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Summary. In this paper, we show that the additive Schwarz method proposed in
Badea and Wang [1999] to solve one-obstacle problems converges in a much more
general framework. We prove that this method can be applied to the minimization
of functionals over a general enough convex set in a reflexive Banach space. In the
Sobolev spaces, the proposed method is an additive Schwarz method for the solu-
tion of the variational inequalities coming from the minimization of non-quadratic
functionals. Also, we show that the one-, two-level variants of the method in the
finite element space converge, and we explicitly write the constants in the error
estimations depending on the overlapping and mesh parameters.
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1 Introduction

The literature on the domain decomposition methods is very large. We can
see, for instance, the papers in the proceedings of the annual conferences
on domain decomposition methods starting with Glowinski et al. [1988], or
those cited in the books Quarteroni and Valli [1999], Smith et al. [1996] and
Toselli and Widlund [2004]. The multilevel or multigrid methods can be viewed
as domain decomposition methods and we can cite, for instance, the results
obtained by Kornhuber [1997], Mandel [1984] and Smith et al. [1996].

In Badea and Wang [1999], an additive Schwarz method has been proposed
for symmetric variational inequalities. Although this method do not assume
a decomposition of the convex set according to the domain decomposition,
the convergence proof is given only for the one-obstacle problems. In Section
2 of this paper, we prove that the method converges in a much more general
framework, ie. we can apply it to the minimization of functionals over a general
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enough convex set in a reflexive Banach space. In Section 3, we show that,
in the Sobolev spaces, the proposed method is an additive Schwarz method
and it converges for variational inequalities coming from the minimization of
non-quadratic functionals. Also, in Section 4, we show that the one-, two-level
variants of the method in the finite element space converge, and we explicitly
write the constants in the error estimations depending on the overlapping
and mesh parameters. The convergence rates we find are similar with those
obtained in the literature for symmetric inequalities or equations, ie. they are
almost independent on the overlapping and mesh parameters in the case of
the two-level method.

2 General convergence result

Let us consider a reflexive Banach space V', some closed subspaces of V,
Viy--+,Vm, and K C V a non empty closed convex subset. We make the
following

ASSUMPTION 1 There ezists a constant Cy > 0 such that for any w,v € K
there exist v; € Vi, i = 1,--- ,m, which satisfy

m m
v—w:Zvi, w+wv, € K and ZHWHSCO||U_WH~
i=1 i=1
We consider a Gateaux differentiable functional F : K — R, which is
F(v)
) ol
K is not bounded. Also, we assume that there exist two real numbers p, ¢ > 1

such that for any real number M > 0 there exist ayps, By > 0 for which

assumed to be coercive in the sense that — 00, as |[v]| = o0, v € K, if

ayllv —ul|P << F'(v) — F'(u),v —u > and (1)
1F'(v) = F'(u)llvr < Bullo —ul| 77

for any u,v € K with ||u||,|]v|]| < M. Above, we have denoted by F’ the
Gateaux derivative of F', and we have marked that the constants aj; and
By may depend on M. It is evident that if (1) holds, then for any u,v € K,
[lul],|v]] < M, we have apr|lv—u||P << F'(v) — F'(u),v—u >< B]|v—ul||?.
Following the way in Glowinski et al. [1976], we can prove that for any u,v €
K, [ull, [ul] < M, we have

< F'(u),v—u>+tv—ul||P < F(v) - F(u) < 5
< F'(u),v —u> +55 o — ul]f. 2)
We point out that since F' is Gateaux differentiable and satisfies (1), then F' is
a convex functional (see Proposition 5.5 in Ekeland and Temam [1974], pag.
25).

We consider the minimization problem
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u€ K : F(u) < F(v), for any v € K, (3)

and since the functional F' is convex and differentiable, it is equivalent with
the variational inequality

weK: < F'(u),v—u>>0, forany v € K. (4)

We can use, for instance, Theorem 8.5 in Lions [1969], pag. 251, to prove that
problem (3) has a unique solution if F' has the above properties. In view of
(2), for a given M > 0 such that the solution u € K of (3) satisfies ||u|| < M,
we have

QTMHU—qugF(v)—F(u) for any v € K, |jv]| < M. (5)

To solve minimization problem (3), we propose the following additive sub-
space correction algorithm corresponding to the subspaces Vi, --- , V,,, and the
convex set K.

ALGORITHM 1 We start the algorithm with an arbitrary u® € K. At iteration
n+ 1, having u™ € K, n > 0, we solve the inequalities

wtt e Vi, uh FwTt € K < F/(u™ +wlt), v — w!T >> 0, ()
for any v; € Vi, v +v; € K,

m
fori=1,---,m, and then we update u" ™ = u" + pr?“, where p > is
i=1

chosen such that u"*t! € K for any n > 0.

A possible choice of p to get u"t! € K, is p < 2. Indeed, if we write

1
m
1
0<7r=pm<1,then v"™ = (1 —r)u™ + TZ —(u™ 4+ v;) € K. Evidently,
m
i=1
problem (6) has an unique solution and it is equivalent with

witt e Vi, ut +wl € K2 F(u™ +w!t) < F(u® +v;), 1)
for any v; € V;, " +v; € K.

Let us now give the convergence result of Algorithm 1.

Theorem 1. We consider that V' is a reflexive Banach, V1, --- ,V,, are some
closed subspaces of V', K is a non empty closed convex subset of V' satisfying
Assumption 1, and F is a Gdteauz differentiable functional on K which is
supposed to be coercive if K is not bounded, and satisfies (1). On these condi-
tions, if u is the solution of problem (3) and u™, n > 0, are its approximations
obtained from Algorithm 1, then the following error estimations hold:

(i) if p = q we have

Pty - P < (G ) (P60 - Pl ®)
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29,7}

|w—wwzp(‘”)[ﬂw—ﬂw, (9)

where Cy is given in (14), and
(i) if p > q we have

F(u") — F(u) < F(u?) = F(w) — (10)
[1+nCa (P(u0) - P(u) ]
HU _ un”p < L F(uo) — F(u) —, (11)

(14 nC (F(u0) = F(u)) =]
where Cy is given in (18).

Proof. We first prove that the approximation sequence (u™),>0 of u obtained
T

from Algorithm 1 is bounded for p = £, 0 < r < 1. In view of the convexity

m
of F and equation (7), we get
m m

F™!) = " + =3 wf™) = F((1 =" + Y — (" +wi™) <

=1 =1
T’m
1—PF™) +— Y Fu® ntly < ™).
( muu+m; (u" +wpth) < F(u™)

Consequently, using (3), we have F(u) < F(u"t!) < F(u™) < -+ < F(u),
and, from the coercivity of F' if K is not bounded, we get that there exists
M > 0, such that ||u|| < M and ||u"|| < M, n > 0.

In view of (2) and (6), we get %Hw?””p < F(u")—F(u"+w!th). Using
this equation in the place of (7), with a proof similar with the above one, we
get

aM S n n n
pTZHwi“HpéF(u ) = F(um*) (12)
i=1

=u"+ E w?“ in view of the convexity of F', we have
i=1

Now, writing @

FnJrl:Fn L ’(L+1:F 17Ln Ln n+1<
() = P+ 23wl = P - D+ S+ 3l <

m
r

r r r
1— —)F(u") + —F(u" MY <1 - —)F@") + —F@@"h).

(1= PG + TR0+ 3 wl™) < (1= DR + SR

With v := v and w := u”, we get a decomposition v} € V; of u—u" satisfying

the conditions of Assumption 1. Using this decomposition, the above equation,
(2) and inequalities (6),

Fu" ') =F(u)+pat|[a" ! —ul[P < (1=p)(F(u")=F(u))+p (F(@"*') = F(u)

el —ullp) < (1- p)(F(u") = Fw) +p < F'(@ ), a™ - u>=
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m

(1= p)(F") = F(u) +p>_ < F'@*),w/™ —op >< (1 - p)(F(u") -
i=1

W) +pY < Pl +wf ) = F@ ), ol — wt >< (1= p)(F") -

w) + pBar Y Il T o — Wit < (1= p)(F() — F(w) +
i=1 i

q—1

pBum” 5 (Z |w?“|p> STl + [ ) < (1= p)(F(u™)
=1

=1

g1
p—atl = n ! n S n
— F(u)) + pBam > <Z||wi+1||p> <00|U—U |+Z||wi+1||>
=1

=1

g—1

(1= p) (F(u") = F(u)) + pBum "+ (Z ||@U?“||p> (Collu—a" ||+ (1+
i=1

g—1

Co) D Ilwl H]) < (1=p) (F(u")=F (u))+pBa Com ™+ <Z||W?+1|Ip> |
i=1

i=1
[lu — @Y + pBar(1+ Co)m (le"“|p>

T yril .

er—1

But, for any ¢ > 0 r > 1 and x,y > 0, we have x%y < ex +

Consequently, we get

F(u™™) = F(u) + pc’*MHﬂ"Jrl —ullP < (1= p)(F@") = F(u)) + pBu(1 +

p q+1 Z
(Z IIw”“Ilp> +pﬂMOo (lew”“l”> +

n+1Hp

HH

pP—g+1l
pBuCoem™ > |lu—a
Withe =2 1 the above equations becomes,

By Com P

F(un+l)—F(u) < %(F(u")—F(un'H))-‘rﬁM(l_"Co m 2-3 (Z ||wn+1||P>

— ‘gT P p m Z:i
(ﬁMCom ? ) (aM) ZH“’TLHHP :

In view of this equation and (12), we have
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F(un+1) 7 F(u) < 1—p (F(u”) . F(u”Jrl))
1 Bu(1+ Coym® %

p ok

o (13)

We notice that because of (2) we must have p > ¢. Also, using (5), we
see that error estimations in (9) and (11) can be obtained from (8) and (10),
respectively. Now, if p = ¢, from the above equation, we easily get equation
(8), where

1 1 D\
Ci==[1-p+ Bu( ,:WCO)m N (ﬂ]\/lg\gm ) 14)
p e N
Finally, if p > ¢, from (13), we have
F(un+1) _ F(u) < Oy (F(u") _ F(unﬂ));’,%} (15)
where -
p=g 1 1 7
Cy = 122 (F(u0) - F(w) =t 4 L 0w Coym™ 7
P (55)r
) (5Mcompfz+1> p—1 (16)

pi1 @My%
P

p—1
From (15), we get F(u"™!) — F(u) + —= (F(u"*!) — F(u)) """ < F(u") —
cyt
F(u), and we know (see Lemma 3.2 in Tai and Xu [2002]) that for any
r > 1land ¢ > 0, if ¢ € (0,29] and y > 0 satisfy y + cy” < «z,
1

then y < (% + Il*r) """, Consequently, we have F(u"t!) — F(u) <
0
q—1
q

[Cz + (F(u™) — F(u))ﬁ] H, from which,

Fu") — F(u) < [(n +1)Cs + (F(u®) — F(u))% o , (17)
where
Cy = P—q . (18)

(p— 1) (F(u®) — F(u) ™ + (¢ — )05~

Equation (17) is another form of equation (10).
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3 Additive Schwarz method as a subspace correction
method

The proofs of the results in this section are similar with those in the case of the
multiplicative Schwarz method which are given in Badea [2003] for the infinite
dimensional case, and in Badea [2006] for the one- and two-level methods.
Detailed proofs for the additive method will be given in a forthcoming paper.

Let 2 be an open bounded domain in R? with Lipschitz continuous bound-
ary 912. We take V = W;*(£2), 1 < s < oo, and a convex closed set K C V
satisfying

Property 1. Ifv,w € K and § € C1(2), with0 < § < 1, then fv+(1—-0)w € K.

We consider an overlapping decomposition of the domain 2, 2 = U, (2;,
in which 2; are open subdomains with Lipschitz continuous boundary. We
associate to this domain decomposition the subspaces V; = WO1 B2, 1 =
1,---,m. In this case, Algorithm 1 represents an additive Schwarz method.
We can show that Assumption 1 holds for any convex set K having Property
1. Consequently, the additive Schwarz method geometrically converges if the
convex set has this property, but the constant Cy in Assumption 1 depends on
the domain decomposition parameters. Therefore, since the constants C; and
C5 in the error estimations in Theorem 1 depend on Cy, then these estimations
will depend on the domain decomposition parameters, too.

When we use the linear finite element spaces we introduce similar spaces
to the above ones, Vj, and V), i = 1,..., m, which are considered as subspaces
of VVO1 **. For the one- and two-level additive Schwarz methods, we can show
that Assumption 1 also holds for any closed convex set K}, satisfying

Property 2. If v,w € Ky, and if § € C°(02), 6|, € C1(r) for any 7 € Ty, and
0 <0 <1, then Ly(v+ (1 — O)w) € Kj.

We have denoted by 7 the mesh partition of the domain, and by Lj the
P,;-Lagrangian interpolation operator which uses the function values at the
mesh nodes. We can prove that Assumption 1 holds for any convex set Kj
having Property 2. Moreover, in this case, we are able to explicitly write the
dependence of Cj on the domain decomposition and mesh parameters.

In the case of the one-level method, this constant can be written as

Co=Cm(1+1/5), (19)

where ¢ is the overlapping parameter and C is independent of the mesh pa-
rameter and the domain decomposition. In the case of the two-level method,
we introduce a new subspace V}} associated with the coarse mesh 7. The
constant Cy can be written as

Co=C(m~+1)(1+ H/S) Cys(H,h), (20)

where
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1 fd=s=1lorl<d<s<o
d—1
Cos(Hh)=¢ InZ+1) 7 ifl<d=s<oo (21)
d—s
(5= if 1 <s<d< oo,

We notice that, if the overlapping size § and the mesh sizes H and h are
chosen such that H/h and H/§ are constant, then the convergence rate of the
two-level additive Schwarz method is independent of the mesh and domain
decomposition parameters.
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