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Within the general framework of logics as institutions, stratified insti-
tutions capture a wide range of formalisms whose satisfaction relations
between models and sentences are parameterized by model states. In
this paper, we lay the foundations of a theory of abstract bisimulations
for logics formalized as stratified institutions, and we examine the re-
lationship that they generate between the concepts of bisimilarity and
elementary equivalence. We discuss institution-theoretic abstractions
of bounded homomorphisms, frame extractions, zig-zag relations, and
modal saturation, and we show how they could work together to bring
forth several Hennessy-Milner results for stratified institutions.
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1 Introduction
Building on Burstall and Goguen’s pioneering work on algebraic specification lan-
guages [BG79], the theory of institutions emerged in the ’80s [GB83; GB92] as a
means to cope with the “population explosion among the logical systems being used
in computer science” at the time – a trend which has only continued to increase
in the past decades. In a nutshell, institutions formalize the intuitive notion of
logical system by treating the syntax (sentences) of logical languages, their semantics
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(models), and the satisfaction relations between models and sentences in a fully
abstract manner. They do so through a careful use of category theory, which has
enabled institutions to support two major and interrelated research directions: for-
mal system development [ST11] and abstract model theory [Dia08]. Both strive to
identify appropriate levels of abstraction where various logical phenomena occur.
This process reduces the effort needed to derive similar results or properties for
different logical systems, thus addressing redundancy, and at the same time it helps
us develop a better understanding of the essence of those phenomena by discarding
extraneous details of concrete logics; often, it also leads to extensions of the original
notion of institution by introducing some additional structure or constraints that are
relevant to the task under consideration. That is the case, for example, of general
logics [Mes89], which provide support for syntactic entailment [see also Mos+07]; of
substitution systems [ŢF17], which allow for an institution-independent form of logic
programming to be developed; or of stratified institutions [AD07], which capture
possible-worlds semantics and provide the context of the present study.

Refined in [Dia17] and further developed in [AB19; Găi20], the theory of strat-
ified institutions caters for logics where the satisfaction of sentences by models is
parameterized by a notion of state of a model. The most prominent example is
that of conventional modal logic [BRV01], with its multitude of variants, for which
(a) the models are Kripke structures having states given by possible worlds, and
(b) the satisfaction of sentences is locally defined at a possible world. But this kind
of dependence of satisfaction relations on model states is not limited to logics with
Kripke semantics. Even first-order logic was initially formalized as an (ordinary)
institution [GB83] in this manner – long before the introduction of stratified institu-
tions. The satisfaction of a formula by a model is defined therein relative to some
assignment of values in the model to the variables in the formula.

In this paper, we return to the close connection between formal system development
(and analysis) and model theory by advancing a stratified institution-theoretic
approach to bisimulations. The concept of bisimulation is famously one of the most
important tools in both computational-process theory and the modal-logic literature.
For the former, it is central to the study of transition systems, where it captures
the observational equivalence of processes [HM80; HM85], whereas for the latter it
leads to van Benthem’s well-known semantic characterization of modal logic as the
bisimulation-invariant fragment of first-order logic [Ben76; Ben01].

Following a series of previous categorical accounts of bisimulations [e.g., AM89;
Gol06; and also JNW96], we develop bisimulation representations in arbitrary strati-
fied institutions as spans of bounded homomorphisms. However, in contrast to the
usual practice of modal logic – where the underlying Kripke frames of models allow for
concrete bounded homomorphisms to be defined – in the abstract setting of stratified
institutions we work with an axiomatic notion of boundedness that is subject to mild
technical assumptions, and which can be regarded as a parameter of the concept of
bisimulation. This means that different selections of bounded homomorphisms may

2



lead to different kinds of bisimulations, with different properties. In this context, we
examine the relationship between bisimilarity and elementary equivalence, and we
identify additional conditions that a logical system and/or its selection of bounded
homomorphisms should meet in order to obtain Hennessy-Milner theorems. All in all,
we establish sufficient conditions under which bisimilarity and elementary equivalence
coincide for a conceptual hierarchy that comprises three increasingly complex sets of
hypotheses, each providing a richer theory than the previous one:

• At the most basic level, which applies to any stratified institution, we develop
a characterization of the Hennessy-Milner property in terms of features of
bounded homomorphisms such as being elementary;

• Next, we examine stratified institutions equipped with a frame extraction – i.e.,
institutions whose models have underlying Kripke frames. This enables us to
introduce frame-bounded homomorphisms, which generalize concrete notions of
boundedness from modal and hybrid logics, and allow for a Hennessy-Milner
theorem that applies to zig-zag elementary-equivalence relations.

• At the richest level, we consider an institution-theoretic notion of modally
saturated model, and we show that the zig-zag property of the elementary-
equivalence relation holds for all such models, provided that the institution has
certain logical connectives and maximally consistent state theories.

The paper is organized as follows. Section 2 reviews the concept of stratified
institution, establishes the notations and terminology that we use in this work, and
presents a few families of examples of stratified institutions that stem from the area
of modal and hybrid logic, as well as automata theory and open first-order logic. In
Section 3, we introduce abstract bounded homomorphisms and bisimulations, develop
our first Hennessy-Milner result, and examine situations in which the Hennessy-Milner
property can be obtained by translation along a signature morphism. Section 4 deals
with frame-bounded homomorphisms in the context of institutions equipped with
a binary frame extraction and discusses the role of zig-zag relations. Finally, in
Section 5, we propose a generalization of the conventional notion of modal saturation
and we show how it can be used to derive a more specific Hennessy-Milner theorem
that is readily applicable to our benchmark examples.

2 Stratified institutions
To set the stage, in this section we recall from [Dia17] the main concept of stratified
institution and introduce a few examples used throughout the paper. We generally
assume readers to be familiar with basic notions of category theory, the most complex
of which being lax natural transformations. The terminology and notations we
use are primarily based on [Mac98], except for the composition of morphisms f
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and g, which we prefer to write in diagrammatic order as f ; g, and for natural
transformations, which we write using a double arrow. We say that a subcategory
C ⊆ D is broad when it contains all the objects in D. We let Set denote the category
of sets and functions, and Cat denote the higher category of categories and functors.
For every category C, we also write SetC, or just Set when the context C can be
easily inferred, for the constant functor C → Cat that maps every object of C to Set,
and every morphism in C to the identity functor idSet. In complex expressions, to
avoid notational clutter, we often denote the action of a function f : X → Y on an
element x ∈ X by fx, using plain juxtaposition, instead of f(x).

Definition 2.1. A stratified institution S is a tuple ⟨SigS , SenS , ModS , J KS ,⊨S⟩
consisting of:

• a category SigS of signatures and signature morphisms,

• a sentence functor SenS : SigS → Set defining, for every signature Σ, a set
SenS(Σ) of Σ-sentences and, for every signature morphism φ : Σ → Σ′, a
sentence-translation map SenS(φ) : SenS(Σ) → SenS(Σ′),

• a model functor ModS : (SigS)op → Cat defining, for every signature Σ, a
category ModS(Σ) of Σ-models and Σ-homomorphisms and, for every signature
morphism φ : Σ → Σ′, a reduct functor ModS(φ) : ModS(Σ′) → ModS(Σ),

• a lax natural transformation J KS : ModS ⇒ Set defining, for every signature Σ,
a state-space functor J KS

Σ : ModS(Σ) → Set and, for every morphism φ : Σ → Σ′,
a state-reduction natural transformation J KS

φ : J KS
Σ′ ⇒ ModS(φ) ; J KS

Σ, and

• a signature-indexed family of satisfaction relations ⊨S
Σ between Σ-models M

and Σ-sentences ρ, parameterized by states w ∈ JMKS
Σ and denoted M ⊨S,w

Σ ρ

such that the following satisfaction condition holds for every signature morphism
φ : Σ → Σ′, every Σ′-model M ′, every state w′ ∈ JM ′KS

Σ′ , and every Σ-sentence ρ:

M ′ ⊨S,w′

Σ′ SenS(φ)(ρ) if and only if ModS(φ)(M ′) ⊨S,JM ′KS
φw′

Σ ρ.

As usual in institution theory, we may simplify the notations introduced in Def-
inition 2.1 by omitting superscripts or subscripts that can be easily inferred from
the context. We may, therefore, denote the state space of a Σ-model M simply by
JMK instead of JMKS

Σ; or, given a signature morphism φ : Σ → Σ′ and a Σ′-model
M ′, we may denote the action of the state-reduction function JM ′KS

φ on a state
w′ ∈ JM ′K by JM ′Kφw′ instead of JM ′KS

φw′. In addition, we typically denote the
sentence-translation function Sen(φ) by φ( ) and the model-reduct functor Mod(φ)
by ↾φ. Using these notations, when M = M ′↾φ, we may say that M is the φ-reduct
of M ′, or that M ′ is a φ-expansion of M ; the same applies to homomorphisms. For
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convenience, we also overload the notation of satisfaction relations to indicate the
simultaneous satisfaction of multiple sentences at a given state: for every subset
Γ ⊆ Sen(Σ), M ⊨w Γ when M ⊨w ρ for all sentences ρ ∈ Γ.

We say that a stratified institution is strong (following terminology from [JFS17])
when the lax natural transformation defining its stratification has this property
– that is, for every signature morphism φ : Σ → Σ′ and every Σ′-model M ′, the
state-reduction function JM ′Kφ is a bijection. And we say that a stratified institution
is strict when all state-reduction functions are identities.
Remark 2.2. Any ordinary institution – sans states – can be regarded as a stratified
institution by defining JMK as a singleton for every model M . In the other direction,
there are two common ways to derive ordinary institutions from stratified ones [Dia17]:

• by defining pointed models as pairs ⟨M, w⟩ consisting of a stratified model M
and a state w ∈ JMK, and by defining ordinary satisfaction relations between
pointed models and sentences, where ⟨M, w⟩ ⊨ ρ if and only if M ⊨w ρ. This
captures the conventional notion of local satisfaction from modal logic.

• by considering a global notion of satisfaction whereby M ⊨ ρ if and only if
M ⊨w ρ for all states w ∈ JMK. This is the route taken in early institution-
theoretic formalizations of modal logics. Technically, this kind of ‘flattening’
requires the state-reduction functions JM ′Kφ to be surjective – a condition
which holds trivially in concrete situations, as we will see below.

Example 2.3 (Modal logics). The literature on modal logics [e.g., BRV01; Bla] is a
prime source of examples of stratified institutions. Most of them are obtained by
blending modal features – in particular, Kripke semantics – with features of other
conventional logics in a process that is sometimes referred to as ‘modalization’ [DS07].

For example, the prototypical form of modal logic arises through the modalization
of propositional logic, which yields the stratified institution MPL. Its signatures are
plain sets whose elements we call propositional symbols, while signature morphisms
are ordinary functions; so SigMPL = Set. For every signature P , the sentences in
SenMPL(P ) are defined according to the following grammar:

ρ ::= π ∈ P | ρ ∧ ρ | ¬ρ | 3ρ

Other logical connectives such as the disjunction, implication, necessity, etc., can
be introduced in the usual manner based on the ones listed above. The translation
of sentences along a function φ : P → P ′ is defined using structural induction by
replacing the symbols in P with symbols in P ′ according to φ.

The models in ModMPL(P ) are Kripke structures ⟨W, M⟩ where:

• W is a Kripke frame consisting of a set |W | whose elements are called possible
worlds and a binary accessibility relation Wλ on |W |, and
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• M is a function assigning a subset M(w) ⊆ P to every possible world w ∈ |W |;
therefore, for every w, M(w) is a propositional model for the signature P .

Model homomorphisms ⟨W1, M1⟩ → ⟨W2, M2⟩ are functions h : |W1| → |W2| such
that h(W1,λ) ⊆ W2,λ, which ensures that h is a Kripke-frame homomorphism, and
M1(w) ⊆ M2(h(w)) for every possible world w in W1. The reduction of a P ′-model
⟨W ′, M ′⟩ along a function φ : P → P ′ is the Kripke structure ⟨W ′, M⟩ with the
same possible worlds and accessibility relation as the original model and with
M(w) = φ−1(M ′(w)) for all w ∈ |W ′|. Similarly, for P ′-homomorphisms h′, based
on the monotonicity of the inverse-image function, we have h′↾φ = h′.

The stratification of MPL is strict and is defined by J⟨W, M⟩KP = |W | for Kripke
structures of signature P and by JhKP = h for P -homomorphisms.

Lastly, the satisfaction of MPL sentences in a Kripke structure ⟨W, M⟩ at a possible
world w ∈ |W | is defined by structural induction as follows:

• for propositional symbols, ⟨W, M⟩ ⊨w π when π ∈ M(w);

• for conjunctions, ⟨W, M⟩ ⊨w ρ1 ∧ ρ2 when ⟨W, M⟩ ⊨w ρ1 and ⟨W, M⟩ ⊨w ρ2;

• for negations, ⟨W, M⟩ ⊨w ¬ρ when ⟨W, M⟩ ⊭w ρ;

• for possibilities, ⟨W, M⟩ ⊨w 3ρ when ⟨W, M⟩ ⊨s ρ for some (w, s) ∈ Wλ.

The construction outlined above for MPL has numerous variations in the modal-
logic literature. It can be restricted, which is typically done by imposing constraints on
the accessibility relations of Kripke structures; for example, they may be required to
be serial, reflexive, preorders, or equivalences, leading to the D, T, S4, or S5 variants,
respectively, of modal propositional logic. Or it can be extended by considering
additional accessibility relations – and, consequently, additional modal operators –
or by allowing the arities of the accessibility relations to be arbitrarily large instead
of being binary. Both types of extensions are captured by means of a general
notion of modal similarity type [see BRV01], which is one of the key ingredients in
institution-theoretic formalizations of such logics [e.g., DS07; Mar+11].

The institutional process of modalization enables the role of propositional logic as a
base logic to be easily filled by other, more elaborate, formalisms such as many-sorted
equational logic, first-order logic, or partial algebra. These make possible additional
semantic constraints on the structure of the base models that label possible worlds,
leading to Kripke structures with constant domains, which may be subject to further
information-sharing constraints as in [Dia16], or to Kripke structures with varying
domains and different kinds of quantification schemes as in [ŢCF21].

Example 2.4 (Hybrid logics). Hybrid languages [Bla00] extend the capabilities of
modal languages by introducing new syntactic constructs, called nominals, which are
used to refer to and reason about individual possible worlds within Kripke structures.
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Similarly to modal logics, they can be obtained through an institution-independent
process of ‘hybridization’ [Mar+11; DM16]; in essence, this refines modalization by
adding nominals to the signatures of the resulting logic – with suitable subsequent
upgrades to the sentences, models, and satisfaction relations of the logic.

To illustrate the approach, consider the following hybridization of propositional
logic that gives rise to the stratified institution HPL. The signatures, in this case,
are pairs (N, P ) consisting of disjoint sets N and P of nominals and propositional
symbols, respectively. Correspondingly, signature morphisms are pairs of functions,
one acting on nominals and another acting on propositional symbols.

The sentences of HPL are generated by a grammar similar to the one defined in
Example 2.3 that includes, in addition, the following two productions:

ρ ::= i ∈ N | @i · ρ

This syntax is occasionally broadened [e.g. Gor96; Bra11] to accommodate quantifiers
over possible worlds or a special store operator that binds a nominal to the possible
world where the operator – and the sentence it builds – is evaluated.

The models of HPL augment the Kripke structures ⟨W, M⟩ defined for MPL by
adding, for every nominal i ∈ N , a possible-world interpretation Wi ∈ |W |. As
expected, HPL homomorphisms h : ⟨W1, M1⟩ → ⟨W2, M2⟩ preserve the interpretation
of nominals, in the sense that h(W1,i) = W2,i for all nominals i ∈ N .

Model states and the mapping of states along homomorphisms are defined exactly
as in the non-hybrid case by letting J⟨W, M⟩K = |W | for models and JhK = h for
homomorphisms. Hence the stratification of HPL is strict as well.

The ingredients listed above are brought together by the satisfaction relations of
HPL between Kripke structures and hybrid sentences, whose inductive definition
expands the satisfaction of modal sentences with the following two cases:

• for nominal sentences, ⟨W, M⟩ ⊨w i when w = Wi;

• for local-satisfaction operators, ⟨W, M⟩ ⊨w @i · ρ when ⟨W, M⟩ ⊨Wi ρ.

All the variations of the process of modalization described in Example 2.3 have
hybrid counterparts, so the landscape of hybrid logics is at least as vast as that of
traditional modal logics – without nominals. For simplicity of presentation, we only
refer to HPL in the next sections of the paper; however, except for tweaking some
of the parameters that are being used and checking prerequisites, the properties we
examine in those sections generally apply to many other hybrid logics.

Example 2.5 (Automata). The theory of finite state machines provides yet another
class of examples of stratified institutions. We look at a simple representative based
on non-deterministic automata, whose stratified institution we denote by NFA; for
other institution-theoretic formalizations of automata, see, e.g., [Dia08; ŢF15; Dia22].
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Similarly to MPL, the signatures of NFA are plain sets, in this case regarded as
input alphabets or vocabularies of the automata. Therefore, SigNFA = Set.

For every alphabet A, the sentences in SenNFA(A) are finite sequences (words) built
from symbols in A; so, using the Kleene operator, we can write SenNFA(A) = A∗.
And for every function φ : A → A′, the sentence translation SenNFA(φ) is the unique
homomorphic extension φ∗ : A∗ → (A′)∗ satisfying φ∗(ε) = ε for the empty word ε,
φ∗(a) = φ(a) for symbols a ∈ A, and φ∗(uv) = φ∗(u)φ∗(v) for concatenations.

The NFA models over A are non-deterministic finite automata ⟨Q, ∆, F ⟩ where
Q is a finite set of states, ∆ is a family of transition relations ∆a ⊆ Q × Q indexed
by symbols a ∈ A, and F ⊆ Q is a subset of final, or accepting, states. Their
homomorphisms ⟨Q1, ∆1, F1⟩ → ⟨Q2, ∆2, F2⟩ are functions h : Q1 → Q2 that preserve
both transitions and final states – i.e., h(∆1,a) ⊆ ∆2,a for all a ∈ A and h(F1) ⊆ F2.
Given a signature morphism φ : A → A′, the φ-reduct of an A′-automaton ⟨Q′, ∆′, F ′⟩
is the A-automaton ⟨Q′, ∆, F ′⟩ with transitions given by ∆a = ∆′

φ(a) for all a ∈ A.
The reducts of homomorphisms are defined, similarly to MPL, by h′↾φ = h′.

The stratification is strict and, once more, straightforward: J⟨Q, D, F ⟩K = Q.
Finally, the satisfaction relations of NFA capture the acceptance of words by

automata. An automaton ⟨Q, ∆, F ⟩ over some alphabet A satisfies (accepts) a
sentence (word) a1a2 · · · an ∈ A∗ at a state q ∈ Q when there exist q1, q2, . . . , qn+1 ∈ Q
such that q1 = q, (qi, qi+1) ∈ ∆ai for all 1 ≤ i ≤ n, and qn+1 ∈ F .

Deterministic finite automata give rise to a sub-institution DFA of NFA. The
signatures and sentences of DFA are the same as those of NFA, but the models are
restricted to automata ⟨Q, ∆, F ⟩ with functional transition relations: for all symbols
a ∈ A and all states q, s, t ∈ Q, if (q, s) ∈ ∆a and (q, t) ∈ ∆a, then s = t.

A useful variation of DFA is PDFA, which has the same signatures, models, and
stratification as the institution DFA, and sentences defined as sets of words, or
languages. Hence SenPDFA = SenDFA ; P, the latter being the covariant power-set
functor P : Set → Set. The satisfaction of PDFA-sentences is defined by the ex-
pected conjunctive interpretation of sets of sentences: for every automaton ⟨Q, ∆, F ⟩
over some alphabet A, every state q ∈ Q, and every language L ⊆ A∗, we have
⟨Q, ∆, F ⟩ ⊨PDFA,q

A L if and only if ⟨Q, ∆, F ⟩ accepts all the words in L starting from
the state q – which is the same as the abbreviation ⟨Q, ∆, F ⟩ ⊨DFA,q

A L.

Example 2.6 (Open formulae). The internal stratification of ordinary institutions
developed in [AD07] gives us further examples of stratified institutions where the
stratification generalizes valuations of free variables. For instance, let OFOL be an
institution obtained from the internal stratification of first-order logic. Its signatures
are pairs ⟨Σ, X⟩ consisting of a first-order signature Σ and a set X of Σ-variables –
see [GB92; Dia08] for details on how to formalize first-order logic as an institution.
The signature morphisms ⟨Σ, X⟩ → ⟨Σ′, X ′⟩ require X to be a subset of X ′ and,
when that holds, are simply first-order signature morphisms φ : Σ → Σ′.

Both sentences and models for an OFOL-signature ⟨Σ, X⟩ are defined as in first-
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order logic: for sentences, we consider open first-order Σ-formulae with free variables
in X; and for models, we consider all Σ-models. Their translations and reductions
along signature morphisms are also defined as in first-order logic.

For every signature ⟨Σ, X⟩, the stratification J K⟨Σ,X⟩ maps every first-order
Σ-model M to the set |M |X of M -valuations of X – i.e., functions from X into
the carrier set of M . And for every signature morphism φ : ⟨Σ, X⟩ → ⟨Σ′, X ′⟩ and
⟨Σ′, X ′⟩-model M ′, the state-reduction function JM ′Kφ : |M ′|X′ → |M ′|X maps every
M ′-valuation w′ : X ′ → |M ′| to (X ⊆ X ′) ; w′, which is the restriction of w′ to X.
Therefore, the stratification of OFOL is a proper non-strong lax natural transforma-
tion. Its 2-morphism components JM ′Kφ are surjective functions for all models M ′

that have non-empty carriers – a property which is guaranteed, e.g., whenever the
signature Σ′ of M ′ is rich enough so as to allow the formation of terms.

To define the satisfaction relations, notice that any first-order signature Σ and any
set X of Σ-variables determine an extended first-order signature Σ(X) obtained by
adding the elements in X to Σ as new constant-operation symbols. Based on this
extension, for every ⟨Σ, X⟩-model M , every valuation w : X → |M |, and every open
Σ-formula ρ with variables in X, we let M ⊨w ρ if and only if ρ holds – according
to the definition of the satisfaction relations of first-order logic – in the unique
Σ(X)-expansion of M that interprets every symbol x ∈ X as w(x).

3 Abstract bisimulations
The general approach to bisimilarity that we consider in this paper builds on the idea
that bisimulations are derived relations between models that arise from combinations
of certain structure-preserving maps. Those maps are known as bounded morphisms
in the model theory of conventional modal logics [see Gol89; GO07], and they are
frequently presented as particular bisimulations induced by functions – even though
their role is more fundamental. In what follows, we introduce them in an axiomatic
manner, through a functorial selection of abstract homomorphisms.

Definition 3.1 (Bounded homomorphism). We say that a stratified institution S
has bounded homomorphisms when it is equipped with a subfunctor BH of Mod that
defines, for every signature Σ, a broad subcategory BH(Σ) ⊆ Mod(Σ). When that
happens, we call the arrows in BH(Σ) bounded Σ-homomorphisms.

To formalize bisimulations in an arbitrary but fixed stratified institution, we resort
to categorical relations, which are represented by spans ⟨µi, Zi, νi⟩ as in the diagram
below. We also make use of the following preorder relation on spans: for any two
objects M and N , in any category, ⟨µ1, Z1, ν1⟩ ≤ ⟨µ2, Z2, ν2⟩ if and only if there
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exists an arrow h : Z1 → Z2 such that µ1 = h ; µ2 and ν1 = h ; ν2.

Z1µ1
vv

ν1
((

h
��

M N

Z2
µ2

hh

ν2

66

We say that the class of spans between two arbitrary but fixed objects M and N
is κ-directed for some cardinal number κ, usually infinite, when every subclass of it
of cardinality less than κ has an upper bound.

Definition 3.2 (Bisimulation). Given a stratified institution S with bounded homo-
morphisms, a bisimulation (representation) between two Σ-models M and N consists
in a span ⟨µ, Z, ν⟩ of bounded homomorphisms. We say that the stratified models
M and N are bisimilar if there exists a bisimulation between them.

In addition, we say that a bisimulation ⟨µ, Z, ν⟩ witnesses the bisimilarity of two
states u ∈ JMK and v ∈ JNK, or that the pointed models ⟨M, u⟩ and ⟨N, v⟩ are
bisimilar, if there exists a state z ∈ JZK such that JµKz = u and JνKz = v.

For the rest of the paper, whenever we refer to bisimulations or to bisimilar models
or states, we implicitly assume that the stratified institution within which we work
is equipped with a functorial selection BH of bounded homomorphisms.

Definition 3.3 (Hennessy-Milner property). A stratified institution S has the
Hennessy-Milner (HM ) property for a signature Σ when the bisimilarity and the
elementary-equivalence relation for Σ are indistinguishable. That is, for any two
Σ-models M and N , and for any states u ∈ JMK and v ∈ JNK, we have:

[bisimilarity] the pointed models ⟨M, u⟩ and ⟨N, v⟩ are bisimilar

if and only if

[elementary equivalence] M ⊨u ρ if and only if N ⊨v ρ for all Σ-sentences ρ.

We say that the institution S has the HM property, or that it is an HM institution,
if the above condition holds for all signatures Σ of S.

When the stratified models M and N are fixed, the HM property can also be
understood as the equality of two relations ∼M,N , ≡M,N ⊆ JMK × JNK between the
states of M and N , where u ∼M,N v stands for the bisimilarity of ⟨M, u⟩ and ⟨N, v⟩,
and u ≡M,N v stands for their elementary equivalence.

The forward implication of Definition 3.3 is related to the following notion of
elementary homomorphism, which originates from [AD07].

Definition 3.4 (Elementary homomorphism). For any signature Σ in a stratified
institution and any set Γ of Σ-sentences, a Σ-homomorphism h : M → N is Γ-ele-
mentary when, for every state w ∈ JMK and every Σ-sentence ρ ∈ Γ, M ⊨w ρ if and
only if N ⊨JhKw ρ. We say that h is elementary when it is Sen(Σ)-elementary.
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Proposition 3.5. Bisimilarity implies elementary equivalence if and only if bounded
homomorphisms are elementary.

Proof. For the ‘if’ part, suppose ⟨µ, Z, ν⟩ is a bisimulation between stratified models
M and N with distinguished states u ∈ JMK, v ∈ JNK, and z ∈ JZK such that
JµKz = u and JνKz = v, and let ρ be a Σ-sentence. Since the homomorphism
µ : Z → M is bounded, and thus elementary, it follows that M ⊨u ρ if and only if
Z ⊨z ρ, which then holds if and only if N ⊨v ρ because ν : Z → N is bounded.

For the ‘only if’ part, let h : M → N be a bounded homomorphism, w a state of
M , and ρ a Σ-sentence. It follows that ⟨idM , M, h⟩ is a bisimulation representation
that witnesses the bisimilarity of the states w and JhKw. Therefore, since bisimilarity
implies elementary equivalence, we get M ⊨w ρ if and only if N ⊨JhKw ρ.

In order to characterize as well the backward implication of Definition 3.3, we
make use of a category-theoretic concept of cover of a span along a functor.

Definition 3.6 (Cover). Let F : C → C′ be a functor. We say that a span ⟨µ, Z, ν⟩ in
C between objects M and N is an F -cover of another span ⟨µ′, Z ′, ν ′⟩ in C′ between
F (M) and F (N), or that F covers ⟨µ′, Z ′, ν ′⟩, when F (⟨µ, Z, ν⟩) ≥ ⟨µ′, Z ′, ν ′⟩.

Zµ

tt

ν
**

_

��

M_

��

N_

��

F (Z)F (µ)
uu

F (ν)
))

F (M) F (N)

Z ′µ′

ii

ν′

55
h

OO

An F -cover ⟨µ, Z, ν⟩ is strong when the inequality F (⟨µ, Z, ν⟩) ≥ ⟨µ′, Z ′, ν ′⟩ is evi-
denced by an isomorphism h : Z ′ → F (Z) as in the commutative diagram above.

In particular, when F is Set-valued and the span ⟨µ′, Z ′, ν ′⟩ that it covers is the
tabulation of a relation Z ′ ⊆ F (M) × F (N), we may also say that F covers Z ′.

Proposition 3.7. Elementary equivalence implies bisimilarity when, for all Σ-models
M and N , the composite functor

(
BH(Σ) ⊆ Mod(Σ)

)
; J K covers the relation ≡M,N .

Conversely, if the class of bisimulation representations between M and N is κ-directed
for some cardinal number κ > card(≡M,N ), then the bisimilarity of elementary-
equivalent states implies that

(
BH(Σ) ⊆ Mod(Σ)

)
; J K covers the relation ≡M,N .

Proof. The first part of the statement is straightforward since, for any pair of stratified
models M and N , every cover of ≡M,N along

(
BH(Σ) ⊆ Mod(Σ)

)
; J K gives rise to

a bisimulation ⟨µ, Z, ν⟩ between M and N . Moreover, for any such bisimulation,
there exists, by definition, a function h : ≡M,N → JZK such that JµKh(u, v) = u and
JνKh(u, v) = v for all states u ∈ JMK and v ∈ JNK such that u ≡M,N v. Therefore,
⟨µ, Z, ν⟩ witnesses the bisimilarity of any two elementary-equivalent states.

11



For the second part of the statement, let ⟨µu,v, Zu,v, νu,v⟩ be a bounded span that
witnesses the bisimilarity of any two given elementary-equivalent states u ∈ JMK and
v ∈ JNK, and take ⟨µ, Z, ν⟩ as an upper bound of {⟨µu,v, Zu,v, νu,v⟩ | u ≡M,N v}.

It is easy to check that ⟨µ, Z, ν⟩ is a cover of ≡M,N along
(
BH(Σ) ⊆ Mod(Σ)

)
; J K:

For every pair of elementary-equivalent states u and v as above, there exists, on the
one hand, a state zu,v ∈ JZu,vK such that Jµu,vKzu,v = u and Jνu,vKzu,v = v; and on
the other hand, a homomorphism hu,v : Zu,v → Z, depicted in the upper part of the
commutative diagram below, by which ⟨µu,v, Zu,v, νu,v⟩ ≤ ⟨µ, Z, ν⟩.

Zµ

rr

ν
))

_

��

M_

��

N_

��

Zu,v
µu,v

ii

νu,v

22hu,v

;;

JZKJµK

rr

JνK
((

JMK JNK

≡M,N
πM

ii

πN

22h

<<

The mapping (u, v) 7→ Jhu,vKzu,v gives us a function h : ≡M,N → JZK that sat-
isfies JµKh(u, v) = JµKJhu,vKzu,v = Jµ ; hu,vKzu,v = Jµu,vKzu,v = u and, similarly,
JνKh(u, v) = v, for all u ≡M,N v. Therefore, J⟨µ, Z, ν⟩K ≥ ⟨πM , ≡M,N , πN ⟩.

The premise in the second part of Proposition 3.7 poses no challenges in practice
because concrete bisimulations are typically closed under arbitrary unions, so there is
always a largest bisimulation between two fixed models, also known as the bisimilarity
relation. That is generally the case with modal logics as well as more abstract
frameworks as in coalgebraic approaches to bisimilarity [e.g., Gol06].

We conclude this section by putting together Propositions 3.5 and 3.7 and a
well-known result in cardinal arithmetic: if JMK and JNK have cardinalities bounded
by some infinite cardinal κ, then ≡M,N ⊆ JMK × JNK has this property too.

Corollary 3.8. A stratified institution has the HM property for a signature Σ if:

1. all bounded Σ-homomorphism are elementary; and

2.
(
BH(Σ) ⊆ Mod(Σ)

)
; J K covers ≡M,N for all Σ-models M and N .

When the class of bisimulations between any two Σ-models is κ-directed for some
infinite cardinal number κ that is larger than the cardinal of the state space of any
Σ-model, the two conditions listed above are not only sufficient, but also necessary.

12



HM by translation
The HM property for a signature can sometimes be inherited from another signature,
provided that the two signatures are linked by a suitable morphism. In the next
two propositions we examine properties of signature morphisms that enable us to
transfer HM results from one signature to another.

Proposition 3.9. Let φ : Σ → Σ′ be a signature morphism such that every bounded
φ-expansion of an elementary Σ-homomorphism is elementary. If the HM property
holds for Σ, then bisimilarity implies elementary equivalence for Σ′.

Proof. By Proposition 3.5, it suffices to show that all bounded Σ′-homomorphisms
are elementary, so let h′ be a homomorphism in BH(Σ′). It follows that h′↾φ is a
bounded Σ-homomorphism, and thus elementary – by Corollary 3.8 – because the
HM property holds for Σ. Therefore, given that h′ is a bounded φ-expansion of an
elementary Σ-homomorphism, we get that h′ is elementary as well.

Proposition 3.10. Let φ : Σ → Σ′ be a signature morphism in a strong stratified
institution such that BH(φ) covers spans. If the HM property holds for Σ, then
elementary equivalence implies bisimilarity for Σ′.

Proof. Let u′ and v′ be states in Σ′-models M ′ and N ′, respectively, such that
M ′ ⊨u′

ρ′ if and only if N ′ ⊨v′
ρ′ for all Σ′-sentences ρ′, and let u = JMKφu′ and

v = JN ′Kφv′. By the satisfaction condition for φ, it follows that M ′↾φ ⊨u ρ if and
only if N ′↾φ ⊨v ρ for all Σ-sentences ρ. Therefore, since the HM property holds for
Σ, there exists a bisimulation representation ⟨µ, Z, ν⟩ between M ′↾φ and N ′↾φ and a
state z ∈ JZK such that JµKz = u and JνKz = v.

Since BH(φ) covers spans, we obtain a bisimulation ⟨µ′, Z ′, ν ′⟩ between M ′ and
N ′ and a Σ-homomorphism h : Z → Z ′↾φ such that the following diagram commutes:

Z ′
µ′

uu

ν′

))

_

��

M ′
_

��

N ′
_

��

Z ′↾φµ↾φ

vv

ν↾φ

((

M↾φ N↾φ

Z
µ

ii

ν

55
h

OO

Given that the stratification is strong, it follows that JM ′Kφ, JZ ′Kφ, and JN ′Kφ are
all bijections. In particular, the surjectivity of JZ ′Kφ entails that there exists a state
z′ ∈ JZ ′K such that JZ ′Kφz′ = JhKz. Moreover, based on the injectivity of JM ′Kφ and
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on the sequence of equalities below, we infer that Jµ′Kz′ = u′.

JM ′KφJµ′Kz′

= Jµ′↾φKJZ ′Kφz′ by the naturality of J Kφ

= Jµ′↾φKJhKz since JZ′Kφz′ = JhKz

= Jh ; µ′↾φKz because J KΣ is a functor

= JµKz by the commutativity of the diagram above

= JM ′Kφu′ because JµKz = u = JM ′Kφu′.

In a similar manner, we show that Jν ′Kz′ = v′, which enables us to conclude that the
pointed models ⟨M ′, u′⟩ and ⟨N ′, v′⟩ are bisimilar.

Corollary 3.11. In strong stratified institutions, the HM property is preserved along
all signature morphisms φ : Σ → Σ′ such that:

1. bounded φ-expansions of elementary Σ-homomorphism are elementary; and

2. the model-reduct functor BH(φ) covers spans.

4 Frame-bounded homomorphisms
The results we have developed thus far hold for arbitrary stratified institutions where
we have little to no knowledge about the structure of models. But in many concrete
examples of stratified institutions, including those presented in Section 2, stratified
models are structures built on top of some Kripke frame. In this section, we make
explicit the underlying Kripke frames of models and we use the additional information
to arrive at a refined form of Corollary 3.8. For this purpose, we first introduce
categories of Kripke frames, which are parameterized by sets of modalities.

Frame extractions
For every set Λ, whose elements we regard as modalities, we let K(Λ) be the category
of Kripke frames with accessibility relations indexed by Λ. Each of its objects W
consists of a set |W | (typically non-empty) of possible worlds together with a binary
accessibility relation Wλ ⊆ |W | × |W | for every modality λ ∈ Λ. Its arrows W1 → W2
are Λ-frame homomorphisms, meaning functions h : |W1| → |W2| that preserve the
accessibility of worlds: h(W1,λ) ⊆ W2,λ for all modalities λ ∈ Λ.
Remark 4.1. The map K extends to a contravariant functor K : Setop → Cat, where,
for every function l : Λ → Λ′ and every frame W ′ in K(Λ′), K(l)(W ′) is the frame
W in K(Λ) given by |W | = |W ′| and Wλ = W ′

l(λ) for all λ ∈ Λ. Building on the
functoriality of K, the notation used for the underlying set of possible worlds of a
Kripke frame can be extended as well to a natural transformation | | : K ⇒ Set.
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The following concept of frame extraction, based on which we can regard stratified
models as abstract Kripke structures, originates from [Dia17]. For simplicity, we only
consider binary frame extractions here; however, the definition and all the results
that follow can be easily upgraded to modalities of arbitrary type [see Dia17; Dia22].

Definition 4.2 (Frame extraction). A binary frame extraction for a stratified
institution is a pair ⟨L, Fr⟩ consisting of a functor L: Sig → Set and a lax natural
transformation Fr: Mod ⇒ L ; K such that J K = Fr ; L| |.

Example 4.3. Both modal and hybrid logics have obvious frame extractions given
by the underlying Kripke frames of their models. For instance, for MPL, we let L(P )
be the singleton {λ} for every set P of propositional symbols, and we let Fr(⟨W, M⟩)
be the Kripke frame W for every P -model ⟨W, M⟩. The same holds for HPL and for
many other variants of modal and hybrid logic. In each of those cases, similarly to
the stratification J K, the lax natural transformation Fr is strict.

Example 4.4. For the stratified institutions of finite automata from Example 2.5,
we let L(A) = A for every signature (alphabet) A, and Fr(⟨Q, ∆, F ⟩) = ⟨Q, ∆⟩ for
every automaton ⟨Q, ∆, F ⟩ – i.e., |Fr(⟨Q, ∆, F ⟩)| = Q and Fr(⟨Q, ∆, F ⟩)a = ∆a for
all a ∈ A. The lax natural transformations Fr are strict in this case too.

Example 4.5. The stratified institution OFOL also admits a non-trivial frame
extraction where L(⟨Σ, X⟩) = X for every signature ⟨Σ, X⟩. Therefore, in this case,
variables may be regarded as modalities. Concerning accessibility relations, for
every ⟨Σ, X⟩-model M and variable x ∈ X, we let Fr(M)x be the set of all pairs of
valuations u, v : X → |M | that agree on all variables save possibly x; or, in symbols:
(u, v) ∈ Fr(M)x if and only if (X \ {x} ⊆ X) ; u = (X \ {x} ⊆ X) ; v.

Frame extraction enables us to introduce an institutional notion of frame-bounded
homomorphism, which captures concrete bounded homomorphisms, also known as
p-morphisms [Seg71], from traditional modal and hybrid logics.

Definition 4.6 (Frame-bounded homomorphism). Let S be a stratified institution
equipped with a subfunctor E ⊆ Sen and a binary frame extraction ⟨L, Fr⟩. A
Σ-homomorphism h : M → N is frame-bounded when, for all w ∈ JMK:

• M ⊨w ρ if and only if N ⊨JhKw ρ for every sentence ρ ∈ E(Σ); and

• Fr(N)λ(JhKw) ⊆ JhK
(
Fr(M)λw

)
for every modality λ ∈ L(Σ),

where Fr(M)λw = {s ∈ JMK | (w, s) ∈ Fr(M)λ} is the set of λ-successors of w in M
and likewise Fr(N)λ(JhKw) = {t ∈ JNK | (JhKw, t) ∈ Fr(N)λ}.

In practice, the sentences in E(Σ) are typically atomic, and play a key role in
defining bisimulations. For this reason, we call them bisimulation-essential.
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Example 4.7. For MPL, we let E(P ) = P , the set of all propositional atoms.
Similarly, for HPL, the bisimulation-essential sentences are given by all propositional
and nominal atoms. For the stratified institutions of automata from Example 2.5,
E(A) consists of only one sentence: ε, the empty word, for NFA and DFA; and {ε}
for PDFA. And for the stratified institution of open formulae from Example 2.6,
E(⟨Σ, X⟩) is the set of all equational and relational Σ-atoms with variables in X.

Frame-boundedness combines two orthogonal properties of homomorphisms. One is
the elementary property for bisimulation-essential sentences – cf. Definition 3.4 – while
the other is the standard boundedness property of Kripke-frame homomorphisms:
a frame homomorphism h : W1 → W2 in K(Λ) is bounded [see Gol89; BB07] when,
for every possible world w ∈ |W1|, every modality λ ∈ Λ, and every transition(
h(w), s2

)
∈ W2,λ, there exists a transition (w, s1) ∈ W1,λ such that h(s1) = s2. In

other words, the function induced by h between the set of λ-successors of w in W1 and
the set of λ-successors of h(w) in W2 is surjective. Based on this observation, and in
order to avoid confusion between frame-bounded and bounded frame homomorphisms,
we henceforth call the latter frame homomorphisms successor-surjective.
Remark 4.8. A homomorphism h of stratified Σ-models is frame-bounded if and only if
it is E(Σ)-elementary and Fr(h) is a successor-surjective L(Σ)-frame homomorphism.

This view eases the task of checking that frame-bounded homomorphisms fit into
the general framework introduced in Section 3. To see why that is the case, we
first consider two important properties of successor-surjective frame homomorphisms.
The proofs of the following lemmas are straightforward.

Lemma 4.9. For every set Λ of modalities, the successor-surjective Λ-frame homo-
morphisms form a broad subcategory S(Λ) ⊆ K(Λ). Moreover, successor-surjectivity
is preserved by frame-reduction functors, hence S extends to a subfunctor of K.

Lemma 4.10. For every pair of composable homomorphisms f and g in K(Λ), if f is
surjective and f ; g is successor-surjective, then g is successor-surjective as well.

Proposition 4.11. Suppose φ : Σ → Σ′ is a signature morphism in a stratified
institution as in Definition 4.6 such that, for every Σ′-model M ′, JM ′Kφ is surjective.
Then the φ-reduct of any E(Σ′)-elementary homomorphism is E(Σ)-elementary.

If, in addition, for every Σ′-model M ′, Frφ(M ′) is successor-surjective, then the
φ-reduct of any frame-bounded Σ′-homomorphism is frame-bounded as well.

Proof. Let h′ : M ′ → N ′ be an E(Σ′)-elementary Σ′-homomorphism. For the first
part of the proposition, we need to check that the satisfaction of any sentence
ρ ∈ E(Σ) is invariant along h′↾φ. So let w be a state of M ′↾φ. Since JM ′Kφ is
surjective, there exists w′ ∈ JM ′K such that w = JM ′Kφw′. The equi-satisfaction of ρ
at w′ and Jh↾φKw′ follows from the next sequence of equivalent statements:

1 M ′↾φ ⊨w ρ
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2 M ′↾φ ⊨JM ′Kφw′
ρ because w = JM ′Kφw′

3 M ′ ⊨w′
φ(ρ) by the satisfaction condition for φ

4 N ′ ⊨Jh′Kw′
φ(ρ) since h′ is frame-bounded and φ(ρ) ∈ E(Σ′)

5 N ′↾φ ⊨JN ′KφJh′Kw′
ρ by the satisfaction condition for φ

6 N ′↾φ ⊨Jh′↾φKJM ′Kφw′
ρ by the naturality of J Kφ

7 N ′↾φ ⊨Jh′↾φKw ρ once more, because w = JM ′Kφw′.

For the second part, based on Remark 4.8, it suffices to show that Fr(h′↾φ) is
successor-surjective. For that purpose, consider the next commutative diagram in
K(L(Σ)), which arises from the naturality of Frφ : FrΣ′ ; K

(
L(φ)

)
⇒ Mod(φ) ; FrΣ.

M ′

h′

��

K
(
L(φ)

)(
Fr(M ′)

) Frφ(M ′)
//

K(L(φ))(Fr(h′))
��

Fr(M ′↾φ)

Fr(h′↾φ)
��

N ′ K
(
L(φ)

)(
Fr(N ′)

)
Frφ(N ′)

// Fr(N ′↾φ)

Since the model homomorphism h′ is frame-bounded, it follows that Fr(h′) is
successor-surjective. By Lemma 4.9, the frame homomorphism K(L(φ))(Fr(h′)) is
also successor-surjective, hence both the left-hand side and bottom homomorphisms
in the diagram above are successor-surjective – the latter being so by assumption.
Therefore, the composed morphism Frφ(M ′) ; Fr(h′↾φ) is successor-surjective; and, in
addition, the left factor of that composition is surjective on possible worlds because,
by assumption, |Frφ(M ′)| = JM ′Kφ is surjective. This enables us to conclude, based
on Lemma 4.10, that the frame homomorphism Fr(h′↾φ) is successor-surjective.

The conditions of Proposition 4.11 are normally inconsequential as all our examples
of stratified institutions satisfy them. In fact, in many cases, including modal, hybrid
logics, and variations thereof, both JM ′Kφ and Frφ(M ′) are identities, albeit in
different categories. Besides being stable under reducts, it is also easy to see that
any identity homomorphism is frame-bounded and that, for any signature Σ, both
E(Σ)-elementary and frame-bounded homomorphisms are closed under composition.
This observation leads to the following result.

Corollary 4.12. Let S be a stratified institution equipped with frame-bounded homo-
morphisms such that, for every signature morphism φ : Σ → Σ′ and Σ′-model M ′, the
state-reduction function JM ′Kφ is surjective. Then the functor E ⊆ Sen generates a
subfunctor EH ⊆ Mod where, for every signature Σ, EH(Σ) is the broad subcategory
of Mod(Σ) consisting of E(Σ)-elementary homomorphisms.

If, in addition, for every Σ′-model M ′, Frφ(M ′) is successor-surjective, then frame-
bounded homomorphisms give rise to a subfunctor FBH ⊆ Mod as in Definition 3.1.
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Zig-zag relations
Frame-bounded homomorphisms are closely related to the following notion of ‘zig-zag’
relation. The terminology we use here is based on [Ben01].

Definition 4.13 (Zig-zag). Let M and N be two Σ-models in a stratified institution
equipped with a binary frame extraction ⟨L, Fr⟩. A relation R ⊆ JMK× JNK is zig-zag
when, for every (u, v) ∈ R and λ ∈ L(Σ), it simultaneously satisfies:

[zig] for every s ∈ Fr(M)λu there exists t ∈ Fr(N)λv such that (s, t) ∈ R;

[zag] for every t ∈ Fr(N)λv there exists s ∈ Fr(M)λu such that (s, t) ∈ R.

Remark 4.14. Every span ⟨µ, Z, ν⟩ of frame-bounded homomorphisms between models
M and N determines a zig-zag relation given by {(JµKz, JνKz) ∈ JMK×JNK | z ∈ JZK}.

The converse of the property above does not hold universally, for arbitrary stratified
models M and N , not even in the simple case of modal propositional logic, because
bounded spans have a much richer theory than that of zig-zag relations. The
remaining part of this section deals with conditions under which zig-zag relations
can be covered by spans of frame-bounded homomorphisms.
Remark 4.15. Every relation R between state spaces of Σ-models M and N can be
equipped with accessibility relations to form a Kripke frame ⌈R⌉ given by |⌈R⌉| = R
and ⌈R⌉λ = π−1

M (Fr(M)λ) ∩ π−1
N (Fr(N)λ) for all modalities λ ∈ L(Σ). Together with

the obvious projections πM : R → JMK and πN : R → JNK, this construction yields a
strong | |-cover ⟨πM , ⌈R⌉, πN ⟩ of R that is maximal among all such covers.

Proposition 4.16. Let R be a zig-zag relation between the states spaces of two
Σ-models M and N in a stratified institution with frame-bounded homomorphisms.
Every strong cover of ⟨πM , ⌈R⌉, πN ⟩ along the functor

(
EH(Σ) ⊆ Mod(Σ)

)
; Fr is also

a cover of the relation R along
(
FBH(Σ) ⊆ Mod(Σ)

)
; J K.

Proof. Let ⟨µ, Z, ν⟩ be a strong cover of ⟨πM , ⌈R⌉, πN ⟩ along
(
EH(Σ) ⊆ Mod(Σ)

)
;Fr.

It follows that there exists an isomorphism of Kripke frames h : ⌈R⌉ → Fr(Z) such
that the next diagram commutes.

Zµ

tt

ν
**

_

��

M_

��

N_

��

Fr(Z)JµK
uu

JνK
))

Fr(M) Fr(N)

⌈R⌉πM

ii

πN

55
h

OO

Since J K = Fr ; L| | by the very definition of frame extractions, it suffices to show that
the homomorphisms µ and ν are frame-bounded. We already know that they are
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E(Σ)-elementary, because ⟨µ, Z, ν⟩ is a cover along
(
EH(Σ) ⊆ Mod(Σ)

)
; Fr. Hence

all we need to check is that they satisfy the second property of Definition 4.6.
Suppose (JµKz, s) ∈ Fr(M)λ for some state z ∈ JZK and modality λ ∈ L(Σ).

Since h has an inverse, it follows that (JµKz, JνKz) ∈ R. So there exists a transition
(JνKz, t) ∈ Fr(N)λ such that (s, t) ∈ R, because R is zig-zag. This gives us a state
h(s, t) of Z, which – by the definition of ⌈R⌉, and because h preserves transitions
– is a λ-successor of z satisfying JµKh(s, t) = s. Consequently, µ is frame-bounded.
The frame-boundedness of ν can be shown in a similar manner.

Together with Corollary 3.8, Proposition 4.16 leads to the following main result:

Theorem 4.17. Any stratified institution with frame-bounded homomorphisms has
the HM property for any signature Σ such that:

1. all frame-bounded Σ-homomorphisms are elementary; and

2. for all Σ-models M and N , the elementary-equivalence relation ≡M,N is zig-zag
and the functor

(
EH(Σ) ⊆ Mod(Σ)

)
;Fr strongly covers ⟨πM , ⌈≡M,N ⌉, πN ⟩ .

5 Saturated models
In many cases, the elementary-equivalence relation is not zig-zag. There are plenty
examples both in the modal-logic literature [e.g., BRV01] and in automata the-
ory [Par81] that illustrate this point. However, it is a zig-zag relation for certain
classes of models. For instance, in its original formulation [HM85], the Hennessy-
Milner theorem considers image-finite models. Their definition can be easily adapted
to stratified institutions equipped with a frame extraction: a Σ-model M is image-
finite when, for every state w ∈ JMK and every modality λ ∈ L(Σ), the set Fr(M)λw
of λ-successors of w in M is finite. In the model theory of conventional modal
logic [GO07], image-finiteness has a well-known generalization in the form of modal
saturation for which the HM property can be shown as well [Gol95].

Definition 5.1 (Saturated model). Let Σ be signature in a stratified institution
equipped with a binary frame extraction ⟨L, Fr⟩. A set Γ of Σ-sentences is (infinitely)
satisfiable in a set S ⊆ JMK of states of a Σ-model M when there exists w ∈ S such
that M ⊨w Γ; and it is κ-satisfiable in S, for some cardinal number κ, when every
subset of Γ of cardinality less than κ is satisfiable in S.

A Σ-model M is modally κ-saturated when, for every λ ∈ L(Σ) and w ∈ JMK,
every set Γ ⊆ Sen(Σ) that is κ-satisfiable in Fr(M)λw is satisfiable in Fr(M)λw. We
say that M is finitely-saturated when it is κ-saturated for every infinite cardinal κ.

Remark 5.2. Every image-finite model is finitely-saturated.
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Like bounded homomorphisms, for every signature Σ, κ-saturated models also
form a subcategory of Mod(Σ); but this time a full subcategory, which we denote by
κ-satMod(Σ). The next result shows that the inclusion κ-satMod(Σ) ⊆ Mod(Σ) is
natural in Σ, hence κ-satMod extends to another subfunctor of Mod.

Proposition 5.3. Let φ : Σ → Σ′ be a signature morphism in a stratified institution
equipped with a binary frame extraction ⟨L, Fr⟩. For every κ-saturated Σ′-model M ′,
the reduct M ′↾φ is κ-saturated too, provided that the state-reduction function JM ′Kφ

is surjective and the frame homomorphism Frφ(M ′) is successor-surjective.

Proof. Suppose M ′ is a κ-saturated Σ′-model and let λ ∈ L(Σ), w ∈ JM ′↾φK, and
Γ ⊆ Sen(Σ) such that Γ is κ-satisfiable in Fr(M ′↾φ)λw. Since the function JM ′Kφ is
surjective, there exists w′ ∈ JM ′K such that w = JM ′Kφw′.

We begin by showing that φ(Γ) is κ-satisfiable in Fr(M ′)λ′w′ for λ′ = L(φ)(λ).
With that goal, take ∆′ ⊆ φ(Γ) of cardinality less than κ. It follows that we can
choose a equinumerous subset ∆ ⊆ Γ ∩ φ−1(∆′) such that φ(∆) = ∆′. Since Γ is
κ-satisfiable in Fr(M ′↾φ)λw, there exists a λ-successor s of w in M ′↾φ such that
M ′↾φ ⊨s ∆. Then s = JM ′Kφs′ for some λ′-successor s′ of w′ in M ′, because Fr(M ′)φ

is successor-surjective; so, by the satisfaction condition for φ, M ′ ⊨s′
φ(∆).

Since the model M ′ is κ-saturated, it follows that the set φ(Γ) is satisfiable at
some state u′ ∈ Fr(M ′)λ′w′. Therefore, by the satisfaction condition for φ, we have
M ′↾φ ⊨JM ′Kφu′

γ for all sentences γ ∈ Γ. Coupled with the fact that JM ′Kφu′ is
a λ-successor of w = JM ′Kφw′ in M ′↾φ, which holds because Frφ(M ′) is a frame
homomorphism, this entails that Γ is satisfiable in Fr(M ′↾φ)λw.

Corollary 5.4. Let S be a stratified institution with surjective reduction functions
JM ′Kφ and successor-surjective homomorphisms Frφ(M ′) for all signature morphisms
φ : Σ → Σ′ and all Σ′-models M ′. By restricting the stratified models of S to those
that are κ-saturated we obtain a sub-institution of S, which we denote by κ-sat(S).

The κ-saturation property is not only preserved by model-reduct functors but
also reflected by homomorphisms that are frame-bounded and elementary. The next
proposition is used in the final part of the section to show that bisimulations between
κ-saturated Σ-models are represented by spans in κ-satMod(Σ).

Lemma 5.5. Let h : M → N be a frame-bounded and elementary Σ-homomorphism
in an arbitrary stratified institution. If N is κ-saturated, then so is M .

Proof. Take a state w ∈ JMK and let Γ be a set of Σ-sentences that is κ-satisfiable
in Fr(M)λw for some modality λ ∈ L(Σ). This means that for any subset ∆ ⊆ Γ of
cardinality less than κ, there exists a λ-successor s of w in M such that M ⊨s ∆.
Since h is elementary, it follows that N ⊨JhKs ∆. Moreover, the state JhKs must be a
λ-successor of JhKw in N . So Γ is κ-satisfiable in Fr(N)λ(JhKw).
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Since N is κ-saturated, the whole set Γ is satisfiable in Fr(N)λ(JhKw). Therefore,
Γ is also satisfiable in JhK

(
Fr(M)λw

)
because h is frame-bounded. In other words,

there exists a λ-successor x of w in M such that N ⊨JhKx Γ. The last property is
equivalent to M ⊨x Γ because h is elementary, hence Γ is satisfiable in Fr(M)λw.

It only remains to argue that, for saturated models, the familiar zig-zag property
of concrete elementary-equivalence relations from modal logics is an instance of a
more general phenomenon that can be described for arbitrary stratified institutions.
For this purpose, we need two more ingredients: a semantic treatment of connectives,
which we recall from [Dia17], and consistent sets of sentences [see, e.g., Tar86].

Definition 5.6 (Connectives). For any signature Σ in a stratified institution:

• a sentence ρ is a semantic conjunction of Γ ⊆ Sen(Σ) when, for every Σ-model
M and state w ∈ JMK, M ⊨w ρ if and only if M ⊨w γ for all γ ∈ Γ;

• a sentence ρ is a semantic negation of another sentence γ when, for every
Σ-model M and state w ∈ JMK, M ⊨w ρ if and only if M ⊭w γ.

If, in addition, the stratified institution is equipped with a binary frame extraction
⟨L, Fr⟩, then for every modality λ ∈ L(Σ):

• a sentence ρ is a semantic λ-possibility of γ ∈ Sen(Σ) when, for every Σ-model
M and state w ∈ JMK, M ⊨w ρ if and only if M ⊨s γ for some s ∈ Fr(M)λw.

We say that a stratified institution S has semantic κ-conjunctions for some cardinal
number κ when, for every signature Σ, every subset Γ ⊆ Sen(Σ) of cardinality less than
κ admits a semantic conjunction. We also way that S has semantics negations when
each of its sentences admits a semantic negation; and that it has semantic possibilities
when, for every modality λ ∈ L(Σ), every Σ-sentence admits a λ-possibility.

When semantic conjunctions, negations, or possibilities exist, we typically denote
them by

∧
Γ, ¬γ, or ⟨λ⟩γ, respectively. This notation does not uniquely identify them

as sentences, nor does it imply the existence of corresponding syntactic connectives.

Example 5.7. It is easy to see that, for non-empty signatures, both MPL and
HPL have finite semantic conjunctions, negations, and possibilities. The ‘non-empty’
requirement is important here because, otherwise, the empty set of sentences does
not admit a semantic conjunction – which follows from the observation that, for
MPL and HPL, the empty signature determines an empty set of sentences. For every
non-empty signature, say containing a propositional symbol π ∈ P , the sentence
¬(π ∧ ¬π), which is equivalent to true, is obviously a semantic conjunction of ∅.

The institutions NFA and DFA do not have semantic conjunctions or negations,
but they have possibilities: given an alphabet A, the composite word aw is a semantic
a-possibility of w for every input symbol a ∈ A and every sentence w ∈ A∗. In the
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power-set extension PDFA, we recover semantic conjunctions, which are given by
set-theoretic unions of languages, but negations are still missing.

Like MPL and HPL, the stratified institution OFOL admits finite semantic con-
junctions and negations for all signatures that have a non-empty set of atomic
sentences. Moreover, given a signature ⟨Σ, X⟩, for every modality x ∈ L(⟨Σ, X⟩) –
i.e., following Example 4.5, for every variable x ∈ X – the existentially quantified
sentence ∃x · ρ is a semantic x-possibility of ρ, for all ⟨Σ, X⟩-sentences ρ.

Definition 5.8 (Consistency). A set Γ of Σ-sentences in an arbitrary stratified
institution is consistent when there exist a Σ-model M and a state w ∈ JMK such
that M ⊨w Γ. And it is maximally consistent when it is consistent and maximal with
this property – i.e., it has no proper consistent superset.

We say that S has maximally consistent state theories when, for every Σ-model
M and w ∈ JMK, the set ⟨M, w⟩∗ = {ρ ∈ Sen(Σ) | M ⊨w ρ} is maximally consistent.

Remark 5.9. If a stratified institution has semantic negations, then it also has
maximally consistent state theories. For this reason, except for the logics that have
automata as models, all other examples of stratified institutions from Section 2 have
maximally consistent state theories. The stratified institution NFA and its variants
have neither negations nor maximally consistent state theories. That is because,
for any alphabet (signature) A in NFA or DFA, the state theories of A-automata
correspond to regular languages with symbols from A, of which only A∗, the language
consisting of all words, is maximally consistent. A similar observation applies to
PDFA, whose state theories are power-sets of regular languages.

Proposition 5.10. Consider a stratified institution S with semantic κ-conjunctions
and possibilities, and let u and v be states of Σ-models M and N , respectively, such
that ⟨M, u⟩∗ ⊆ ⟨N, v⟩∗. If N is κ-saturated, then for every modality λ ∈ L(Σ) and
state s ∈ Fr(M)λu there exists a state t ∈ Fr(N)λv such that ⟨M, s⟩∗ ⊆ ⟨N, t⟩∗.

Proof. Suppose s is a λ-successor of u in M . Since S has semantic κ-conjunctions
and possibilities, it follows that, for every subset ∆ ⊆ ⟨M, s⟩∗ of cardinality less than
κ, we have M ⊨u ⟨λ⟩

∧
∆. By assumption, N ⊨v ⟨λ⟩

∧
∆, hence ∆ is satisfiable in

Fr(N)λv. The κ-saturation of N further implies that ⟨M, s⟩∗ is satisfiable in Fr(N)λv,
so there exists a λ-successor t of v in N at which all the sentences in ⟨M, s⟩∗ hold.

Applying Proposition 5.10 twice, from left to right, and vice versa, for elementary-
equivalent states – which satisfy ⟨M, u⟩∗ = ⟨N, v⟩∗ – yields the following property.

Corollary 5.11. In any stratified institution with maximally consistent state theories,
semantic κ-conjunctions, and possibilities, the elementary-equivalence relation ≡M,N

is zig-zag for all κ-saturated models M and N .

This allows us to further refine Theorem 4.17 into a result that applies to κ-satu-
rated models. To that end, notice that every selection of bounded homomorphisms

22



for an institution S trivially determines a selection of bounded homomorphisms
for κ-sat(S). Moreover, since κ-saturation only restricts the models of S, it follows
that κ-sat(S) has maximally consistent state theories, as well as semantic κ-con-
junctions and possibilities whenever S has those properties. By Corollary 5.11, we
can safely drop the zig-zag requirement on ≡M,N from condition 2 of Theorem 4.17;
and by Proposition 4.16 and Lemma 5.5 we know that, for κ-saturated Σ-models
M and N , any cover of ⟨πM , ⌈≡M,N ⌉, πN ⟩ along

(
EH(Σ) ⊆ Mod(Σ)

)
; Fr is a span in

κ-satMod(Σ). All these observations lead to the following simplified formulation.

Theorem 5.12. Let S be a stratified institution with frame-bounded homomor-
phisms that has maximally consistent state theories, semantic κ-conjunctions, and
possibilities. Then κ-sat(S) has the HM property for every signature Σ such that:

1. all frame-bounded Σ-homomorphisms are elementary; and

2. the functor
(
EH(Σ) ⊆ Mod(Σ)

)
; Fr strongly covers ⟨πM , ⌈≡M,N ⌉, πN ⟩ for all

κ-saturated Σ-models M and N .

Except for the stratified institution NFA, for which the HM property is known
to fail [e.g., Par81], all other logics presented in Section 2 admit Hennessy-Milner
theorems based either on Theorem 4.17 or on Theorem 5.12. The latter applies to
stratified institutions of modal and hybrid logics and to OFOL, whereas the former
applies to the stratified institution PDFA and – indirectly – to DFA.

To be more precise, condition 1, which entails the ‘soundness’ of bisimilarity,
generally amounts to proving that the elementary property of frame-bounded homo-
morphisms extends from atoms to more complex sentences. The proofs are routinely
done by structural induction [e.g., BB07, Bisimulation Invariance Lemma].

The second condition, from which the ‘completeness’ of bisimilarity follows, is
also easy to check in conventional settings. For instance, in MPL, for any pair of
finitely-saturated models M and N over some signature P , the cover of ≡M,N that
we need can be obtained by building an adequate submodel Z of the product M × N :
its underlying Kripke frame is given by the construction outlined in Remark 4.15,
hence Fr(Z) = ⌈≡M,N ⌉; and for any pair (u, v) ∈ JMK× JNK of elementary-equivalent
worlds and any propositional symbol π ∈ P , we let Z ⊨(u,v) π if and only if M ⊨u π
– or, equivalently, N ⊨v π. Similar constructions apply to HPL and OFOL, and to
many other stratified institutions of modal and hybrid logics.

For PDFA, the second condition of Theorem 4.17 follows from an argument that
is analogous to the one presented above for MPL, save that the zig-zag property of
≡M,N is not entailed by the existence of maximally consistent state theories; instead,
it follows from Proposition 5.10 and the functionality of the transition relations
of deterministic automata. The HM property of DFA follows from that of PDFA
by translation, based on the observation that the two institutions have the same
signatures, models, and stratification, and that two pointed models are elementary
equivalent in DFA if and only if they are elementary equivalent in PDFA.
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6 Conclusions
In this paper, we have shown that stratified institutions can be easily enriched with a
notion of bounded homomorphism to provide an institution-independent framework
for studying bisimulations. Within that framework, we have examined the rela-
tionship between the concepts of bisimilarity and elementary equivalence at several
model-theoretic levels of complexity: for unconstrained stratified institutions, for
institutions equipped with a binary frame extraction, and in the context of modally
saturated models. For each of those levels, we have presented additional construc-
tions and sufficient conditions under which – similarly to Hennessy and Milner’s
famous characterization of process invariance using modal satisfaction [HM85] – the
bisimilarity and the elementary equivalence of states are proved to coincide.

This work establishes guidelines for selecting bounded homomorphisms that support
the subsequent development of Hennessy-Milner theorems for logical systems that
are much more complex than those presented in Section 2. A vast family of such
logics can be obtained, for instance, by iterating the modalization and hybridization
processes outlined in Examples 2.3 and 2.4. The unconstrained version of those
constructions yields stratified institutions to which we can apply with ease the results
presented in Section 5. In that sense, the Hennessy-Milner theorem for hierarchical
hybrid logic from [Mad+17] can be obtained as a corollary of Theorem 5.12. In
contrast, for constrained models [e.g., Dia16; GŢ19; ŢCF21], the second condition of
Theorem 5.12 is more challenging to check and open to further investigation.

The framework we have developed here also provides a basis upon which a richer
theory of stratified bisimulations can be developed. For example, following Defini-
tion 5.1, the construction and study of ultrafilter extensions seems to be well within
reach. In addition, following Corollary 3.11, other transfer properties can be shown
for maps between stratified institutions along the lines of [CM97]. We have already
seen such a technique in action, in a significantly simplified form, when we established
that the HM property holds for the stratified institution DFA.
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