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Abstract

This paper addresses new developments in the ongoing proof mining program, i.e. the
use of tools from proof theory to extract effective quantitative information from prima facie
ineffective proofs in analysis. Very recently, the current authors developed a method to extract
rates of metastability (in the sense of Tao) from convergence proofs in nonlinear analysis that
are based on Banach limits and so (for all what is known) rely on the axiom of choice. In
this paper we apply this method to a proof due to Shioji and Takahashi on the convergence
of Halpern iterations in spaces X with a uniformly Gâteaux differentiable norm. We design a
logical metatheorem guaranteeing the extractability of highly uniform rates of metastability
under the stronger condition of the uniform smoothness of X. Combined with our method
of eliminating Banach limits this yields a full quantitative analysis of the proof by Shioji and
Takahashi. We also give a sufficient condition for the computability of the rate of convergence
of Halpern iterations.

MSC: 47H09, 47H10, 03F10, 53C23.
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1 Introduction

The topic of computable analysis started with Alan Turing’s seminal paper [1] in which he defined
the notion of a computable real number as one which has a computable binary (or decimal)
expansion. While being the right notion for single real numbers, it does not lead to the proper
notion of computable functions on reals as even the function x, y 7→ x+y would not be computable.
This was corrected by Turing in [2] by giving up the uniqueness of the representation allowing
(following Brouwer) overlapping intervals which is equivalent to the nowadays used definition in
terms of computable Cauchy sequences of rational numbers with computable Cauchy rate (see [3]
for much more detailed information). As this definition highlights already, the issue of effective
rates of convergence and other effective bounds plays an important role in computable analysis.
Often, however, the use of ineffective reasoning in analysis (both via the use of classical logic as well
as by introducing noncomputable objects) provides an obstacle for obtaining effective information.
This is particularly ubiquitous in the area of abstract nonlinear analysis.

Starting in [4] and continued in [5, 6, 7], general logical metatheorems have been developed
which guarantee the extractability of highly uniform effective (and actually subrecursive) bounds
(whose complexity reflects that of the proof principles used) from large classes of (prima facie
highly ineffective proofs) in nonlinear functional analysis (‘proof mining’). Here by ‘uniform’ we
refer to the fact that the bounds are independent from metrically majorizable input data (without
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any compactness condition). For this to hold it is crucial that no separability conditions on the
underlying structures must be imposed as the uniform version of separability is total boundedness
and so (modulo completeness) compactness. Since structures such as complete metric or Banach
spaces usually are represented (in proof theory as well as in reverse mathematics and computable
analysis) as completions of countable dense substructures this requires a novel treatment of these
structures. The approach is to ‘hardwire’ an abstract such space X as a kind of atom to the formal
system (a suitable system T ω of arithmetic or analysis formulated in the language of functionals
of all finite types over N) by adding a new base type X and all finite types over the two base
types N, X (of course also several spaces X1, . . . , Xn can be treated simultaneously, see [7]). Then
appropriate constants and axioms for the respective structure treated have to be added. The
crucial conditions are:

• that the constants added can be majorized by functionals definable already in T ω or that
they have a type Nn → N in which case they can be essentially majorized by themselves;

• that the new axioms have a monotone functional interpretation [7] (in the set-theoretic
model or – if bar recursion is needed which is not the case here though – in the model of
majorizable functionals) by the same functionals which suffice for the interpretation of T ω

and the majorization of the new constants.

The second point is automatically satisfied if the additional axioms are all purely universal (and
the quantified variables have sufficiently low types) which will be the case in this paper.

Structures treated so far are:

• bounded metric, hyperbolic and CAT(0)-spaces, (real) normed, uniformly convex and inner
product spaces also with abstract bounded convex subsets C ⊆ X in the normed case [4];

• unbounded metric, hyperbolic and CAT(0)-spaces and (real) normed spaces also with un-
bounded convex subsets [5];

• Gromov δ-hyperbolic spaces, R-trees and uniformly convex hyperbolic spaces [6];

• complete metric and normed spaces [7].

Some obvious classes of spaces are missing in this list as they do not have the right uniformity
built-in to have a monotone functional interpretation. As mentioned already this is the case for
separable spaces as the monotone functional interpretation of separability upgrades the latter to
the total boundedness of metrically bounded subsets and hence (in the presence of completeness
and closedness) to compactness. Compact metric spaces, however, are much easier to treat via
their representation as continuous image of the Cantor space (which is explicitly given in our
formal framework). Another bad-behaved class are the strictly convex Banach spaces which (under
monotone functional interpretation) get upgraded to uniformly convex Banach spaces.

Since our systems are based on full classical logic the theorems to be proven essentially have
to be of the form of ∀∃-sentences in order to allow for the existence of effective bounds.

Many theorems in nonlinear analysis are of the form that certain iterations (xn) built up using
some operator T : X → X and a starting point x ∈ X (maybe further involving some sequence of
scalars (λn), typically in [0, 1]) are strongly convergent. Since the Cauchy property is ∀∃∀ rather
than ∀∃ one has to express this in the (ineffectively equivalent) Herbrand normal form from logic

∀k ∈ N ∀g : N → N ∃n ∈ N ∀i, j ∈ [n, n+ g(n)] (d(xi, xj) < 2−k)

which - in the context of Cauchy statements - has been called metastability by Tao [8, 9]. 1

The aforementioned metatheorems now guarantee the extractability of effective bounds Φ(k, g) on
‘∃n’ (in logic referred to as the Kreisel ‘no-counterexample interpretation’, see [12, 13]) which are

1There are, however, important situations where even ineffective proofs guarantee effective rates of convergence,
namely e.g. in the presence of uniqueness conditions [10, 7, 11] or in cases of monotone convergence [7].
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highly uniform in the sense that they – in addition to k, g – only depend on norm bounds for x
and majorants T ∗ : N → N for T

n ≥ ‖y‖ → T ∗(n) ≥ ‖Ty‖, n ∈ N, y ∈ X,

as well as certain moduli which make some assumptions on (λn) explicit. For large classes of maps
T (e.g. for nonexpansive ones which are the only ones needed in this paper) the computation of
T ∗ is trivial. This also is the case, when T : C → C where C is a bounded (convex) subset (as will
be the case throughout this paper). Thus the bound is (essentially) independent from x and T as
well as the underlying space X (except for data such as a modulus of uniform convexity etc.).

In [14], the first author extracted such a ‘rate of metastability’ Φ(k, g) for Halpern iterations

xn+1 :=
1

n+ 2
x+

(
1− 1

n+ 2

)
Txn, x0 := x ∈ C,

for nonexpansive selfmappings T : C → C of a convex subset of a Hilbert space from a proof due
to Wittmann [15] of the strong convergence of (xn) (provided that C is bounded or – weaker –
T has a fixed point). Wittmann’s result has received considerable attention as it is an important
nonlinear generalization of the well-known von Neumann mean ergodic theorem (see [16, 17] for
effective metastable versions) as (xn) coincides with the Cesàro mean for linear T .

Recently [18], the current authors extracted an explicit rate of metastability from a proof
due to [19] of a generalization of Wittmann’s theorem to CAT(0)-spaces. This result constitutes a
significant extension of the hitherto context of proof mining as Saejung’s proof makes use of Banach
limits whose existence (for all what is known) requires some substantial use of the axiom of choice.
Nevertheless, we developed a method to convert such proofs into more elementary proofs which no
longer rely on Banach limits and can be analyzed by the existing logical machinery. Banach limits
were introduced in the subject of Halpern iterations in [20] (in this connection see also Sections
12 and 14 of [21]).

In this paper we extract a rate of metastability for another generalization (due to [22]) of
Wittmann’s theorem, namely to Banach spaces with a uniformly Gâteaux differentiable norm.
The significance of this is twofold:

• As the proof again uses Banach limits we further substantiate our claim that the machinery
developed in [18] to eliminate arguments based on Banach limits is indeed a general method.
In fact, we can literally re-use most of the technical lemmas from [18] showing the striking
modularity of this proof-theoretic approach based on (monotone) functional interpretation.

• The proof is based on the existence of a uniformly continuous (in a suitable sense) so-called
duality mapping J which also plays an important role in numerous other proofs in nonlinear
analysis. In the next section we indicate how this structure can be nicely incorporated into
the framework of the logical metatheorems referred to above.

In our paper, all Banach spaces are real Banach spaces.

2 A logical metatheorem for real Banach spaces with a
norm-to-norm uniformly continuous duality selection map

In this paper we study a proof that uses a smoothness property of Banach spaces, namely that
the norm is uniformly Gâteaux differentiable. It turns out that this notion is not uniform enough
to have a monotone functional interpretation or - rather - that the latter requires that the space
even has a uniformly Fréchet differentiable norm, i.e. it is uniformly smooth.

The uniform smoothness of a space X can be universally axiomatized once a constant τX :
N → N representing (a suitable notion of) a modulus of uniform smoothness is given. Then the
corresponding metatheorem will guarantee the extractability of an effective uniform bound that
(in addition to its usual input data) will only depend on δX . In the concrete application given in
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this paper it indeed will be the uniform smoothness (rather than uniform Gâteaux differentiability
of the norm) which we need for this. This is via the norm-to-norm uniform continuity on bounded
sets of the normalized duality map J ofX which holds in uniformly smooth spaces whereas uniform
Gâteaux differentiability only implies the norm-to-weak∗ uniform continuity of J .

Definition 2.1. Let X be a Banach space and X∗ its dual space. Then the mapping

J : X → 2X∗
, Jx := {y ∈ X∗ : 〈x, y〉 = ‖x‖2 = ‖y‖2}

is called the (normalized) duality mapping of X. Here 〈x, y〉 denotes y(x).

By the Hahn-Banach theorem it follows that Jx is always nonempty. If X is smooth (i.e. has
a Gâteaux differentiable norm), then Jx is always single-valued and also the converse holds (see
e.g. Theorems 4.3.1 and 4.3.2 in [23]). This single valued mapping is norm-to-norm uniformly
continuous on bounded subsets provided that X is uniformly smooth and a modulus of uniform
continuity can be obtained from a modulus of uniform smoothness for X (see Proposition 2.5
below; for more general information on the duality map and its background see [24, 25]). In our
application, we only need a function J : X → X∗ which selects in a uniformly continuous way a
point from the duality set and will not insist on that the latter is single-valued.

Let us define a space with a uniformly continuous duality selection map (X, J) to be a real
Banach space X together with a mapping J : X → X∗ satisfying

(i) 〈x, Jx〉 = ‖x‖2 = ‖Jx‖2 for all x ∈ X, and

(ii) J is norm-to-norm uniformly continuous on any bounded subsets of X.

Obviously, it suffices to require that J is norm-to-norm uniformly continuous on any open ball
Bd(0) (resp. closed ball Bd(0)), d > 0. By a modulus for the space with a uniformly continuous
duality selection map (X, J) we shall understand a mapping ω : (0,∞) × (0,∞) → (0,∞) such
that for all d > 0, ω(d, ·) is a modulus of uniform continuity for the restriction of J to Bd(0), that
is for all ε > 0 and x, y ∈ Bd(0),

‖x− y‖ ≤ ω(d, ε) implies ‖Jx− Jy‖ ≤ ε. (1)

One can easily see that the existence of a modulus ω satisfying (1) is equivalent to the existence
of ω : N × N → N such that for any d, k ∈ N, and x, y ∈ Bd(0),

‖x− y‖ < 2−ω(d,k) implies ‖Jx− Jy‖ ≤ 2−k. (2)

Rather than having to formalize the proof of the existence of J and its continuity property we
directly add constants JX , ωX and axioms (JX) and (JX , ωX) to the formal framework expressing
that for x ∈ X, JXx represents a linear operator X → R with ‖JXx‖ ≤ ‖x‖ and JXxx = ‖x‖2,
which - taken together - yields ‖JXx‖ = ‖x‖, i. e. JXxx = ‖x‖2 = ‖JXx‖2, and that JX is norm-
to-norm uniformly continuous on any bounded ball Bd(0) with modulus of uniform continuity
ωX(d, ·). Instead of using the operator norm and stating ‖JXx − JXy‖ ≤ 2−k we express things
equivalently in the language of X as ∀z ∈ X(|JXxz − JXyz| ≤ 2−k · ‖z‖).

In formulating (JX) and (JX , ωX) we rely on the formal framework from [7] and the represen-
tation of real numbers, ≤R etc. in terms of number theoretic functions. JX then is an object of
type X → X → 1 (where 1 denotes the type N → N, that is the type of objects used to represent
real numbers) and ωX has type N2 → N:

(JX) :≡ ∀xX , yX
(
JXxx =R ‖x‖2

X ∧ |JXxy|R ≤R ‖x‖X ·R ‖y‖X ∧
∧∀α1, β1, uX , vX(JXx(α ·X u+X β ·X v) =R α ·R JXxu+R β ·R JXxv)

)
(JX , ωX) :≡ ∀xX , yX , zX , kN, dN(

‖x‖X , ‖y‖X <R (d)R ∧ ‖x− y‖X <R 2−ωX(k,d)

→ |JXxz −R JXyz|R ≤R 2−k ·R ‖z‖X

)
4



It is easy to see that (JX) and (JX , ωX) (but not (JX) alone) imply the extensionality of JX

x =X x′ ∧ y =X y′ → JXxy =R JXx
′y′,

so that we can safely use JX in the usual set-theoretic way (whereas with (JX) extensionality only
holds for provably equal arguments; see [7]).

Let T ω be e.g. the finite type system for classical analysis WE-PAω+DCω+QF-AC and
T ω[X, ‖·‖, JX , ωX , C, C] its extension by an abstract real normed space with the constants JX , ωX

together with their above axioms, an abstract nonempty convex subset C ⊆ X and a completeness
axiom stating the completeness of X / closedness of C (see [7] for details). Then the logical
metatheorems for Banach spaces from [7] hold if the extracted bound is allowed to depend on ωX .
We only formulate here a special instance of these theorems sufficient for our main application:

Theorem 2.2. Let A∃(kN, gN→N, xX , TX→X , nN) be a purely existential formula containing only
k, g, x, T, n free. Then the following rule holds: From a proof in T ω[X, ‖ · ‖, JX , ωX , C, C] of

∀k ∈ N ∀g : N → N∀x ∈ C ∀T : C → C
(
T nonexpansive → ∃n ∈ NA∃

)
one can extract a computable Φ : N × N × NN × NN2 → N bound such that

∀k ∈ N ∀g : N → N ∀x ∈ C ∀T : C → C
(
T nonexpansive → ∃n ≤ Φ(k, b, g, ω) A∃

)
holds in any (real) Banach space X with a duality selection map J (used to interpret JX) that has
ω as modulus of uniform norm-to-norm continuity (used to interpret ωX) and any closed b-bounded
convex subset C ⊆ X. If C is not bounded, then one has to choose b such that b ≥ ‖x‖, ‖x− Tx‖.

Note that Φ does not depend on x, T and depends on X,C only via ω resp. b.

Proof. The proofs in [4, Theorem 3.30] for bounded C and in [5, Corollary 6.6] for unbounded C
easily extend to our situation (see also [5, Remark 4.13]) as both (JX) and (JX , ωX) are purely
universal (here we use that =R, ≤R are purely universal while <R is purely existential, see [7])
with quantified variables of low types, ωX is trivially majorized by ω∗X(n,m) := max{ωX(i, j) :
i ≤ n, j ≤ m}, and JX is majorized by JX(n,m) := M(n ·m) := λk ∈ N.j(n ·m · 2k+2, 2k+1 − 1)
(see [4, Definition 2.9]) with the Cantor pairing function j and using the obvious extension of ◦
from [4, Definition 2.9] from R+ to R) since n ≥ ‖x‖∧m ≥ ‖y‖ → n ·m ≥ ‖x‖ ·‖y‖ ≥ |Jxy|, where
JX is interpreted via (Jxy)◦ ∈ NN. The completion axiom is incorporated as in [7, pp. 433-434]
and the closedness of C can also easily be expressed in a purely universal way similarly to (C).

Remark 2.3. The extraction of the bound proceeds by monotone functional interpretation (see
[7]) from the proof and its complexity faithfully reflects the complexity of the principles used in the
proof. In our case in this paper this will yield a Φ of very restricted complexity.

The strong convergence result for Halpern iterations in [22] is proved under the hypothesis

that the sequence (zn) of the fixed points of the contractions Tn(y) :=
1

n+ 1
x+

(
1− 1

n+ 1

)
Ty

strongly converges (towards a fixed point of T ) which is known in many cases such as for Hilbert
spaces [26, 27], the (complex) Hilbert ball [21] (sections 24 and 27) and [28], general CAT(0)-spaces
[29] and also uniformly smooth Banach spaces [30] for bounded, closed and convex C (which covers
our context). Under this assumption (in fact already under the assumption of the plain Cauchy
property of (zn)), the proof of the strong convergence of the Halpern iteration (xn) that results by
our elimination of the use of Banach limits from the proof of [22] is basically constructive. Hence
metatheorems for the constructive case [31] guarantee (and our proof displays this, see Theorem
3.4) a uniform effective procedure to transform a rate of convergence for (zn) into one for (xn).
The problem, however, is that even in very simple cases (X being an effective Hilbert space and
T a computable and linear nonexpansive map) there is no computable rate of the former as (see
[16]) there is no for the latter. In fact, to show that there is no effective operator which would
effectively in a computable sequence of operators (T (l))l produce a rate of convergence for (zn) is
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almost trivial and holds already for X := R and C := [0, 1] (similarly to [7, Theorem 18.4]). Only
in certain cases, e.g. when, in particular, the norm ‖z‖ of the limit z := lim

n→∞
zn is known, one

gets computable rates of (zn) (but not uniform ones and without any complexity information as
the argument is based on unbounded search): see Theorem 3.4.
What, however, can be obtained in many cases (not only computably but with low complexity)
is a (fully uniform) rate of metastability for (zn). Since the latter only ineffectively implies the
convergence of (zn) it is this feature which makes the proof of the convergence of (xn) noncon-
structive and forces us to also weaken the conclusion to the metastability of (xn) (in logical terms
this corresponds to applying a so-called negative translation prior to the actual functional inter-
pretation).2 So we actually use the above metatheorem in the form where we have as an additional
input a (majorant of a) rate K(ε, g) of metastability for (zn) (or – equivalently – a selfmajorizing
such rate) and extract a bound on the metastability of (xn) that depends in addition to ε, g, b, ω
also on K (in the case at hand it turns out that K not even needs to be majorizable as it gets
applied only to a single function f∗ that is defined in terms of g and the other input data). For
the Hilbert case (as well as the CAT(0)-case, see [18]) a simple primitive recursive such K has
been extracted in [14]. For the case of uniformly smooth Banach spaces [30] (i.e. the context of
the present paper) this is to be left for future research.

2.1 Some examples

Let us recall that a Banach space X is

(i) uniformly convex if for all ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all x, y ∈ X,

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε imply
∥∥∥∥1

2
(x+ y)

∥∥∥∥ ≤ 1− δ. (3)

(ii) uniformly smooth whenever given ε > 0 there exists δ > 0 such that for all x, y ∈ X,

‖x‖ = 1 and ‖y‖ ≤ δ imply ‖x+ y‖+ ‖x− y‖ < 2 + ε‖y‖. (4)

A mapping η : (0, 2] → (0, 1] providing a δ := η(ε) satisfying (3) for given ε ∈ (0, 2] will be called a
modulus of uniform convexity. Similarly, a function τ : (0,∞) → (0,∞) providing such a δ := τ(ε)
satisfying (4) is said to be a modulus of uniform smoothness.

Remark 2.4. The property of X being a uniformly smooth Banach space with a modulus τX :
N → N (formulated with 2−k instead of ε/δ) can be axiomatized by a universal axiom over our
framework (so that the logical metatheorems guarantee effective bounds depending additionally only
on τX) as follows (using again that ≤R is universal while <R is existential):

∀xX , yX∀k ∈ N
(
‖x‖X >R 1 ∧ ‖y‖X <R 2−τX(k) → ‖x̃+X y‖+R ‖x̃−X y‖ ≤R 2 +R 2−k ·R ‖y‖X

)
,

where x̃ :=
1

maxR{1, ‖x‖X}
·X x. Note that for x with ‖x‖ > 1 one has x̃ ∈ S1. Conversely, for

x ∈ S1 and x′ := 2 ·x one has ‖x′‖ = 2 > 1 and x̃′ =X x. So in the axiom above we indeed quantify
over all vectors x ∈ S1.

Proposition 2.5. (i) If X is uniformly smooth with modulus τ , then X∗ is uniformly convex
with modulus η(ε) =

ε

4
· τ

(ε
2

)
.

(ii) If X∗ is uniformly convex with modulus η, then X is a space with a uniformly continuous
duality selection map with modulus ω(d, ε) =

ε

3
· η

( ε
d

)
for all ε ∈ (0, 2] and d ≥ 1. For

d < 1 one can trivially define ω(d, ε) = ω(1, ε) for all ε > 0, while for ε > 2, one defines
ω(d, ε) = ω(d, 2) for all d > 0.

2That this can improve things even when applied to constructive proofs is discussed in [7, p. 171].
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Proof. (i) A classical result states that X is uniformly smooth if and only if X∗ is uniformly convex
and the following Lindenstrauss duality formula holds (see e.g. [32, Proposition 1.e.2]): for all
δ > 0

ρX(δ) = sup
{
δε

2
− δX∗(ε) : 0 ≤ ε ≤ 2

}
, (5)

where

ρX(δ) = sup
{
‖x+ y‖+ ‖x− y‖

2
− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ ≤ δ

}
(6)

is the modulus of smoothness of X, while

δX∗(ε) = inf
{

1−
∥∥∥∥1

2
(x∗ + y∗)

∥∥∥∥ : x∗, y∗ ∈ X∗, ‖x∗‖ ≤ 1, ‖y∗‖ ≤ 1, ‖x∗ − y∗‖ ≥ ε

}
. (7)

is the modulus of convexity of X∗. One can see easily that ρX(δ) ≤ δε

4
≤ ε

4
· τ

(ε
2

)
for all

δ ≤ τ
(ε

2

)
. Apply now (5) with δ := τ

(ε
2

)
to get that δX∗(ε) ≥ ε

2
τ

(ε
2

)
− ρX

(ε
2

)
≥ η(ε).

(ii) Let ε ∈ (0, 2], d ≥ 1 and x, y ∈ Bd(0) with ‖x − y‖ ≤ ω(d, ε). W.l.o.g. we may assume that
‖y‖ ≥ ‖x‖ and also that ‖y‖ > ε/2 since otherwise ‖Jx− Jy‖ ≤ ‖Jx‖+ ‖Jy‖ = ‖x‖+ ‖y‖ ≤ ε.

‖Jx+ Jy‖ ≥ 1
‖y‖

〈y, Jx+ Jy〉 =
1
‖y‖

(
〈x, Jx〉+ 〈y, Jy〉 − 〈x− y, Jx〉

)
≥ 1

‖y‖
(
‖x‖2 + ‖y‖2 − ‖x‖ · ‖x− y‖

)
≥ 1

‖y‖
(
(‖y‖ − ω(d, ε))2 + ‖y‖2 − ‖x‖ · ‖x− y‖

)
> 2‖y‖ − 2ω(d, ε)− ‖x‖

‖y‖
‖x− y‖ ≥ 2‖y‖ − 3ω(d, ε).

Hence
∥∥∥∥1

2

(
1
‖y‖

Jx+
1
‖y‖

Jy

)∥∥∥∥ > 1 − 3ω(d, ε)
2‖y‖

> 1 − 3ω(d, ε)
ε

= 1 − η
( ε
d

)
. By the uniform

convexity of X∗ one gets that
∥∥∥∥ 1
‖y‖

Jx− 1
‖y‖

Jy

∥∥∥∥ < ε

d
and so ‖Jx− Jy‖ < ε‖y‖

d
≤ ε.

Remark 2.6. If η(ε) can be written as ε · η̃(ε), where ε1 ≤ ε2 → η̃(ε1) ≤ η̃(ε2), then ω can be

improved to ω(d, ε) :=
2
3
· ε · η̃

( ε
d

)
: observe that with this ω

3ω(d, ε)
2‖y‖

=
ε · η̃(ε/d)

‖y‖
≤ ε · η̃(ε/‖y‖)

‖y‖
= η

(
ε

‖y‖

)

and so as before
∥∥∥∥ 1
‖y‖

Jx− 1
‖y‖

Jy

∥∥∥∥ < ε

‖y‖
, i.e. ‖Jx− Jy‖ < ε.

It is well known that the Banach spaces Lp with 1 < p < ∞ are both uniformly convex and
uniformly smooth. A modulus of uniform convexity ηp(ε) is given by

ηp(ε) = ε · η̃p(ε) where η̃p(ε) =


(p− 1)

8
· ε, 1 < p < 2,

1
p · 2p

· εp−1, 2 ≤ p <∞.
(see [32, p. 63]).

Since L∗p is isometrically isomorphic with Lp′ , where p′ =
p

p− 1
is the Hölder conjugate of p, we

get (using the remark above) that Lp is a space with a uniformly continuous duality selection map

with modulus ω(d, ε) =
2ε
3
· η̃p′

( ε
d

)
for all ε ∈ (0, 2] and d ≥ 1.
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3 An application to Halpern iterations

Let X be a Banach space, C ⊆ X a convex closed subset and T : C → C be a nonexpansive
mapping. The so-called Halpern iteration is defined as follows:

x0 := x, xn+1 := λn+1u+ (1− λn+1)Txn, (8)

where (λn)n≥1 is a sequence in [0, 1] and x, u ∈ C. We refer to [18] for a discussion.
For t ∈ (0, 1) and u ∈ C, define Tu

t : C → C by Tu
t (y) = tu+(1−t)Ty. Since Tu

t is a contraction,
we apply Banach’s Contraction Mapping Principle to get a unique fixed point zu

t ∈ C:

zu
t = tu+ (1− t)Tzu

t . (9)

The following extension of Wittmann’s result was obtained by Shioji and Takahashi [22] (see
also [33] for an earlier result in this direction).

Theorem 3.1. Let X be a Banach space whose norm is uniformly Gâteaux differentiable, C ⊆ X
be closed and convex and T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Assume that

(i) limn→∞ λn = 0,
∑∞

n=1 λn+1 diverges and
∑∞

n=1 |λn+1 − λn| converges;

(ii) (zu
t ) converges strongly to a fixed point z of T as t ↓ 0.

Then the Halpern iteration converges strongly to z.

In this paper we obtain an effective version of Theorem 3.1 by applying proof mining techniques
to Shioji and Takahashi’s proof, which is highly ineffective. Firstly, with the methods developed
in [18], we eliminate the use of Banach limits from the proof. Secondly, we extract an effective
and highly uniform rate of metastability, which is guaranteed to exist by Theorem 2.2.

Theorem 3.2. Let (X, J) be a space with a uniformly continuous duality selection map with
modulus ω, C ⊆ X be a bounded convex closed subset with diameter dC , T : C → C a nonexpansive
mapping and x, u ∈ C. Let M ∈ Z+ be such that M ≥ dC .

Assume that limn→∞ λn = 0 with rate of convergence α,
∑∞

n=1 λn+1 diverges with rate of
divergence θ and

∑∞
n=1 |λn+1−λn| converges with β being a Cauchy modulus of sn :=

∑n
i=1 |λi+1−

λi|.
Let tk :=

1
k + 1

, k ≥ 1 and assume that (zu
tk

) is Cauchy with rate of metastability K, i.e.

∀ε > 0∀g : N → N ∃K1 ≤ K(ε, g) ∀i, j ∈ [K1,K1 + g(K1)]
(
‖zu

ti
− zu

tj
‖ ≤ ε

)
. (10)

Then the Halpern iteration (xn) is Cauchy and for all ε ∈ (0, 2) and g : N → N,

∃N ≤ Σ(ε, ω, g,M,K, θ, α, β) ∀m,n ∈ [N,N + g(N)] (‖xn − xm‖ ≤ ε), (11)

where

Σ(ε, g, ω,M, θ, α, β,K) := θ+
(

Γ− 1 +
⌈
ln

(
12M
ε2

)⌉)
+ 1, with

Γ = max
{
χ∗k(ε2/12) |

⌈
1
ε0

⌉
≤ k ≤ K(ε0, f∗) +

⌈
1
ε0

⌉}
, θ+(n) = max{θ(i) | i ≤ n},

δ =
ε2

24M(4 +M)
, ε0 = min{δ, ω(M, δ)}, χ∗k(ε, ω) = χk

(ε
2
, ω

)
,

χk(ε, ω) = Φ̃
(
ω

(
M,

εk

M

))
+ P̃k(ε), εk =

ε

P̃k(ε) + 1
,
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P̃k(ε) =
⌈

12M2(k + 1)
ε

· Φ
(

ε

12M(k + 1)

)⌉
, f(k) = max

{⌈
2M2

∆∗
k(ε2/4, g)

⌉
, k

}
− k,

f∗(k) = f

(
k +

⌈
1
ε0

⌉)
+

⌈
1
ε0

⌉
, gε,k(n) = n+ g

(
n+ χ∗k

(ε
3
, ω

))
,

Φ̃(ε) = θ

(
β

( ε

4M

)
+ 1 +

⌈
ln

(
2M
ε

)⌉)
+ 1, Φ(ε) = max

{
Φ̃

(ε
2

)
, α

( ε

4M

)}
,

Θk(ε) = θ

(
χ∗k

(ε
3
, ω

)
− 1 +

⌈
ln

(
3M
ε

)⌉)
+ 1, ∆∗

k(ε, g) =
ε

3gε,k

(
Θk(ε)− χ∗k

(ε
3
, ω

)) .
Remark 3.3. For the most important case λn := 1/(n + 1) the moduli θ, α, β are all easily
computable. In fact, one can avoid the use of the exponential θ by using lim

n→∞

∏∞

n=1
(1−λn+1) = 0

instead of the divergence of
∑∞

n=1 λn+1 (see [18] for details on this).

Theorem 3.4. Let λn := 1/(n+ 1), n ≥ 1, tk := 1/(k + 1), k ≥ 1 and denote zu
tk

by zu
k .

(i) If K(ε) is a rate of convergence of (zu
k ), then the bound in Theorem 3.2 gives a rate of

convergence of (xn).

(ii) If X is an effective Hilbert space and T, u are computable, then (zu
k ) has a computable rate

of convergence iff ‖z − u‖ is computable, where z := lim
k→∞

zu
k .

Proof. (i) K(ε/2) is a witness (not only a bound) of metastability for any function g (i.e. we can
take K1 := K(ε/2) in (10)). Hence we can replace in the bound Σ from Theorem 3.2 K(ε0, f∗)
by K(ε0/2) which makes the bound independent of g since g only enters via the definition of f∗.
Also note that the maximum in the definition of Γ can be replaced by just taking k := K(ε0/2).
Then (11) holds with N := Σ for all g where now Σ is independent of g.
(ii) From [14, p. 2789] it follows that a rate of convergence for (zu

k ) is given by a rate of convergence
of the nondecreasing and M -bounded sequence (‖zu

k −u‖2) which is computable provided that the
limit ‖z − u‖2 = lim

k→∞
‖zu

k − u‖2 is. Conversely, if we have a computable rate of convergence for

(zu
k ), then z and hence ‖z − u‖ is computable.

3.1 Technical lemmas

In the following, (X, J) is a space with a uniformly continuous duality selection map with modulus
ω, C ⊆ X is a bounded convex closed subset with diameter dC and T : C → C is a nonexpansive
mapping. We consider M ∈ Z+ with M ≥ dC . Thus, M ≥ ‖x− y‖ for all x, y ∈ C.

Lemma 3.5.
‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, J(x+ y)〉 , x, y ∈ X. (12)

Proof. Remark that ‖x + y‖2 = 〈x, J(x+ y)〉 + 〈y, J(x+ y)〉) ≤ ‖x‖ · ‖x + y‖ + 〈y, J(x+ y)〉 ≤
1
2 (‖x‖2 + ‖x+ y‖2) + 〈y, J(x+ y)〉.

Given a sequence (an)n≥1 of real numbers, we shall consider for all m, p ≥ 1 the average

Cm,p(an) =
1
p

m+p−1∑
i=m

ai. As in [18], the use of Banach limits in Shioji-Takahashi’s proof can be

eliminated in favor of elementary lemmas on the finitary objects Cm,p.
Let x, u ∈ C, t ∈ (0, 1), (λn) be a sequence in [0, 1], (xn) be the Halpern iteration defined by

(8) and zu
t given by (9). Define for all n ≥ 1

γt
n := 2 〈u− zt, J(xn − zt)〉 − tM2. (13)

Let us recall that (xn) is said to be asymptotically regular if lim
n→∞

‖xn − Txn‖ = 0. A rate of

convergence of (‖xn − Txn‖) towards 0 will be called a rate of asymptotic regularity.
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Proposition 3.6. (i) For all n ≥ 1, γt
n ≤ 3M

t
‖xn − Txn‖.

(ii) If (xn) is asymptotically regular with rate of asymptotic regularity ϕ, then for all ε ∈ (0, 2)

∀p ≥ P (ε, t,M,ϕ)∀m ≥ 1
(
Cm,p(γt

n) ≤ ε
)
, (14)

where P (ε, t,M,ϕ) =
⌈

6M2

tε
ϕ

(
tε

6M

)⌉
.

(iii) Assume that (xn) is asymptotically regular with rate of asymptotic regularity ϕ and that
lim

n→∞
‖xn − xn+1‖ = 0 with rate of convergence ϕ̃. Then for all ε ∈ (0, 2)

∀n ≥ ψ(ε, ω, t,M,ϕ, ϕ̃) (γt
n ≤ ε), (15)

where ψ(ε, ω, t,M,ϕ, ϕ̃) = ϕ̃(ω(M, ε′/M)) + P (ε/2, t,M, ϕ), with P given by (ii) and ε′ =
ε

P (ε/2, t,M,ϕ) + 1
.

Proof. For simplicity, we shall denote zu
t by zt.

(i) Firstly, let us remark that xn − zt = (1 − t)(xn − Tzt) + t(xn − u) so that, by (12), we get
‖xn − zt‖2 ≤ (1− t)2‖xn − Tzt‖2 + 2t 〈xn − u, J(xn − zt)〉. On the other hand,

〈xn − u, J(xn − zt)〉 = ‖xn − zt‖2 − 〈u− zt, J(xn − zt)〉 .

It follows that

‖xn − zt‖2 ≤ (1− t)2‖xn − Tzt‖2 + 2t‖xn − zt‖2 − 2t 〈u− zt, J(xn − zt)〉
≤ (1− t)2 (‖xn − Txn‖+ ‖xn − zt‖)2 + 2t‖xn − zt‖2 − 2t 〈u− zt, J(xn − zt)〉
≤ 3M(1− t)2‖xn − Txn‖+ (t2 + 1)‖xn − zt‖2 − 2t 〈u− zt, J(xn − zt)〉 ,

so that 0 ≤ 3M(1− t)2

t
‖xn − Txn‖+ tM2 − 2 〈u− zt, J(xn − zt)〉. We get finally that

γt
n ≤ 3M(1− t)2

t
‖xn − Txn‖ ≤

3M
t
‖xn − Txn‖.

(ii) Let ε ∈ (0, 2) and denote an :=
3M
t
‖xn − Txn‖. By (i) we get that Cm,p(γt

n) ≤ Cm,p(an) for

all m ≥ 1, p ≥ 1. Furthermore, lim
n→∞

an = 0 with rate of convergence ϕ
(
tε

3M

)
and L :=

3M2

t
is

an upper bound for (an). Apply now [18, Lemma 8.5] for (an).
(iii) We have that |γt

n+1 − γt
n| = | 〈u− zt, J(xn+1 − zt)〉 − 〈u− zt, J(xn − zt)〉 |. Since ‖xn+1 −

zt‖, ‖xn − zt‖, ‖u− zt‖ ≤M for all n and lim
n→∞

‖(xn+1 − zt)− (xn − zt)‖ = lim
n→∞

‖xn+1 − xn‖ = 0

with rate of convergence ϕ̃, we obtain from the uniform continuity of J that lim
n→∞

|γt
n+1 − γt

n| = 0

with rate of convergence θ(ε, ω,M, ϕ̃) = ϕ̃(ω(M, ε/M)). Apply now (ii) and [18, Lemma 8.4].

Lemma 3.7.

‖xn+1 − zu
t ‖2 ≤ (1− λn+1)‖xn − zu

t ‖2 + λn+1γ
t
n+1 + 2tM2, u, x ∈ C, t ∈ (0, 1), n ≥ 0. (16)

Proof. For simplicity, we shall denote zu
t by zt. One has xn+1 − zt = (1 − λn+1)(Txn − zt) +

λn+1(u− zt) and Txn − zt = (Txn − Tzt) + t(Tzt − u). Applying twice (12) we get that

‖xn+1 − zt‖2 ≤ (1− λn+1)2‖Txn − zt‖2 + 2λn+1 〈u− zt, J(xn+1 − zt)〉
≤ (1− λn+1)2

(
‖xn − zt‖2 + 2t 〈Tzt − u, J(Txn − zt)〉

)
+ λn+1γ

t
n+1 + λn+1tM

2

≤ (1− λn+1)
(
‖xn − zt‖2 + 2tM2

)
+ λn+1γ

t
n+1 + λn+1tM

2

≤ (1− λn+1)‖xn − zt‖2 + λn+1γ
t
n+1 + 2tM2.
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3.2 Proof of Theorem 3.2

Let ε ∈ (0, 2) and g : N → N be fixed. By [18, Proposition 6.1], we have that (xn) is asymptotically
regular with rate of asymptotic regularity Φ and lim

n→∞
‖xn−xn+1‖ = 0 with rate of convergence Φ̃.

To make the proof easier to read, we shall omit parameters M,Φ, Φ̃, θ, α, β for all the functionals
which appear in the following. For tk := 1/(k + 1), let us denote zu

tk
simply by zu

k and γtk
n by γk

n.
By Proposition 3.6.(iii), we obtain that γk

n ≤ ε for each k ≥ 0 and n ≥ χk(ε, ω).
We apply (10) for ε0 and f∗ to get the existence of K1 ≤ K(ε0, f∗) such that ‖zu

k − zu
l ‖ ≤ ε0

for all k, l ∈ [K1,K1 + f∗(K1)]. Let K0 := K1 + d1/ε0e. Then d1/ε0e ≤ K0 ≤ K(ε0, f∗) + d1/ε0e
and it is easy to see that ‖zu

k − zu
l ‖ ≤ ε0 for all k, l ∈ [K0,K0 + f(K0)].

Let P := K0 + f(K0) = max

{⌈
2M2

∆∗
K0

(ε2/4, g)

⌉
,K0

}
. Then for all n ≥ 1,

γP
n − γK0

n =
(
2 〈u− zu

P , J(xn − zu
P )〉 − 2

〈
u− zu

P , J(xn − zu
K0

)
〉 )

+

+2
〈
zu
K0

− zu
P , J(xn − zu

K0
)
〉

+
(

1
K0 + 1

− 1
P + 1

)
M2

≤ 2δ‖u− zu
P ‖+ 2

〈
zu
K0

− zu
P , J(xn − zu

K0
)
〉

+
(

1
K0 + 1

− 1
P + 1

)
M2

as ‖(xn − zu
P )− (xn − zu

K0
)‖ = ‖zu

K0
− zu

P ‖ ≤ ε0 ≤ ω(M, δ), so we can apply (1)

≤ 2δM + 2‖xn − zu
K0
‖ · ‖zu

K0
− zu

P ‖+
1

K0 + 1
M2

≤ 2δM + 2Mε0 + ε0M
2 ≤ δM(4 +M) =

ε2

24
as K0 ≥

⌈
1
ε0

⌉
.

It follows that γP
n ≤ γK0

n + ε2/24 ≤ ε2/12 for all n ≥ χK0

(
ε2/24, ω

)
= χ∗K0

(
ε2/12, ω

)
. Applying

Lemma 3.7 with t := 1/(P + 1), we get that for all n ≥ 1,

‖xn+1 − zu
P ‖2 ≤ (1− λn+1)‖xn − zu

P ‖2 + λn+1γ
P
n+1 +

2M2

P + 1

≤ (1− λn+1)‖xn − zu
P ‖2 + λn+1γ

P
n+1 + ∆∗

K0

(
ε2

4
, g

)

since P ≥
⌈

2M2

∆∗
K0

(ε2/4, g)

⌉
, hence

1
P + 1

≤
∆∗

K0
(ε2/4, g)
2M2

. It follows that we can apply [18,

Lemma 5.2] with ε :=
ε2

4
to conclude that ‖xn − zu

P ‖2 ≤ ε2/4 for all n ∈ [N,N + g(N)], where

N := ΘK0(ε
2/4) ≤ θ+(Γ− 1 + dln(12M/ε2)e) + 1 = Σ(ε, g, ω). We conclude that

‖xn − xm‖ ≤ ‖xn − zu
P ‖+ ‖xm − zu

P ‖ ≤ ε for all n,m ∈ [N,N + g(N)].
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