),

(k1 × l1)× (k2l2) =
(
λ(k2l2), e1, µ(k1 × l1)

)
=

(
λ(k2l2), e1, µ

(
λ(l1), e1, µ(k1)

))
=

(
λ(k2l2), µ(l1), µ(k1)

)
,

i.e.

(5.16) (k1 × l1)× (k2l2) =
(
λ(k2l2), µ(l1), µ(k1)

)
.

Similarly it is proved and the equality

(5.17) (k2 × l2)× (k1l1) =
(
λ(k1l1), µ(l2), µ(k2)

)
.

Then, according to (2.1), (5.15)–(5.17) we have

kl =
(
k1 ⊕ l1, k2 ⊕ l2, k3 ⊕ l3 ⊕ (k1 × l1)× (k2 ⊕ l2), k4 ⊕ l4 ⊕ (k2 × l2)× (k1 ⊕ l1)

)
=

(
k1l1, k2l2, k3l3 · [(k1 × l1)× (k2l2)], k4l4 · [(k2 × l2)× (k1l1)]

)
=

(
k1l1, k2l2, k3l3 ·

(
λ(k2l2), µ(l1), µ(k1)

)
, k4l4 ·

(
λ(k1l1), µ(l2), µ(k2)

))
,

i.e.
kl =

(
k1l1, k2l2, k3l3 ·

(
λ(k2l2), µ(l1), µ(k1)

)
, k4l4 ·

(
λ(k1l1), µ(l2), µ(k2)

))
.

Hence, according to the definition and relations (3.4) and (3.8), we have

τ(kl) = µ(k1l1)λ(k2l2) · (k3l3)
(
λ(k2l2), µ(l1), µ(k1)

)
ν(k4l4 ·

(
λ(k1l1), µ(l2), µ(k2)

))
µ(k1l1)λ(k2l2) · k3l3

(
λ(k2l2), µ(k1), µ(l1)

)
ν(k4l4)ν

(
λ(k1l1), µ(k2), µ(l2)

)
= µ(k1l1)λ(k2l2) · k3l3

(
λ(k2l2), µ(k1), µ(l1)

)
ν(k4l4)

(
µ(k1l1), λ(k2), λ(l2)

)
i.e.

τ(kl) = µ(k1l1)λ(k2l2) · k3l3
(
λ(k2l2), µ(k1), µ(l1)

)
ν(k4l4)

(
µ(k1l1), λ(k2), λ(l2)

)
.
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On the other hand, according to (3.4),

τ(k)τ(l) = [µ(k1)λ(k2) · k3ν(k4)] · [µ(l1)λ(l2) · l3ν(l4)]

= [µ(k1)λ(k2) · µ(l1)λ(l2)] · k3l3ν(k4l4)

= [µ(k1) ·
(
λ(k2) · µ(l1)λ(l2)

)
] · k3l3ν(k4l4)

(
µ(k1), λ(k2), µ(l1)λ(l2)

)
= [µ(k1) ·

(
µ(l1)λ(l2) · λ(k2)

)
] · k3l3ν(k4l4)

(
µ(k1), λ(k2), λ(l2)

)
= [µ(k1) · µ(l1)λ(k2l2)] · k3l3ν(k4l4)

(
µ(l1), λ(l2), λ(k2)

)(
µ(k1), λ(k2), λ(l2)

)
= [µ(k1) · µ(l1)λ(k2l2)] · k3l3ν(k4l4)

(
µ(l1), λ(k2), λ(l2)

)(
µ(k1), λ(k2), λ(l2)

)
= [λ(k2l2)µ(l1) · µ(k1)] · k3l3ν(k4l4)

(
µ(l1k1), λ(k2), λ(l2)

)
= λ(l2k2)µ(l1k1) · k3l3

(
λ(l2k2), µ(l1), µ(k1)

)
ν(k4l4)

(
µ(k1l1), λ(k2), λ(l2)

)
= µ(k1l1)λ(k2l2) · k3l3

(
λ(l2k2), µ(k1), µ(l1)

)
ν(k4l4)

(
µ(k1l1), λ(k2), λ(l2)

)
i.e. τ(kl) = τ(k)τ(l). Since in the loop φ(Z1) the equality (k/l)t = k implies equality
τ(k/l)τ(t) = τ(k) in the loop L, and so is equality τ(k/l) = τ(k)/τ(l). In the loop φ(Z1)
the selected elements are

e′1 = (c, e, e, e), e′2 = (e, c, e, e),

where e is the unit of the loop L. According to P5), µ(c) = e1 and λ(c) = e2 then

τ(e′1 ) = µ(c)λ(e) eν(e) = e1, τ(e′2 ) = µ(e)λ(c) eν(e) = e2.

Thus, τ it is a homomorphism of the enriched loop φ(Z1) in the enriched loop L.
Let us find the kernel of the homomorphism τ . Let τ(k) = e where k = (k1, k2, k3, k4) ∈

φ(Z1). Then µ(k1)λ(k2)k3ν(k4) = e and

µ(k1) = e/λ(k2)k3ν(k4) =
(
λ(k2)k3ν(k4)

)−1
= λ(k−1

2 )k−1
3 ν(k−1

4 ),

λ(k2) = e/µ(k1)k3ν(k4) =
(
µ(k1)k3ν(k4)

)−1
= µ(k−1

1 )k−1
3 ν(k−1

4 ),

means µ(k1) ∈ L1 ∩ L2, λ(k2) ∈ L1 ∩ L2. But according to P1) L1 ∩ L2 = Z(L) therefore,
µ(k1), λ(k2) ∈ Z(L). Hence, by virtue of the equalities (3.7)

e =
(
e2, e1, µ(k1)

)
= k1, e =

(
λ(k2), e1, e1

)
= k2.

Then we have k3 = ν(k4) = e and k3 = ν(k−1
4 ). Whence follows, belongs to the intersection

of the central subloop. But, according to, P2), therefore, hence and. Hence k is a unit in a
loop and the homomorphism is an isomorphism

e =
(
e2, e1, µ(k1)

)
= k1, e =

(
λ(k2), e1, e1

)
= k2.

Then we have k3 = ν(k4) = e and k3 = ν(k−1
4 ). Then we have k3 = Z1 ∩Z2. But according

to P2) Z1 ∩ Z2 = {e}, so k3 = e, consequently k4 = e. Hence k is a unit in a loop φ(Z1)
and the homomorphism τ is an isomorphism.

It remains to show that τ it maps the loop φ(Z1) to the entire loop L. Indeed, let f ∈ L.
we put

f1 = (e2, e1, f), f2 = (f, e1, e1), µ(f1) = k1, λ(f2) = k2

and show that f1, f2 ∈ Z1(L) and f/(k1k2) ∈ Z(L). According to P1) L = L1L2, f1, f2 ∈
Z1(L) and f/(k1k2) ∈ Z(L).According to P1), L = L1L2, so for f = g1g2, g1 ∈ L1, g2 ∈ L2.
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Then, according to (3.4),

f1 = (e2, e1, f) = (e2, e1, g1g2) = (e2, e1, g1) (e2, e1, g2) = (e2, e1, g1),

f2 = (f, e1, e1) = (g1g2, e1, e1) = (g1, e1, e1) (g2, e1, e1) = (g2, e1, e1),

and hence, in view of P2), f1, f2 ∈ Z1(L).
By the first formula in (3.7),

(
λ(g2), e1, e1

)
= g2 and comparing with (f, e1, e1) = f2,

we get
(
f/λ(g2), e1, e1

)
= e. From here f/k2 ∈ L1 and (f/k2)/k1 ∈ L1. Then

e =
(
(f/k2)/k1, e1, e1

)
= (f · k−1

2 k−1
1 , e1, e1) = (f · (k1k2)−1, e1, e1) = (f/(k1k2), e1, e1),

i.e.
(
f/(k1k2), e1, e1

)
= e and therefore f/(k1k2) ∈ L1. Similarly, we prove that

f/(k1k2) ∈ L2. But then f/(k1k2) ∈ Z(L). According to P2) and the definition of isomor-
phism ν from P5), we have Z(L) = Z1Z2 = Z1ν(Z1). Then f/(k1k2) ∈ Z1ν(Z1) and, there-
fore, exists in Z1 such elements k3, k4, what f = k1k2 · k3ν(k4). Denoting f3 = k3, f4 = k4,
it is easy to verify that the quaternion (f1, f2, f3, f4) ∈ φ(Z1) is mapped by τ to the f , and
hence τ maps φ(Z1) onto L, as and required. We have proved

Theorem 5.1. The mapping φ is a one-to-one mapping, up to an isomorphism, of the
class K1 of all commutative rings with unity to the class L5 of all enriched Jordan loops
satisfying the requirements P1)−P5). At the same time, if on some ring K ∈ K1, the closed
formula Ψ of the narrow predicate calculus is true, then on the loop ψ(K) the true formula
ψ(Ψ), and conversely, if on the loop L ∈ L5 any closed formula Φ of the narrow predicate
calculus is true, then on the corresponding commutative ring ψ(L) the formula φ(Φ) is true.

From conditions P1) − P5) defining the class, condition P5) is more complicated than
the others. In the following sections we will indicate several more narrow classes of loops
that leave Theorem 5.1 in force and admit a simple characteristic.

6. SOME SPECIAL CASES

Let L be an arbitrary non-trivial loop. If there exists a natural number n such that for
each egalitat

xn = e,

then the smallest of these numbers n is called the exponent of the loop L. If there are no
such numbers n, then we call the loop L an exponent of zero or a loop without torsion. For
any prime p = 2, 3, ... we denote by Jp the class of all L4-lows with exponent p. It is easy
to see that all conditions P1) − P4) can be written in the form of closed formulas, and so
the class Jp is certainly axiomatizable.

Theorem 6.1. For any prime number p, the mapping φ is a one-to-one correspondence
(up to isomorphism) between commutative rings of characteristic p with unity and Jp-loops.

Proof. Let K be a commutative ring of characteristic p with unity 1. In view of Theo-
rem 5.1, the ring K corresponds to the Jordan L5-loop L = φ(R). Then for any element,
according to (2.1), we have

rp = (pr1, pr2, pr3 + prp1r2, pr4 + prp2r1),

hence it follows that there L is a loop with exponent p. Conversely, it is obvious. It only
remains to prove that any L4-loop with exponent p satisfies condition P5).

The central subloop Z1 of a loop L can be regarded as a linear space over a simple field
P of characteristic p. We choose in Z1 a basis B = {bi | i ∈ I} over P . Obviously, we can
assume that b0 = c = (e2, e1, e1) ∈ B. Now we construct homomorphisms λ : Z1 → L2 and
µ : Z1 → L1. First we note that the correspondences:

(6.18) x→ (x, e1, e1) (x ∈ L2);
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and

(6.19) x→ (e2, x, e1) (x ∈ L1)

is a homomorphism L2 on Z1 and L1 on Z1. For each bi ∈ B we denote it by some preimage
with respect to the homomorphism (6.18) and (6.19) across ci ∈ L2 and di ∈ L1. Obviously,
we can assume that the inverse images of the element b0 in L2 and in L1 with respect to the
indicated homomorphisms are c0 = e2 and d0 = e1. Now the homomorphisms λ and µ are
constructed as follows: for each element z =

∑
nibi (ni ∈ P ) of Z1 assuming by definition

λ(z) =
∏
cni
i and µ(z) =

∏
dni
i . Because the

(c0, e1, e1) = c, (e2, d0, e1) = c,

then λ(c) = λ(b0) = c0 = e2, µ(c) = µ(b0) = d0 = e1 and(
λ(z), e1, e1

)
=

(∏
cni
i , e1, e1

)
=

∏
(ci, e1, e1)

ni =
∏
bni
i = z,(

e2, µ(z), e1
)
=

(
e2,

∏
dni
i , e1

)
=

∏
(e2, di, e1)

ni =
∏
bni
i = z.

The theorem is proved.

Similarly, as in groups, we agree to call the loop L complete, if equation xn = a for
each a in L and every integer n has at least one solution in L. Loops without elements of
finite order, also, we agree to call loops without torsion. A ring is said to be complete (resp.,
without torsion) if its additive group is complete (respectively, without torsion).

Using analogous arguments, as in the proof of Theorem 6.1, in result is we get

Theorem 6.2. The mapping φ is a one-to-one correspondence, up to an isomorphism,
between commutative (respectively without torsion) torsion rings with unity and complete
(respectively, without torsion) Jordan L4-loops.

7. UNDECIDABILITY OF THEORIES OF CERTAIN CLASSES

OF FINITE COMMUTATIVE LOOPS

Let L be any enriched Jordan loop satisfying conditions P1) − P4), and K ∈ ψ(L) let
be the corresponding ring with unity. Then the formulas (4.10), (4.11) determine the exact
interpretation K in L with the distinguishing predicate with a distinguishing predicate

ρ(x) = (∀u) (∀v) (∃w)
(
x · uv = xu · v & we1 · e = w · e1e1 & (e2, e2, w) = x

)
.

The same formulas give an interpretation of any class K of commutative rings with
unity in the class of corresponding loops L =ψ(K). To get rid of the allocated elements it
suffices to use the following well-known assertion: if the class of models M with allocated
elements a1, . . . , am is characterized by the axiom Φ(a1, . . . , am), then a class M ′ without
the above mentioned elements, characterized by the axiom (∃a1) . . . (∃am)Φ(a1, . . . , am),
syntactically is equivalent to M . This is true, since any formula Ψ(a1, . . . , am) belongs
to the elementary theory T (M) if and only if formula (∃a1) . . . (∃am)

(
Φ(a1, . . . , am) →

Ψ(a1, . . . , am)
)
belongs to the elementary theory T (M ′). Now taking for K an arbitrary

axiomatizable undecidability class of commutative rings with unity and considering any class
M of commutative loops with distinguished elements containing L =φ(K) we obtain that
M is undecidable. Since for any prime p = 2, 3, . . . the elementary theory of commutative
rings with unit prime characteristic p is undesirability (see [2, 5]), then (see Theorems 5.1
and 6.1) immediately implies the following more important proposition:

Theorem 7.1. The elementary theory of the class Jp (p is a fixed prime number) of
Jordan loops is undecidability.
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For any prime p = 2, 3, . . . every Jordanian loop class is a finitely axiomatizable subclass
of the class of all finite commutative loops (respectively Jordan loops or automorphic commu-
tative loops), the class of all finite n-nilpotent commutative loops (respectively Jordan loops
or automorphic commutative loupe) for any n ≥ 2, class of all finite commutative groupoids,
and so on. Therefore, the elementary theories of all the above classes are undecidability.

The main results of this note were reported on Mile High Conferences on Nonassociative
Mathematics in University of Denver, Colorado, SUA, august 2017. A short report about
them was published in [4].

REFERENCES

[1] Y.L. Ershov, I.A. Lavrov, A.D. Taimanov and M.A. Taiclin, Elementary theories. Uspehi
mat. nauk, 1965, T. XX, 4(124), 37-107.

[2] Yu.L. Ershov, M.A. Taitslin, Undecidability of certain theories. Algebra and Logic 2,
No. 5 (1963), 37-42.

[3] V.I. Ursu, The recursive inseparability of the set of identically true and finitely refutable
formulas of some elementary theories of varieties. Siberian Mathematical Journal, 2000,
Vol. 41, No. 3, 696-716.

[4] V.I. Ursu, Undecedable of the elementary of finite commutative loops. Fourt Mile Higs on
Nonassociative Mathematics, July 30-August 5, 2017, University of Denver, Colorado,
SUA, Abstracts of Talks, 16-17.

[5] M.A. Taitslin, Undecidability of elementary theories of certain classes of finite commu-
tative associative rings. Algebra and Logic 2, No. 3 (1963), 29-51.

[6] R.H. Bruck, A Survey of Binary Systoms. Springer-Verlag, Berlin-Heidelberg-New York
(1958).

[7] V. D. Belousov, Fundamentals of the Theory of Quasigroups and Loops [in Russian].
Nauka, Moscow (1967).

Tehnical University,
Chişinău,
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