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2 Directions of research

Proof mining is a paradigm of research developed by Ulrich Kohlenbach in the 90’s, concerned
with the extraction of hidden finitary and combinatorial content from proofs that make use of
highly infinitary principles. The new information can be both of quantitative nature, such as
algorithms and effective bounds, as well as of qualitative nature, such as uniformities in the bounds
or weakening the premises. This line of research has its roots in Kreisel’s program of unwinding of
proofs, initiated in the 50’s.

Recently, Terence Tao [34] arrived at a proposal of so-called hard analysis, based on finitary
arguments, instead of the infinitary arguments from soft analysis, inspired by the methods used
by him and Green [14] in their proof that there are arithmetic progressions of arbitrary length in
the prime numbers. Proof mining allows us to obtain results in hard analysis, as Tao remarks [34]:
“There are rigorous results from proof theory, such as Herbrand’s theorem, which can allow one to
automatically convert certain types of qualitative arguments into quantitative ones.”

Applications of proof mining consist in preprocessing the original mathematical proof in such a
way that the statement of the theorem and the main concepts have a suitable logical form, followed
by the identification of the key steps in the proof that require a computational interpretation. As
a result, we get direct proofs for the explicit quantitative versions of the original results, that is
proofs that no longer rely on any logical tools.

In the following we present the results obtained.

2.1 Effective results in nonlinear ergodic theory

Let us recall the Hilbert space formulation of the celebrated von Neumann mean ergodic theorem.

Teorema 2.1. Let H be a Hilbert space and U : H → H be a unitary operator. Then for all
x ∈ H, the Cesàro mean xn = 1

n

∑n−1
i=0 U

ix converges strongly to PFix(U)x, the projection of x on
the set of fixed points of U .

If X = (X,B, µ, T ) is a probability measure-preserving system, H = L2(X ) and U = UT :
L2(X ) → L2(X ), f 7→ f ◦ T is the induced operator, the Cesàro mean starting with f ∈ L2(X )
becomes the ergodic average Anf = 1

n

∑n−1
i=0 f ◦ T i.

Avigad, Gerhardy and Towsner [1] showed that we can not obtain in general computable rates
of convergence. In this situation, one can consider the following equivalent reformulation of the
Cauchy property of (xn):

∀k ∈ N ∀g : N→ N ∃N∀i, j ∈ [N,N + g(N)]
(
‖xi − xj‖ < 2−k

)
. (1)

This is known in logic as the no-counterexample interpretation [21, 22] of the Cauchy property
and it was popularized in the last years under the name of metastability by Tao [34, 35]. In [35],
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Tao generalized the mean ergodic theorem to multiple commuting measure-preserving transforma-
tions, by deducing it from a finitary norm convergence result, expressed in terms of metastability.
Recently, Walsh [36] used again metastability to show the L2-convergence of multiple polynomial
ergodic averages arising from nilpotent groups of measure-preserving transformations. Logical
metatheorems [17] show that, from wide classes of mathematical proofs one can extract upper
bounds Φ(ε, g) on ∃N in (1). Thus, taking ε > 0 instead of 2−k, we define a rate of metastability
as a functional Φ : (0,∞)× NN → N satisfying

∀ε > 0∀g : N→ N∃N ≤ Φ(ε, g)∀i, j ∈ [N,N + g(N)] (‖xi − xj‖ < ε) . (2)

In [19] we obtained a quantitative version of the mean ergodic theorem for uniformly convex
Banach spaces [3], computing an effective uniform rate of metastability for the Cesàro mean.
Immediate consequences are the results obtained by Avigad, Gerhardy and Towsner [1] for Hilbert
spaces and by Tao [35] for a particular dynamical system.

An important generalization of the von Neumann mean ergodic theorem was obtained by
Wittmann [37] in 1992.

Teorema 2.2. [37] Let C be a bounded closed convex subset of a Hilbert space X, T : C → C a
nonexpansive mapping and (λn)n≥1 be a sequence in [0, 1]. Assume that (λn) satisfies

lim
n→∞

λn = 0,
∞∑
n=1

|λn+1 − λn| <∞ and
∞∑
n=1

λn =∞ (3)

For any x, u ∈ C, define

x0 := u, xn+1 := λn+1u+ (1− λn+1)Txn. (4)

Then (xn) converges to PFix(T )u.

One can easily see that (xn) coincides with the Cesàro mean when T is linear and λn =
1

n+ 1
.

The iteration (xn) is known as the Halpern iteration, as it was introduced by Halpern [15] for the
special case u = 0. The Halpern iteration can be defined similarly in more general spaces, like the
geodesic ones.

2.1.1 Effective uniform rates of asymptotic regularity

The first step towards proving the weak or strong convergence of an iteration consists in obtaining
the so-called asymptotic regularity and this can be done in a very general setting. Asymptotic
regularity is a very important concept, introduced by Browder and Petryshyn [5] in the 60’s for
the Picard iteration, but it can be defined in general for any iteration (xn) associated with a
mapping T on a metric space (X, d): (xn) is asymptotically regular if lim

n→∞
d(xn, Txn) = 0 for

all x ∈ C. A rate of convergence of the sequence (d(xn, Txn)) towards 0 will be called a rate of
asymptotic regularity.

In the paper P1 we obtained quantitative results on the asymptotic regularity of the Halpern
iteration in CAT(0) spaces for general (λn), by considering as a hypothesis both

∑∞
n=1 λn+1 =∞

and the equivalent condition
∏∞

n=1(1 − λn+1) = 0. As an immediate corollary, one obtains a
quadratic rate of asymptotic regularity, generalizing in this way the result proved for Hilbert
spaces by Kohlenbach [18].
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Teorema 2.3. Assume that λn =
1

n+ 1
, n ≥ 1. Then for every ε ∈ (0, 1),

∀n ≥ Ψ(ε,M) (d(xn, Txn) ≤ ε) ,

where Ψ(ε,M) =

⌈
4M

ε
+

16M2

ε2

⌉
− 1, with M ∈ Z+ such that M ≥ dC.

The method used in P1 for CAT(0) spaces can not be applied in the case of CAT(κ) spaces
(with κ > 0). For these spaces, we computed an exponential rate of asymptotic regularity in P11.

In the paper P5 we extended this result to finite families of nonexpansive mappings and to
(r, δ)-convex spaces, introduced by us as a generalization of CAT(κ) spaces and of the metric spaces
with a convex geodesic bicombing (examples of such spaces are the normed ones, Busemann spaces,
hyperconvex spaces or W -hyperbolic spaces in the sense of [16]). Immediate consequences of our
extension are the results in [24, 25].

2.1.2 Effective uniform rates of metastability

In the papers P1, P2, P8 şi P11 we obtained finitary versions, with effective and highly uniform
rates of metastability for generalizations of Theorem 2.2 proved in [33, 32, 29].

These results constitute a significant extension of the actual context of proof mining, as the
proofs in [32, 33] make use of Banach limits, inspired by Lorentz’ seminal paper [27], in which
almost convergence was introduced. Reich [30] initiated the use of almost convergence in nonlinear
ergodic theory, while Bruck and Reich [7] applied for the first time Banach limits to the subject of
Halpern iteration. The existence of Banach limits is either proved by applying the Hahn-Banach
theorem to l∞ or via ultralimits, in both cases the axiom of choice being needed.

In P1 we develop a method to convert such proofs into more elementary proofs which no longer
rely on Banach limits and can be analyzed by the existing logical machinery. The way Banach
limits are used in these proofs seems to be rather typical for other proofs in nonlinear ergodic
theory. Therefore, our method can be used to obtain similar results in those cases too.

The following theorem, proved by Saejung [32] using Banach limits, generalizes Wittmann’s
theorem to CAT(0) spaces.

Teorema 2.4. Let C be a bounded closed convex subset of a complete CAT(0) space X and T :
C → C a nonexpansive mapping. Assume that (λn) satisfies (3). Then for any u, x ∈ C, the
iteration (xn) converges to a fixed point of T .

While we can not expect to obtain effective rates of convergence for (xn), the existence of an
effective and highly uniform rate of metastability is guaranteed, after the elimination of Banach
limits, by [16, Teorema 3.7.3].

Teorema 2.5. In the hypotheses of Theorem 2.4, let α be a rate of convergence of (λn), β be a

Cauchy modulus of sn :=
n∑
i=1

|λi+1 − λi| and θ be a rate of divergence of
∞∑
n=1

λn+1.

Then for all ε ∈ (0, 2) and g : N→ N,

∃N ≤ Σ(ε, g,M, θ, α, β) ∀m,n ∈ [N,N + g(N)] (d(xn, xm) ≤ ε),

where M ∈ Z+ is an upper bound on the diameter of C.
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The rate of metastability Σ, extracted in Theorem 4.2 from P1 does not depend on T , the
starting point x ∈ C and depends weakly on C, via its diameter. We remark that in practical cases,
such as λn = 1

n+1
, the rates α, β, θ are easy to compute. In P8 we remark that the quantitative

analysis of Saejung’s proof has as a result the complete elimination of any contribution of the use
of Banach limits, which results in simpler bounds.

In P2 we apply the same method of eliminating Banach limits from the proof given by Shioji
and Takahashi [33] to a generalization of Wittmann’s theorem to Banach spaces with a uniformly
Gâteaux differentiable norm. Furthermore, we prove a logical metatheorem for a class of Banach
spaces introduced in P2 under the name of spaces with a uniformly continuous duality selection
map.

The paper P11 is dedicated to the extraction of a uniform rate of metastability for the gener-
alization of Wittmann’s theorem to CAT(κ) spaces (with κ > 0). We use the same general method
as in P1, but the proofs from this paper ar much more involved than the ones from P1. In the

case λn =
1

n+ 1
, we obtain a rate having a very simple logical form, similar with the one described

in [20]:

Σ(ε, g, κ,M) = Aε,κ,M

(
f̃ ∗

Bε,κ,M
(0) +

⌈
1

ε0

⌉)
,

computed in Corollary 3.5 from P11. Thus, the function g appears only in the definition of f̃ ∗,
the mappings Aε,κ,M , Bε,κ,M do not depend at all on g.

2.2 Asymptotic behaviour of classes of nonlinear mappinga

In the papers P3, P4, P6 şi P9 important classes of mappings (firmly nonexpansive, averaged,
reflections and relatively nonexpansive) are studied in different classes of geodesic spaces and
proof mining methods are applied to obtain effective results on the asymptotic behaviour of the
associated Picard or Krasnoselskii iterations.

Firmly nonexpansive mappings, introduced by Browder [4] in Hilbert spaces and by Bruck [6]
in Banach spaces, play a very important role in nonlinear analysis and convex optimization, due to
their correspondence with maximal monotone operators proved by Minty [28]. Bruck’s definition
extends immediately to W -hyperbolic spaces (in the sense of Kohlenbach [16]). A mapping T :
C ⊆ X → C is called firmly nonexpansive if for all x, y ∈ C and for all λ ∈ (0, 1),

d(Tx, Ty) ≤ d((1− λ)x+ λTx, (1− λ)y + λTy). (5)

A first main result of the paper P6 is a fixed point theorem for firmly nonexpansive mappings
defined on unions of closed convex subsets of a complete UCW -hyperbolic space. These spaces
[23, 26] are a class of uniformly convex spaces generalizing both CAT(0) spaces and uniformly
convex Banach spaces. A second main result of the paper P6 generalizes results obtained by Reich
and Shafrir [31] in Banach spaces or in the Hilbert ball.

Teorema 2.6. Let C be a subset of a W-hyperbolic space X and T : C → C be a firmly nonex-
pansive mapping. Then for all x ∈ X and k ∈ Z+,

lim
n→∞

d(T n+1x, T nx) =
1

k
lim
n→∞

d(T n+kx, T nx) = lim
n→∞

d(T nx, x)

n
= rC(T ),

where rC(T ) := inf{d(x, Tx) | x ∈ C}.
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In P4 we prove a quantitative version of Theorem 2.6, having as an immediate consequence
an exponential rate of asymptotic regularity for the Picard iteration, the only one known even
for Banach space. Using different methods, rates of asymptotic regularity for UCW -hyperbolic
spaces are computed in P6, which turn out to be quadratic for CAT(0) spaces or polynomial for
Lp spaces, 1 < p <∞.

sive retractions [13].
In the papers P3 şi P4 different algorithms for convex feasibility problem in geodesic spaces

are studied. Thus, effective rates of asymptotic regularity are obtained in P4 for the well-known
alternating projections method introduced by von Neumann, as well as for a method defined in
terms of weighted averages of nonexpansive retractions [13]. The paper P3 studies the conver-
gence, in spaces of constant curvature, of the algorithm AAR (Averaged Alternating Reflection),
introduced by Bauschke, Combettes and Luke [2].

In P9 there are obtained existence results of best proximity points for cyclic and noncyclic
relatively nonexpansive mappings in the context of Busemann convex reflexive metric spaces.
Moreover, polynomial bounds on the existence of approximate fixed points for such mappings in
UCW -hyperbolic spaces are computed.

2.3 Dilation structures

2.3.1 Dilation structures in sub-riemannian geometry

The paper P10 presents a description of sub-riemannian geometry with the help of dilation struc-
tures and it is based mainly on [8], with numerous improvements, as Theorem 8.10 giving an
intrinsic characterization of riemannian metric spaces, Section 2.5 Curvdimension and curvature
or the extended proof of Theorem 8.8 on the Γ-convergence of the length functionals for tempered
dilation structures.

2.3.2 Graphic lambda calculus: dilation structures and logic

The paper P7 introduces and studies graphic lambda calculus, which consists in a class of graphs
endowed with moves between them. Graphic lambda calculus can be used for representing terms
and reductions from untyped lambda calculus, its main move being called graphic beta move
for its relation to the beta reduction in lambda calculus. This formalism can also be used for
computations in emergent algebras [9] or for tangle diagrams. The paper P7 is a massive revision
of the descriptions from [10, 11, 12] and Section 5 of the paper is based on [9].
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