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Abstract

In this article we report on recent work on building numerical approxi-

mation schemes for nonlinear Schrödinger equations. We first consider

finite-difference space semi-discretizations and show that the standard

conservative scheme does not reproduce at the discrete level the disper-

sion properties of the continuous Schrödinger equation. This is due to

high frequency numerical spurious solutions. In order to damp out or

filter these high-frequencies and to reflect the properties of the contin-

uous problem we propose two remedies. First, adding a suitable extra

numerical viscosity term at a convenient scale, and, second, a two-grid

filter of the initial datum with meshes of ratio 1/4. We prove that these

alternate schemes preserve the dispersion properties of the continuous

model. We also present some applications to the numerical approxima-

tion of nonlinear Schrödinger equations with initial data in L2. Despite

the fact that classical energy methods fail, using these dispersion prop-

erties, the numerical solutions of the semi-discrete nonlinear problems

are proved to converge to the solution of the nonlinear Schrödinger equa-

tion. We also discuss some open problems and some possible directions

of future research.

1.1 Introduction

Let us consider the 1−d linear Schrödinger Equation (LSE) on the whole

line
{

iut + uxx = 0, x ∈ R, t 6= 0,

u(0, x) = ϕ(x), x ∈ R.
(1.1)
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The solution is given by u(t) = S(t)ϕ, where S(t) = eit∆ is the free

Schrödinger operator which defines a unitary transformation group in

L2(R). The linear semigroup has two important properties, the conser-

vation of the L2-norm

‖u(t)‖L2(R) = ‖ϕ‖L2(R) (1.2)

and a dispersive estimate :

|u(t, x)| ≤ 1√
4π|t|

‖ϕ‖L1(R). (1.3)

By classical arguments in the theory of dispersive equations the above

estimates imply more general space-time estimates for the linear semi-

group which allow proving the well-posedness of a wide class of nonlinear

Schrödinger equations (cf. Strichartz (1977), Tsutsumi (1987), Cazenave

(2003)).

In this paper we present some recent results on the qualitative proper-

ties of some numerical approximation schemes for the linear Schrödinger

equation and its consequences in the context of nonlinear problems.

More precisely, we analyze whether these numerical approximation

schemes have the same dispersive properties, uniformly with respect to

the mesh-size h, as in the case of the continuous Schrödinger equation

(1.1). In particular we analyze whether the decay rate (1.3) holds for the

solutions of the numerical scheme, uniformly in h. The study of these

dispersion properties of the numerical scheme in the linear framework is

relevant also for proving their convergence in the nonlinear context. In-

deed, since the proof of the well-posedness of the nonlinear Schrödinger

equations in the continuous framework requires a delicate use of the dis-

persion properties, the proof of the convergence of the numerical scheme

in the nonlinear context is hopeless if these dispersion properties are not

verified at the numerical level.

To better illustrate the problems we shall address, let us first consider

the conservative semi-discrete numerical scheme





i
duh

dt
+ ∆huh = 0, t 6= 0,

uh(0) = ϕh.

(1.4)

Here uh stands for the infinite unknown vector {uh
j }j∈Z, uh

j (t) being

the approximation of the solution at the node xj = jh, and ∆h the
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classical second-order finite difference approximation of ∂2
x:

(∆huh)j =
uh

j+1 − 2uh
j + uh

j−1

h2
.

This scheme satisfies the classical properties of consistency and sta-

bility which imply L2-convergence. In fact stability holds because of the

conservation of the discrete L2-norm under the flow (1.4):

d

dt



h
∑

j∈Z

|uh
j (t)|2



 = 0. (1.5)

The same convergence results hold for semilinear equations (NSE):

iut + uxx = f(u) (1.6)

provided that the nonlinearity f is globally Lipschitz continuous. But,

it is by now well known (cf. Tsutsumi (1987), Cazenave (2003)) that

the NSE is also well-posed for some nonlinearities that superlinearly

grow at infinity. This well-posedness result cannot be proved simply

as a consequence of the L2 conservation property and the dispersive

properties of the LSE play a key role.

Accordingly, one may not expect to prove convergence of the numerical

scheme in this class of nonlinearities without similar dispersive estimates

that should be uniform in the mesh-size parameter h → 0. In particular,

a discrete version of (1.3) is required to hold, uniformly in h. This

difficulty may be avoided considering more smooth initial data ϕ, say, in

H1(R), a space in which the Schrödinger equation generates a group of

isometries and the nonlinearity is locally Lipschitz. But here, in order

to compare the dynamics of the continuous and semi-discrete systems

we focus on the L2(R)-case, which is a natural class in which to solve

the nonlinear Schrödinger equation.

In this article we first prove that the conservative scheme (1.4) fails

to have uniform dispersive properties. We then introduce two numerical

schemes for which the estimates are uniform. The first one uses an

artificial numerical viscosity term and the second one involves a two-

grid algorithm to precondition the initial data. Both approximation

schemes of the linear semigroup converge and have uniform dispersion

properties. This allows us to build two convergent numerical schemes

for the NSE in the class of L2(R) initial data.
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1.2 Notation and Preliminaries

In this section we introduce some notation that will be used in what

follows: discrete lp spaces, semidiscrete Fourier transform, discrete frac-

tional differentiation, as well as the standard Strichartz estimates for the

continuous equations.

The spaces lp(hZ), 1 ≤ p < ∞, consist of all complex-valued sequences

{ck}k∈Z with

‖{ck}‖lp(hZ) =

(
h

∑

k∈Z

|ck|p
)1/p

< ∞.

In contrast to the continuous case, these spaces are nested:

l1(hZ) ⊆ l2(hZ) ⊆ l∞(hZ).

The semidiscrete Fourier transform is a natural tool for the analysis of

numerical methods for partial differential equations, where we are always

concerned with functions defined on discrete grids. For any u ∈ l1(hZ),

the semidiscrete Fourier transform of u at the scale h is the function û

defined by

û(ξ) = (Fhv)(ξ) = h
∑

j∈Z

e−ijhξuj .

A priori, this sum defines a function û for all ξ ∈ R. We remark that

any wave number ξ is indistinguishable on the grid from all other wave

numbers ξ+2πm/h, where m is an integer, a phenomenon called aliasing.

Thus, it is sufficient to consider the restriction of û to wave numbers in

the range [−π/h, π/h]. Also u can be recovered from û by the inverse

semidiscrete Fourier transform

vj = (F−1
h v̂)j =

∫ π/h

−π/h

eijhξû(ξ)dξ, j ∈ Z.

We will also make use of a discrete version of fractional differentiation.

For ϕ ∈ l2(hZ) and 0 ≤ s < 1 we define

(Dsϕ)j =

∫ π/h

−π/h

|ξ|sϕ̂(ξ)eijhξdξ.

Now, we make precise the classical dispersive estimates for the linear

continuous Schrödinger semigroup S(t). The energy and decay estimates

(1.2) and (1.3) lead, by interpolation (cf. Bergh & Löfström (1976)), to

the following Lp′ − Lp decay estimate:

‖S(t)ϕ‖Lp(R) . t−( 1
2−

1
p
)‖ϕ‖Lp′ (R),
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for all p ≥ 2 and t 6= 0. More refined space-time estimates known as

the Strichartz inequalities (cf. Strichartz (1977), Ginibre & Velo (1992),

Kell & Tao (1998)) show that, in addition to the decay of the solution

as t → ∞, a gain of spatial integrability occurs for t > 0. Namely

‖S(·)ϕ‖Lq(R,Lr(R)) ≤ C‖ϕ‖L2(R)

for suitable values of q and r, the so-called 1/2-admissible pairs. We

recall that an α-admissible pair (q, r) satisfies

1

q
= α

(
1

2
− 1

r

)
.

Also a local gain of 1/2 space derivative occurs in L2
x,t (cf. Constantin

& Saut (1988), Kenig, Ponce & Vega (1991)):

sup
x0,R

1

R

∫

B(x0,R)

∫ ∞

−∞

|D1/2
x eit∆u0|2dtdx ≤ C‖u0‖2

L2(R).

1.3 Lack of Dispersion of the Conservative Semi-Discrete

Scheme

Using the discrete Fourier transform, we remark that there are slight (see

Fig. 1.1) but important differences between the symbols of the operators

−∆ and −∆h : p(ξ) = ξ2, ξ ∈ R for −∆ and ph(ξ) = 4/h2 sin2(ξh/2),

ξ ∈ [π/h, π/h] for −∆h. The symbol ph(ξ) changes convexity at the

points ξ = ±π/2h and has critical points also at ξ = ±π/h, two prop-

erties that the continuous symbol does not fulfil. As we will see, these

pathologies affect the dispersive properties of the semi-discrete scheme.

Firstly we remark that eit∆h = eit∆1/h2

. Thus, by scaling, it is suffi-

cient to consider the case h = 1 and the large time behavior of solutions

for this mesh-size.

A useful tool to study the decay properties of solutions to dispersive

equations is the classical Van der Corput lemma. Essentially it says

that ∣∣∣∣∣

∫ b

a

eitψ(ξ)dξ

∣∣∣∣∣ . t−1/k

provided that ψ is real valued and smooth in (a, b) satisfying |∂kψ(x)| ≥
1 for all x ∈ (a, b). In the continuous case, i.e., with ψ(ξ) = ξ2, using

that the second derivative of the symbol is identically two (ψ′′(ξ) = 2),

one easily obtains (1.3). However, in the semi-discrete case the symbol
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Fig. 1.1. The two symbols

of the semidiscrete approximation p1(ξ) satisfies

|∂2p1(ξ)| + |∂3p1(ξ)| ≥ c

for some positive constant c, a property that the second derivative does

not satisfy. This implies that for any t

‖u1(t)‖l∞(Z) .

(
1

t1/2
+

1

t1/3

)
‖u1(0)‖l1(Z). (1.7)

This estimates was obtained in Stefanov & Kevrekidis (2005) for the

semi-discrete Schrödinger equation in the lattice Z. But here, we are

interested on the behavior of the system as the mesh-size h tends to

zero.

The decay estimate (1.7) contains two terms. The first one t−1/2, is

of the order of that of the continuous Schrödinger equation. The second

term t−1/3 is due to the discretization scheme and, more precisely, to

the behavior of the semi-discrete symbol at the frequencies ±π/2.

A scaling argument implies that

‖uh(t)‖l∞(hZ)

‖uh(0)‖l1(hZ)
.

1

t1/2
+

1

(th)1/3
,
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Fig. 1.2. Log-log plot of the time evolution of the l∞ norm of u1

with initial datum δ0.

an estimate which fails to be uniform with respect to the mesh size h.

As we have seen, the l∞(Z) norm of the discrete solution u1(t) behaves

as t−1/3 as t → ∞. This is illustrated in Fig. 1.2 by choosing the

discrete Dirac delta δ0 as initial datum such that u(0)j = δ0j where δ

is the Kronecker symbol. More generally one can prove that there is

no gain of integrability, uniformly with respect to the mesh size h. The

same occurs in what concerns the gain of the local regularity. The last

pathology is due to the fact that, in contrast with the continuous case,

the symbol ph(ξ) has critical points also at ±π/h. These negative results

are summarized in the following two theorems.

Theorem 1.3.1 Let T > 0, q0 ≥ 1 and q > q0. Then,

sup
h>0,ϕh∈lq0 (hZ)

‖Sh(T )ϕh‖lq(hZ)

‖ϕh‖lq0 (hZ)
= ∞ (1.8)

and

sup
h>0,ϕh∈lq0 (hZ)

‖Sh(·)ϕh‖L1((0,T ),lq(hZ))

‖ϕh‖lq0 (hZ)
= ∞. (1.9)
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Theorem 1.3.2 Let T > 0, q ∈ [1, 2] and s > 0. Then,

sup
h>0,ϕh∈lq(hZ)

(
h

∑1/h
j=0 |(DsSh(T )ϕh)j |2

)1/2

‖ϕh‖lq(hZ)
= ∞ (1.10)

and

sup
h>0,ϕh∈lq(hZ)

(∫ T

0
h

∑1/h
j=0 |(DsSh(t)ϕh)j |2dt

)1/2

‖ϕh‖lq(hZ)
= ∞. (1.11)

According to these theorems the semi-discrete conservative scheme

fails to have uniform dispersive properties with respect to the mesh-size

h.

Proof of Theorem 1.3.1. As we mentioned before, this pathological be-

havior of the semi-discrete scheme is due to the contributions of the

frequencies ±π/2h. To see this we argue by scaling :

‖Sh(T )ϕh‖lq(hZ)

‖ϕh‖lq0 (hZ)
=

h
1
q

h
1

q0

‖S1(T/h2)ϕh‖lq(Z)

‖ϕh‖lq0 (Z)
, (1.12)

reducing the estimates to the case h = 1.

Using that p1(ξ) changes convexity at the point π/2, we choose as

initial data a wave packet with its semidiscrete Fourier transform con-

centrated at π/2.

We introduce the operator S1 : S(R) → S(R) as

(S1(t)ϕ)(x) =

∫ π

−π

e−4it sin2 ξ
2 eixξϕ̂(ξ). (1.13)

Using the results of Plancherel & Pólya (1937) and Magyar, Stein &

Wainger (2002) concerning band-limited functions, i.e., with compactly

supported Fourier transform, it is convenient to replace the discrete

norms by continuous ones :

sup
ϕ∈lq0 (Z)

‖S1(t)ϕ‖lq(Z)

‖ϕ‖lq0 (Z)
& sup

supp ϕ̂⊂[−π,π]

‖S1(t)ϕ‖Lq(R)

‖ϕ‖Lq0 (R)
. (1.14)

According to this we may consider that x varies continuously in R. To

simplify the presentation we set ψ(ξ) = −4t sin2 ξ
2 +xξ. For any interval

[a, b] ⊂ [−π, π], applying the Mean Value Theorem to eitψ(ξ), we have
∣∣∣∣∣

∫ b

a

eiψ(ξ)ϕ̂(ξ)dξ

∣∣∣∣∣ ≥ (1 − |b − a| sup
ξ∈[a,b]

|ψ′(ξ)|)
∫ b

a

ϕ̂(ξ)dξ
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provided that ϕ̂ is nonnegative. Observe that

ψ′(ξ) = −2t sin ξ + x ∼ −2t
[
1 + O((ξ − π

2
)2)

]
+ x

for ξ ∼ π/2. Let ǫ be a small positive number that we shall fix below and

ϕ̂ǫ supported on the set {ξ : ξ − π/2 = O(ǫ)}. Then, |ψ′(ξ)| = O(ǫ−1)

as long as x − 2t = O(ǫ−1) and t = O(ǫ−3). This implies that
∣∣∣∣
∫ π

−π

e−4it sin2 ξ
2+ixξϕ̂ǫdξ

∣∣∣∣ &

∫ π
2 +ǫ

π
2 −ǫ

ϕ̂ǫ(ξ)dξ.

Integrating over x − 2t = O(ǫ−1) we get, for all t = O(ǫ−3),

‖S1(t)ϕǫ‖Lq(R) & ǫ−
1
q

∫ π
2 +ǫ

π
2 −ǫ

ϕ̂ǫ(ξ)dξ. (1.15)

Then,

‖S1(t)ϕǫ‖Lq(R)

‖ϕǫ‖Lq0 (R)
& ǫ−

1
q

∫ π
2 +ǫ

π
2 −ǫ

ϕ̂ǫ(ξ)dξ

‖ϕǫ‖Lq0 (R)
. (1.16)

We now choose a function ϕ such that its Fourier transform ϕ̂ has

compact support and satisfies ϕ̂(0) > 0. Then we choose ϕǫ in the

following manner

ϕ̂ǫ(ξ) = ǫ−1ϕ̂
(
ǫ−1(ξ − π

2
)
)

.

For such ϕǫ, using the properties of the Fourier transform, we obtain

that ‖ϕǫ‖Lq0 (R) behaves as ǫ−1/q0 and

‖S1(t)ϕǫ‖Lq(R)

‖ϕǫ‖Lq0 (R)
& ǫ−

1
q
+ 1

q0

as long as t = O(ǫ−3).

Finally we choose ǫ such that ǫ−3 ≃ h−2. Then, T/h2 ∼ ǫ−3 and the

above results imply

h
1
q
− 1

q0 sup
supp ϕ̂⊂[−π,π]

‖S1(T/h2)ϕh‖Lq(R)dt

‖ϕh‖Lq0 (R)
& h

1
q
− 1

q0 h
2
3 (− 1

q
+ 1

q0
)

& h
1
3 ( 1

q
− 1

q0
). (1.17)

This, together with (1.12) and (1.14), finishes the proof.

Proof of Theorem 1.3.2. The proof uses the same ideas as in the case of

Theorem 1.3.1 with the difference that we choose wave packets concen-

trated at π.
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1.4 The Viscous Semi-discretization Scheme

As we have seen in the previous section a simple conservative approxi-

mation with finite differences does not reflect the dispersive properties of

the LSE. In general, a numerical scheme introduces artificial numerical

dispersion, which is an intrinsic property of the scheme and not of the

original PDE. A possible remedy is to introduce a dissipative term to

compensate the artificial numerical dispersion.

We propose the following viscous semi-discretization of (1.1)





i
duh

dt
+ ∆huh = ia(h)sgn(t)∆huh, t 6= 0,

uh(0) = ϕh,
(1.18)

where a(h) is a positive function which tends to 0 as h tends to 0. We

remark that the proposed scheme is a combination of the conservative

approximation of the Schrödinger equation and a semidiscretization of

the heat equation in a suitable time-scale. More precisely, the scheme

duh

dt
= a(h)∆huh

which underlines in (1.18) may be viewed as a discretization of

ut = a(h)∆u,

which is, indeed, a heat equation in the appropriate time-scale. The

scheme (1.18) generates a semigroup Sh
+(t), for t > 0. Similarly one

may define Sh
−(t), for t < 0. The solution uh satisfies the following

energy estimate

d

dt

[
1

2
‖uh(t)‖2

l2(hZ)

]
= −a(h)sgn(t)



h
∑

j∈Z

∣∣∣∣∣
uh

j+1(t) − uh
j (t)

h

∣∣∣∣∣

2


 . (1.19)

In this energy identity the role that the numerical viscosity term plays

is clearly reflected. In particular it follows that

a(h)

∫

R

‖D1uh(t)‖2
l2(hZ)dt ≤ 1

2
‖ϕh‖2

l2(hZ). (1.20)

Therefore in addition to the L2-stability property we get some partial

information on D1uh(t) in l2(hZ) that, despite the vanishing multiplica-

tive factor a(h), gives some extra control on the high frequencies.

The following result holds.
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Theorem 1.4.1 Let us fix p ∈ [2,∞] and α ∈ (1/2, 1] . Then, for

a(h) = h2−1/α, Sh
±(t) maps continuously lp

′

(hZ) into lp(hZ) and there

exists some positive constant c(p) such that

‖Sh
±(t)ϕh‖lp(hZ) ≤ c(p)(|t|−α(1− 2

p
) + |t|− 1

2 (1− 2
p
))‖ϕh‖lp′ (hZ) (1.21)

holds for all |t| 6= 0, ϕ ∈ lp
′

(hZ) and h > 0.

As Theorem 1.4.1 indicates, when α > 1/2, roughly speaking, (1.18)

reproduces the decay properties of LSE as t → ∞.

Proof of Theorem 1.4.1. We consider the case of Sh
+(t), the other one

being similar. We point out that Sh
+(t)ϕh = exp((i+a(h)sgn(t))t∆h)ϕh.

The term exp(a(h)sgn(t)t∆h)ϕh represents the solution of the semi-

discrete heat equation

vh
t − ∆hvh = 0 (1.22)

at time |t|a(h). This shows that, as we mentioned above, the viscous

scheme is a combination of the conservative one and the semi-discrete

heat equation.

Concerning the semidiscrete approximation (1.22) we have, as in the

continuous case, the following uniform (with respect to h) norm decay :

‖vh(t)‖lp(hZ) . |t|−1/2(1/q−1/p)‖vh
0 ‖lq(hZ) (1.23)

for all 1 ≤ q ≤ p ≤ ∞. This is a simple consequence of the following

estimate (that is obtained by multiplying (1.22) by the test function

|vh
j |p−1vh

j )

d

dt

(
‖vh(t)‖p

lp(hZ)

)
≤ −c(p)‖∇+|vh|p/2‖l2(hZ)

and discrete Sobolev inequalities (see Escobedo & Zuazua (1991) for its

continuous counterpart).

In order to obtain (1.21) it suffices to consider the case p′ = 1 and p′ =

2, since the others follow by interpolation. The case p′ = 2 is a simple

consequence of the energy estimate (1.19). The terms t−α(1−2/p) and

t−1/2(1−2/p) are obtained when estimating the high and low frequencies,

respectively. The numerical viscosity term contributes to the estimates

of the high frequencies. The low frequencies are estimated by applying

the Van der Corput Lemma (cf. Stein (1993), Proposition 2, Ch. VIII.§1,

p. 332).
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We consider the projection operator Ph on the low frequencies [−π/4h,

π/4h] defined by P̂hϕh = ϕ̂hχ(−π/4h,π/4h). Using that

Sh
+ϕh = eit∆heta(h)∆h [Phϕh + (I − Ph)ϕh]

it is sufficient to prove that

‖eit∆heta(h)∆hPhϕh‖l∞(Z) .
1

t1/2
‖ϕh‖l1(hZ) (1.24)

and

‖eit∆heta(h)∆h(I − Ph)ϕh‖l∞(Z) .
1

tα
‖ϕh‖l1(hZ) (1.25)

for all t > 0, uniformly in h > 0. By Young’s Inequality it is sufficient

to obtain upper bounds for the kernels of the operators involved:

Kh
1 (t) = χ(−π/4h,π/4h)e

−4it sin2( ξh
2 )−4ta(h) sin2( ξh

2 )

and

Kh
2 (t) = χ(−π/h,π/h)\(−π/4h,π/4h)e

−4it sin2( ξh
2 )−4ta(h) sin2( ξh

2 ).

The second estimate comes from the following

‖Kh
2 (t)‖l∞(hZ) ≤

∫ π
h

π
4h

e−4t
a(h)

h2 sin2( ξh
2 )dξ .

1

h

(
ta(h)

h2

)−α

.
1

tα
.

The first kernel is rewritten as Kh
1 (t) = Kh

3 (t) ∗Hh(ta(h)), where Kh
3 (t)

is the kernel of the operator Pheit∆h and Hh is the kernel of the semidis-

crete heat equation (1.22). Using the Van der Corput lemma we obtain

‖Kh
3 (t)‖l∞(hZ) . 1/

√
t. Also by (1.23) we get ‖Hh(ta(h))‖l1(hZ) . 1.

Finally by Young’s inequality we obtain the desired estimate for Kh
1 (t).

As a consequence of the above theorem, the following TT ∗ estimate

is satisfied.

Lemma 1.4.1 For r ≥ 2 and α ∈ (1/2, 1], there exists a constant c(r)

such that

‖(Sh
sgn(t)(t))

∗Sh
sgn(s)(s)f

h‖lr(hZ) ≤
≤ c(r)(|t − s|−α(1− 2

r
)+ |t − s|−1/2(1− 2

r
))‖fh‖lr′ (hZ)

holds for all t 6= s.

As a consequence of this, we have the following result.
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Theorem 1.4.2 The following properties hold :

(i) For every ϕh ∈ l2(hZ) and finite T > 0, the function Sh
sgn(t)(t)ϕ

h

belongs to Lq([−T, T ], lr(hZ))∩C([−T, T ], l2(hZ)) for every α-admissible

pair (q, r). Furthermore, there exists a constant c(T, r, q) depending on

T > 0 such that

‖Sh
sgn(·)(·)ϕh‖Lq([−T,T ],lr(hZ)) ≤ c(T, r, q)‖ϕh‖l2(hZ), (1.26)

for all ϕh ∈ l2(hZ) and h > 0.

(ii) If (γ, ρ) is an α-admissible pair and f ∈ Lγ′

([−T, T ], lρ
′

(hZ)),

then for every α-admissible pair (q, r), the function

t 7→ Φf (t) =

∫

R

Sh
sgn(t−s)(t − s)f(s)ds, t ∈ [−T, T ] (1.27)

belongs to Lq([−T, T ], lr(hZ)) ∩ C([−T, T ], l2(hZ)). Furthermore, there

exists a constant c(T, q, r, γ, ρ) such that

‖Φf‖Lq([−T,T ],lr(hZ)) ≤ c(T, q, r, γ, ρ)‖f‖Lγ′ ([−T,T ],lρ′ (hZ)), (1.28)

for all f ∈ Lγ′

([−T, T ], lρ
′

(hZ)) and h > 0.

Proof All the above estimates follow from Lemma 1.4.1 as a simple

consequence of the classical TT ∗ argument (cf. Cazenave (2003), Ch. 2,

Section 3, p. 33).

We remark that all the estimates are local in time. This is a con-

sequence of the different behavior of the operators Sh
± at t ∼ 0 and

t ∼ ±∞. Despite their local (in time) character, these estimates are

sufficient to prove well-posedness and convergence for approximations of

the nonlinear Schrödinger equation. Global estimates can be obtained

by replacing the artificial viscosity term a(h)∆h in (1.18) by a higher

order one : ã(h)∆2
h with a convenient ã(h). The same arguments as

before ensure the same decay as in (1.21) as t ∼ 0 and t ∼ ∞, namely

t−
1
2 (1− 2

p
).

Remark 1.4.1 Using similar arguments one can also show that a uniform

(with respect to h) gain of s space derivatives locally in L2
x,t holds for

0 < s < 1/2α− 1/2. In fact one can prove the following stronger result.
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Theorem 1.4.3 For all ϕh ∈ l2(hZ) and 0 < s < 1/2α − 1/2

sup
j∈Z

∫ ∞

−∞

|(DsSh
sgn(t)(t)ϕ

h)j |2dt . ‖ϕ‖2
l2(hZ) (1.29)

holds uniformly in h > 0.

This is a consequence of the energy estimate (1.20) for the high frequen-

cies and of dispersive arguments for the low ones (cf. Constantin & Saut

(1988) and Kenig, Ponce & Vega (1991)).

1.5 A Viscous Approximation of the NSE

We concentrate on the semilinear NSE equation in R :
{

iut + ∆u = |u|pu, x ∈ R, t > 0,

u(0, x) = ϕ(x), x ∈ R.
(1.30)

It is convenient to rewrite the problem (1.30) in the integral form

u(t) = S(t)ϕ − i

∫ t

0

S(t − s)|u(s)|pu(s)ds, (1.31)

where the Schrödinger operator S(t) = eit∆ is a one-parameter unitary

group in L2(R) associated with the linear continuous Schrödinger equa-

tion. The first result, due to Tsutsumi (1987), on the global existence

for L2-initial data, is the following theorem.

Theorem 1.5.1 (Global existence in L2, Tsutsumi (1987)). For 0 ≤
p < 4 and ϕ ∈ L2(R), there exists a unique solution u of (1.30) in

C(R, L2(R)) ∩ Lq
loc(R, Lp+2(R)) with q = 4(p + 1)/p that satisfies the

L2-norm conservation property

‖u(t)‖L2(R) = ‖ϕ‖L2(R).

This solution depends continuously on the initial condition ϕ in L2(R).

Local existence is proved by applying a fixed point argument in the

integral formulation (1.31). Global existence holds because of the L2(R)-

conservation property which allows excluding finite-time blow-up.

We now consider the following viscous semi-discretization of (1.30):




i
duh

dt
+ ∆huh = i sgn(t)a(h)∆huh + |uh|puh, t 6= 0,

uh(0) = ϕh,
(1.32)
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with 0 ≤ p < 4 and a(h) = h2− 1
α(h) such that α(h) ↓ 1/2 and a(h) → 0

as h ↓ 0. The following l2(hZ)-norm dissipation law holds:

d

dt

(
1

2
‖uh(t)‖2

l2(hZ)

)
= −a(h)sgn(t)



h
∑

j∈Z

∣∣∣∣∣
uh

j+1 − uh
j

h

∣∣∣∣∣

2


 . (1.33)

Concerning the well posedness of (1.32) the following holds:

Theorem 1.5.2 (Ignat and Zuazua (2005a)). Let p ∈ (0, 4) and α(h) ∈
(1/2, 2/p]. Set

1

q(h)
= α(h)

(
1

2
− 1

p + 2

)

so that (q(h), p + 2) is an α(h)-admissible pair. Then, for every ϕh ∈
l2(hZ), there exists a unique global solution

uh ∈ C(R, l2(hZ)) ∩ L
q(h)
loc (R; lp+2(hZ))

of (1.32) which satisfies the following estimates, independently of h:

‖uh‖L∞(R,l2(hZ)) ≤ ‖ϕh‖l2(hZ) (1.34)

and, for all finite T > 0,

‖uh‖Lq(h)([−T,T ],lp+2(hZ)) ≤ c(T )‖ϕh‖l2(hZ). (1.35)

Sketch of the Proof. The proof uses Theorem 1.4.2 and a standard

fixed point argument as in Tsutsumi (1987) and Cazenave (2003) in

order to obtain local solutions. Using the a priori estimate (1.33) we

obtain a global in time solution.

Let us now address the problem of convergence as h → 0. Given

ϕ ∈ L2(R), for the semi-discrete problem (1.32) we consider a family of

initial data (ϕh
j )j∈Z such that

Ehϕh → ϕ

weakly in L2(R) as h → 0. Here and in the sequel Eh denote the

piecewise constant interpolator Eh : l2(hZ) → L2(R).

The main convergence result is contained in the following theorem.

Theorem 1.5.3 The sequence Ehuh satisfies

Ehuh ⋆
⇀u in L∞(R, L2(R)), (1.36)

Ehuh ⇀ u in Ls
loc(R, Lp+2(R)) ∀ s < q, (1.37)
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Ehuh → u in L2
loc(R × R), (1.38)

|Ehuh|pEhuh ⇀ |u|pu in Lq′

loc(R, L(p+2)′(R)) (1.39)

where u is the unique solution of NSE and 2/q = 1/2 − 1/(p + 2).

Remark 1.5.1 Our method works similarly in the critical case p = 4

for small initial data. It suffices to modify the approximation scheme

by taking a nonlinear term of the form |uh|2/α(h)uh in the semi-discrete

equation (1.32) with a(h) = h2−1/α(h) and α(h) ↓ 1/2, a(h) ↓ 0, so that,

asymptotically, it approximates the critical nonlinearity of the continu-

ous Schrödinger equation. In this way the critical continuous exponent

p = 4 is approximated by semi-discrete critical problems.

The critical semi-discrete problem presents the same difficulties as

the continuous one. Thus, the initial datum needs to be assumed to

be small. But the smallness condition is independent of the mesh-size

h > 0. More precisely, the following holds.

Theorem 1.5.4 Let α(h) > 1/2 and p(h) = 2/α(h). There exists a

constant ǫ, independent of h, such that for all ‖ϕh‖l2(hZ) < ǫ, the semi-

discrete critical equation has a unique global solution

uh ∈ C(R, l2(hZ)) ∩ L
p(h)+2
loc (R, lp(h)+2(hZ)). (1.40)

Moreover uh ∈ Lq
loc(R, lr(hZ)) for all α(h)- admissible pairs (q, r) and

‖uh‖Lq((−T,T ),lr(hZ)) ≤ C(q, T )‖ϕh‖l2(hZ). (1.41)

Observe that, in particular, (3/α(h), 6) is an α(h)-admissible pair.

This allows us to bound the solutions uh in a space Ls
loc(R, L6(R)) with

s < 6. With the same notation as in the subcritical case the following

convergence result holds.

Theorem 1.5.5 When p = 4 and under the smallness assumption of

Theorem 1.5.4, the sequence Euh satisfies

Euh ⋆
⇀u in L∞(R, L2(R)), (1.42)

Euh ⇀ u in Ls
loc(R, L6(R))∀ s < 6, (1.43)

Euh → u in L2
loc(R × R), (1.44)
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|Euh|p(h)|Euh| ⇀ |u|4u in L6′

loc(R, L6′

(R)) (1.45)

where u is the unique weak solution of critical (NSE).

1.6 A Two-Grid Scheme

As an alternative to the previous scheme based on numerical viscos-

ity, we propose a two-grid algorithm introduced in Ignat & Zuazua

(2005b), which allows constructing conservative and convergent numeri-

cal schemes for the nonlinear Schrödinger equation. As we shall see, the

two-grid method acts as a preconditioner or filter that eliminates the

unwanted high-frequency components from the initial data and nonlin-

earity. This method is inspired by that used in Glowinski (1992) and

Negreanu & Zuazua (2004) in the context of the propagation and control

of the wave equation. We emphasize that, by this alternative approach,

the purely conservative nature of the scheme is preserved. But, for that

to be the case, the nonlinearity needs to be approximated in a careful

way.

The method is roughly as follows. We consider two meshes: the coarse

one 4hZ of size 4h, h > 0, and the fine one hZ, of size h > 0. The

computational mesh is the fine one, of size h. The method relies basically

on solving the finite-difference semi-discretization (1.4) on the fine mesh

hZ, but only for slowly oscillating data and nonlinearity, interpolated

from the coarse grid 4hZ. As we shall see, the 1/4 ratio between the

two meshes is important to guarantee the convergence of the method.

This choice of the mesh-ratio guarantees a particular structure of the

data that cancels the two pathologies of the discrete symbol mentioned

above. Indeed, a careful Fourier analysis of those initial data shows

that their discrete Fourier transforms vanish quadratically at the points

ξ = ±π/2h and ξ = ±π/h. As we shall see, this suffices to recover the

dispersive properties of the continuous model.

To make the analysis rigorous we introduce the space of slowly oscil-

lating sequences (SOS). The SOS on the fine grid hZ are those which

are obtained from the coarse grid 4hZ by an interpolation process. Ob-

viously there is a one to one correspondence between the coarse grid

sequences and the space

ChZ

4 = {ψ ∈ ChZ : suppψ ⊂ 4hZ}.
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We introduce the extension operator E:

(Eψ)((4j + r)h) =
4 − r

4
ψ(4jh) +

r

4
ψ((4j + 4)h), (1.46)

for all j ∈ Z, r = 0, 3 and ψ ∈ ChZ
4 . This associates to each element of

ChZ
4 an SOS on the fine grid. The space of slowly oscillating sequences

on the fine grid is as follows

V h
4 = {Eψ : ψ ∈ ChZ

4 }.

We also consider the projection operator Π : ChZ → ChZ
4 :

(Πφ)((4j + r)h) = φ((4j + r)h)δ4r ∀j ∈ Z, r = 0, 3, φ ∈ ChZ (1.47)

where δ is Kronecker’s symbol. We remark that E : ChZ
4 → V h

4 and

Π : V h
4 → ChZ

4 are bijective linear maps satisfying ΠE = IChZ

4
and

EΠ = IV h
4

, where IX denotes the identity operator on X. We now define

Π̃ = EΠ : ChZ → V h
4 , which acts as a smoothing or filtering operator

and associates to each sequence on the fine grid a slowly oscillating one.

As we said above, the restriction of this operator to V h
4 is the identity.

Concerning the discrete Fourier transform of SOS, by means of explicit

computations, one can prove that:

Lemma 1.6.1 Let φ ∈ l2(hZ). Then,

̂̃Πφ(ξ) = 4 cos2(ξh) cos2
(

ξh

2

)
Π̂φ(ξ). (1.48)

Remark 1.6.1 One could think on a simpler two-grid construction, using

mesh-ratio 1/2 and, consequently, considering meshes of size h and 2h.

We then get ̂̃Πϕ(ξ) = 2 cos2(ξh/2)Π̂ϕ(ξ). This cancels the spurious

numerical solutions at the frequencies ±π/h (see Fig. 1.3), but not

at ±π/2h. In this case, as we proved in Section 1.3, the Strichartz

estimates fail to be uniform on h. Thus instead we choose the ratio

between grids to be 1/4. As the Figure 1.4 shows, the multiplicative

factor occurring in (1.48) will cancel the spurious numerical solutions

at ±π/h and ±π/2h.

As we have proved in Section 1.3, there is no gain (uniformly in h) of

integrability of the linear semigroup eit∆h . However the linear semigroup

has appropriate decay properties when restricted to V h
4 uniformly in

h > 0. The main results we get are the following.
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Fig. 1.3. The multiplicative factor 2 cos2(ξh/2)
for the two-grid method with mesh ratio 1/2
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Fig. 1.4. The multiplicative factor 4 cos2(ξh) cos2
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for the two-grid method with mesh ratio 1/4

Theorem 1.6.1 Let p ≥ 2. The following properties hold:

i) ‖eit∆hΠ̃ϕ‖lp(hZ) . |t|−1/2(1/p′−1/p)‖Π̃ϕ‖lp′ (hZ) for all ϕ ∈ lp
′

(hZ),

h > 0 and t 6= 0.

ii) For every sequence ϕ ∈ l2(hZ), the function t → eit∆hΠ̃ϕ belongs
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to Lq(R, lr(hZ)) ∩ C(R, l2(hZ)) for every admissible pair (q, r). Fur-

thermore,

‖eit∆hΠ̃ϕ‖Lq(R,lr(hZ)) . ‖Π̃ϕ‖l2(hZ),

uniformly in h > 0.

iii) Let (q, r), (q̃, r̃) be two admissible pairs. Then,
∥∥∥∥
∫

s<t

ei(t−s)∆hΠ̃F (s)ds

∥∥∥∥
Lq(R,lr(hZ))

. ‖Π̃F‖Lq̃(R,lr̃(hZ))

for all F ∈ Lq̃(R, lr̃(hZ)), uniformly in h > 0.

Concerning the local smoothing properties we can prove the following

result.

Theorem 1.6.2 The following estimate

sup
j∈Z

∫ ∞

−∞

∣∣∣(D1/2eit∆hΠ̃f)j

∣∣∣
2

dt . ‖Π̃f‖2
l2(hZ) (1.49)

holds for all f ∈ l2(hZ), uniformly in h > 0.

Proof of Theorem 1.6.1. The estimates ii) and iii) easily follow by the

classical TT ∗ argument (cf. Keel & Tao (1998), Cazenave (2003)) once

one proves i) with p′ = 1 and p′ = 2. The case p′ = 2 is a consequence of

the conservation of energy property. For p′ = 1, by a scaling argument,

we may assume that h = 1. The same arguments as in Section 1.4,

reduce the proof to the following upper bound for the kernel

‖K1(t)‖l∞(hZ) .
1

t1/2
,

where

K̂1(t) = 4e−4it sin2 ξ
2 cos2(ξ) cos2

(
ξ

2

)
.

Using the fact that the second derivative of the symbol 4 sin2(ξ/2) is

given by 2 cos ξ, by means of oscillatory integral techniques (cf. Kenig,

Ponce & Vega (1991), Corollary 2.9, p. 46) we get

‖Kt‖l∞(Z) .
1

t1/2

∥∥∥∥2| cos(ξ)|3/2 cos2
ξ

2

∥∥∥∥
L∞([−π,π])

.
1

t1/2
.
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Proof of Theorem 1.6.2. The estimate (1.49) is equivalent to the follow-

ing one

sup
j∈Z

∫ ∞

−∞

∣∣∣(eit∆hΠ̃f)j

∣∣∣
2

dt . ‖D−1/2Π̃f‖2
l2(hZ). (1.50)

By scaling we consider the case h = 1. Applying the results of Kenig,

Ponce & Vega (1991) (Theorem 4.1, p. 54) we get

sup
j∈Z

∫ ∞

−∞

∣∣∣(eit∆hΠ̃f)j

∣∣∣
2

dt .

∫ π

−π

|Π̂f(ξ)|2 cos4 ξ cos4 ξ
2

| sin ξ| dξ

.

∫ π

−π

|Π̂f(ξ)|2
|ξ| dξ . ‖D−1/2f‖2

l2(Z).

Observe that the key point in the above proof is that the factor cos(ξ/2)

in the amplitude of the Fourier representation of the initial datum com-

pensates the effects of the critical points of the symbol sin2(ξ/2) near

the points ±π.

The results proved in Theorem 1.6.1 i) are plotted in Fig. 1.7. We

choose an initial datum as in Fig. 1.6, obtained by interpolation of the

Dirac delta: Πu(0) = δ0 (see Fig. 1.5). Figure 1.7 shows the different

behavior of the solutions of the conservative and the two-grid schemes.

The l∞(Z)-norm of the solution u1(t) for the two-grid algorithm behaves

like t−1/2 as t → ∞, with the decay rate predicted above, while the so-

lutions of the conservative scheme, without the two-grid filtering, decay

like t−1/3.

1.7 A Conservative Approximation of the NSE

We consider the following semi-discretization of the NSE :




i
duh

dt
+ ∆huh = Π̃f(uh), t 6= 0,

uh(0) = Π̃ϕh,
(1.51)

where f(uh) is a suitable approximation of |u|pu with 0 < p < 4. In

order to prove the global well-posedness of (1.51), we need to guarantee

the conservation of the l2(hZ) norm of solutions, a property that the

solutions of NSE satisfy. For that the nonlinear term f(uh) has to be

chosen so that (Π̃f(uh), uh)l2(hZ) ∈ R. For that to be the case, it is

not sufficient to discretize the nonlinearity as for the viscous scheme,
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x

u(x)

Fig. 1.5. u1(0) = δ0

u(x)

x

Fig. 1.6. u1(0) = Eδ0

by simply sampling it on the discrete mesh. A more careful choice is

needed. The following result holds.

Theorem 1.7.1 Let p ∈ (0, 4), q = 4(p + 2)/p and f : ChZ → ChZ be

such that

‖Π̃f(u)‖l(p+2)′ (hZ) . ‖|u|pu‖l(p+2)′ (hZ) (1.52)

and

(Π̃f(u), u)l2(hZ) ∈ R.
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Then, for every ϕh ∈ l2(hZ), there exists a unique global solution

uh ∈ C(R, l2(hZ)) ∩ Lq
loc(R; lp+2(hZ)) (1.53)

of (1.51) which satisfies the estimates

‖uh‖L∞(R,l2(hZ)) ≤ ‖Π̃ϕ‖l2(hZ) (1.54)

and

‖uh‖Lq(I,lp+2(hZ)) ≤ c(I)‖Π̃ϕ‖l2(hZ) (1.55)

for all finite intervals I, where the above constants are independent of

h.

Remark 1.7.1 The conditions above on the nonlinearity are satisfied if

one chooses

(f(uh))4j = g

(
(uh

4j +

3∑

r=1

4 − r

4
(uh

4j+r + uh
4j−r))

/
4

)
; g(s) = |s|ps.

(1.56)
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With this choice it is easy to check that (1.52) holds with C > 0 inde-

pendent of h > 0. Furthermore (Π̃f(uh), uh)l2(hZ) ∈ R since

(Π̃f(uh), uh)l2(hZ) =

= h

3∑

r=0

∑

j∈Z

(
4 − r

4
(f(uh))4j +

r

4
(f(uh))4j+4

)
uh

4j+r

= h
∑

j∈Z

(f(uh))4j

(
3∑

r=0

4 − r

4
uh

4j+r +

3∑

r=0

r

4
uh

4j+r−4

)

= h
∑

j∈Z

g

(
(uh

4j +

3∑

r=1

4 − r

4
(uh

4j+r + uh
4j−r))/4

)

×(uh
4j +

3∑

r=1

4 − r

4
(uh

4j+r + uh
4j−r)).

Proof of Theorem 1.7.1. Local existence and uniqueness are a conse-

quence of the Strichartz estimates (Theorem 1.6.1) and of a fixed point

argument. The fact that (Π̃f(uh), uh)l2(hZ) is real guarantees the con-

servation of the discrete energy h
∑

j∈Z
|uj(t)|2. This allows excluding

finite-time blow-up.

The main convergence result is the following

Theorem 1.7.2 Let uh be the unique solution of (1.51) with discrete

initial data ϕh such that Ehϕh ⇀ ϕ weakly in L2(R). Then, the sequence

Ehuh satisfies

Ehuh ⋆
⇀ u in L∞(R, L2(R)), (1.57)

Ehuh ⇀ u in Lq
loc(R, Lp+2(R)), (1.58)

Ehuh → u in L2
loc(R × R), (1.59)

EhΠ̃f(uh) ⇀ |u|pu in Lq′

loc(R, L(p+2)′(R)) (1.60)

where u is the unique solution of NSE and 2/q = 1/2 − 1/(p + 2).

The critical nonlinearity p = 4 may also be handled by the two-grid

algorithm. In this case one can take directly p = 4 in the semi-discrete

scheme since the two-grid algorithm guarantees the dispersive estimates

to be true for all 1/2-admissible pairs.
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1.8 Open Problems

• Time Splitting Methods. In Besse, Bidégaray & Descombes (2002),

(see also Sanz-Serna & Calvo (1994), Descombres & Schatzman (2002))

the authors consider the NSE with initial data in H2(R2) and the

nonlinear term |u|2u. A time splitting method is used in order to

approximate the solution. More precisely, the nonlinear Schrödinger

equation is split into the flow Xt generated by the linear Schrödinger

equation
{

vt − i∆v = 0, x ∈ R2, t > 0,

v(0, x) = v0(x), x ∈ R2.
(1.61)

and the flow Y t for the differential equation
{

wt − i|w|2w = 0, x ∈ R2, t > 0,

w(0, x) = w0(x), x ∈ R2.
(1.62)

One can then approximate the flow of NSE by combining the two

flows Xt and Y t using some of the classical splitting methods: the

Lie formula Zt
L = XtY t or the Strang formula Zt

S = Xt/2Y tXt/2.

In Besse, Bidégaray & Descombes (2002) the convergence of these

methods is proved for initial data in H2(R2). Note however that the

nonlinearity |u|2u is locally Lipschitz in H2(R2). Consequently this

nonlinearity in this functional setting can be dealt with by means of

classical energy methods, without using the Strichartz type estimate.

A possible problem for future research is to replace the above equa-

tions (1.61), (1.62), which are continuous in the variable x, by discrete

ones and to analyze the convergence of the splitting method for the

initial data in L2(R). As we saw in Section 1.3 the simpler approx-

imation of (1.61) by finite differences does not have the dispersive

properties of the continuous model. It is then natural to consider one

of the two remedies we have designed: to add numerical viscosity or to

regularize the initial data by a two grid algorithm. The convergence

of the splitting algorithm is open because of the lack of dispersion of

the ODE (1.62) and its semi-discretizations.

• Discrete Transparent Boundary Conditions. In Arnold, Ehr-

hardt & Sofronov (2003) the authors introduce a discrete transparent

boundary condition for a Crank–Nicolson finite difference discretiza-

tion of the Schrödinger equation. The same ideas allow constructing

similar DTBC for various numerical approximations of the LSE. It

would be interesting to study the dispersive properties of these ap-

proximations by means of the techniques of Markowich & Poupaud
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(1999) based on microlocal analysis. Supposing that the approxi-

mation fails to have the appropriate dispersive properties, one could

apply the methods presented here in order to recover the dispersive

properties of the continuous model.

• Fully Discrete Schemes. It would be interesting to develop a simi-

lar analysis for fully discrete approximation schemes. We present two

schemes, one which is implicit and the other one which is explicit in

time. The first one:

i
un+1

j − un
j

∆t
+

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
= 0, n ≥ 0, j ∈ Z, (1.63)

introduces time viscosity and consequently has the right dispersive

properties. The second one is conservative and probably will present

some pathologies. As an example we choose the following approxima-

tion scheme:

i
un+1

j − un−1
j

2∆t
+

un
j+1 − 2un

j + un
j−1

(∆x)2
= 0, n ≥ 1, j ∈ Z. (1.64)

In this case it is expected that the dispersive properties will not hold

for any Courant number λ = ∆t/(∆x)2 which satisfies the stabil-

ity condition. Giving a complete characterization of the fully dis-

crete schemes satisfying the dispersive properties of the continuous

Schrödinger equation is an open problem.

• Bounded Domains. In Bourgain (1993) the LSE is studied on the

torus R/Z and the following estimates are proved :

‖eit∆ϕ‖L4(T2) . ‖ϕ‖L2(T). (1.65)

This estimate allows one to show the well posedness of a NSE on T2.

As we prove in Ignat (2006), in the case of the semidiscrete approxi-

mations, similar l2x-L4
t l

4
x estimates fail to be uniform with respect to

the mesh size ∆x. It is an open problem to establish what is the

complete range of (q, r) (if any) for which the estimates l2x-Lq
t l

r
x are

uniform with respect to the mesh size. It is then natural to consider

schemes with numerical viscosity or with a two-grid algorithm.

More recently, the results by Burq, Gérard and Tzvetkov (2004)

show Strichartz estimates with loss of derivatives on compact man-

ifolds without boundary. The corresponding results on the discrete

level remain to be studied.

• Variable Coefficients. In Banica (2003) the global dispersion and

the Strichartz inequalities are proved for a class of one-dimensional
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Schrödinger equations with step-function coefficients having a finite

number of discontinuities. Staffilani & Tataru (2002) proved the

Strichartz estimates for C2 coefficients. As we proved in Section 1.3,

even in the case of the approximations of the constant coefficients, the

Strichartz estimates fail to be uniform with respect to the mesh size h.

It would be interesting to study if the two remedies we have presented

in this article are also efficient for a variable-coefficient problem.
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