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Abstract
We study the properties of absolute minimal and equilibrium states of generalized Mumford–Shah functionals, with
applications to models of quasistatic brittle fracture propagation. The main results, theorems 7.3, 8.4 and 9.1, concern
a priori inequalities between energy release rate and energy concentration for 3D cracks with complex shapes, seen as
outer measures living on the crack edge.
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1. Introduction
A new direction of research in brittle fracture mechanics begins with the article of Mumford and Shah1 regarding the
problem of image segmentation. This problem, which consists in finding the set of edges of a picture and constructing a
smoothed version of that picture, it turns out to be intimately related to the problem of brittle crack evolution. In the afore-
mentioned article, Mumford and Shah propose the following variational approach to the problem of image segmentation:
let g : � ⊂ R

2 → [0, 1] be the original picture, given as a distribution of grey levels (1 is white and 0 is black), let
u : � → R be the smoothed picture and let K be the set of edges. The set K represents the set where u has jumps, i.e.
u ∈ C1(� \ K, R). The pair formed by the smoothed picture u and the set of edges K then minimizes the functional:

I(u, K) =
∫
�

α |∇u|2 dx +
∫
�

β |u − g|2 dx + γH1(K).

The parameter α controls the smoothness of the new picture u, β controls the L2 distance between the smoothed picture
and the original one and γ controls the total length of the edges given by this variational method. The authors remark that
for β = 0 the functional I might be useful for an energetic treatment of fracture mechanics.

An energetic approach to fracture mechanics is naturally suited to the explanation of brittle crack appearance under
imposed boundary displacements. The idea is presented in what follows.

The state of a brittle body is described by a displacement–crack pair. (u, K) is such a pair if K is a crack – seen as a
surface – which appears in the body and u is a displacement of the broken body under the imposed boundary displacement,
i.e. u is continuous in the exterior of the surface K and u equals the imposed displacement u0 on the exterior boundary of
the body.

Let us suppose that the total energy of the body is a Mumford–Shah functional of the form

E(u, K) =
∫
�

w(∇u) dx + F(u0, K).
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The first term of the functional E represents the elastic energy of the body with the displacement u. The second term
represents the energy consumed to produce the crack K in the body, with the boundary displacement u0 as the parameter.
Then the crack that appears is supposed to be the second term of the pair (u, K) which minimizes the total energy E.

After the rapid establishment of mathematical foundations, starting with De Giorgi and Ambrosio2, Ambrosio3,4, the
development of such models continued with Francfort and Marigo5,6, Mielke7, Dal Maso et al.8 and Buliga9,10,11.

In this paper we introduce and study equilibrium and absolute minimal states of Mumford–Shah functionals, in relation
to a general model of quasistatic brittle crack propagation.

On the space of the states of a brittle body, which are admissible with respect to an imposed Dirichlet condition,
we introduce a partial order relation. Namely the state (u, K) is ‘smaller than’ (v, L) if L ⊂ K and E(u, K) ≤ E(v, L).
Equilibrium states for the Mumford–Shah energy E are then minimal elements of this partial order relation. Absolute
minimal states are just minimizers of the energy E.

Both equilibrium states and absolute minimal states are good candidates for solutions of models for quasistatic brittle
crack propagation. Usually such models, based on Mumford–Shah energies, take into consideration only the absolute
minimal states. However, it seems that equilibrium states are better, because it is physically sound to define a state of
equilibrium (u, K) of a brittle body as one with the property that its total energy E(u, K) cannot be lowered by increasing
the crack further.

For this reason we study here the properties of equilibrium and absolutely minimal states of general Mumford–Shah
energies. This study culminates with an inequality between the energy release rate and the elastic energy concentration,
both defined as outer measures living on the edge of the crack. This result generalizes for tri-dimensional cracks with
complex geometries what is known about brittle cracks with simple geometry in two dimensions. In the 2D case, for
cracks with simple geometry, classical use of complex analysis lead us to an equality between the energy release rate and
the elastic energy concentration at the tip of the crack. We prove that for absolute minimal states (corresponding to cracks
with complex geometry) such an equality still holds, but for general equilibrium states we only have an inequality. Roughly
stated, such a difference in the properties of the equilibrium and absolute minimal states comes from the mathematical fact
that the class of first variations around an equilibrium state is only a semigroup.

This research might be relevant for 3D brittle fracture criteria applied for cracks with complex geometries. Indeed, it is
very difficult even to formulate 3D fracture criteria, because in three dimensions a crack of arbitrary shape does not have
a finite number of ‘crack tips’ (as in 2D classical theory), but an ‘edge’ which is a collection of piecewise smooth curves
in 3D space.

2. Notation
Partial derivatives of a function f with respect to coordinate xj are denoted by f,j. We use the convention of summation over
the repeating indices. The open ball with center x ∈ R

n and radius r > 0 is denoted by B(x, r).
We assume that the body under study has an open, bounded, with locally Lipschitz boundary, reference configuration

� ⊂ R
n, with n = 1, 2 or 3. We use Hausdorff measures Hk in R

n. For example, if n = 3 then Hn is the volume measure,
Hn−1 is the area measure and Hn−2 is the length measure. If n = 2 then Hn is the area measure, Hn−1 is the length measure
and Hn−2 is the counting measure.

Definition 2.1. A smooth diffeomorphism with compact support in � is a function φ : � → � with the following
properties:

(i) φ is bijective;
(ii) φ and φ−1 are C∞ functions;

(iii) φ equals the identity map of � near the boundary ∂�:

supp (id� − φ) ⊂⊂ �.

The set of all diffeomorphisms with compact support in � is denoted by D or D(�).

The set D(�) is obviously non-void because it contains at least the identity map id�. Note also that it is a group with
respect to function composition.

For any C∞ vector field η on � there is a unique associated one-parameter flow, which is a function φ : I ×� → �,
where I ⊂ R is an open interval around 0 ∈ R, with the properties:
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(f1) ∀t ∈ I , the function φ(t, ·) = φt(·) satisfies (i) and (ii) from Definition 2.1;
(f2) ∀t, t′ ∈ I , if t − t′ ∈ I then we have φt′ ◦ φ−1

t = φt−t′ ;
(f3) ∀ t ∈ I , we have η = φ̇t ◦ φ−1

t , where φ̇t means the derivative of t �→ φt.

The vector field η = 0 generates the constant flow φt = id�. If η has compact support in � then the associated flow
t �→ φt is a curve in D.

A crack set K is a piecewise Lipschitz surface with a boundary. This means that there exist bi-Lipschitz functions
(fα)α∈1...M , each of them defined over a relatively open subset Dα of R

n−1
+ = {

y ∈ R
n−1 : yn−1 ≥ 0

}
, with ranges in R

n,
such that:

K =
M⋃
α=1

fα(Dα),

if α �= β then fα(Dα \ ∂Rn−1
+ ) ∩ fβ(Dβ \ ∂Rn−1

+ ) = ∅.

The edge of the crack K is defined by

dK =
M⋃
α=1

fα(Dα ∩ ∂Rn−1
+ ).

We denote further by Br(dK) the tubular neighborhood of radius r of dK, given by the formula

Br(dK) =
⋃

x∈dK

B(x, r).

We denote by [f ] = f + − f − the jump of the function f over the surface K with respect to the field of normals n.

3. Mumford–Shah-Type Energies
Definition 3.1. We describe the state of a brittle body by a pair (v, S). The crack is seen to be a piecewise Lipschitz surface
S in the topological closure � of the reference configuration � of the body and v represents the displacement of the body
from the reference configuration. The displacement v has to be compatible with the crack, i.e. v has the regularity C1

outside the surface S.
The space of states of the brittle body with reference configuration � is denoted by Stat(�).

The main hypothesis in models of brittle crack propagation based on Mumford–Shah-type energies is as follows.

Brittle fracture hypothesis. The total energy of the body subject to the boundary displacement u0 depends only on the
state of the body (v, S) and it has the expression

E(v, S) =
∫
�

w(∇v) dx + F(S; u0). (3.1)

The first term of this functional is the elastic energy associated with the displacement v; the second term represents the
energy needed to produce the crack S, with the boundary displacement u0 as a parameter.

We suppose that the elastic energy potential w is a smooth, non-negative function.
The most simple form of the function F is the Griffith-type energy:

F(S; u0) = Const. · Area(S),

that is, the energy consumed to create the crack S is proportional, through a material constant, to the area of S.
One may consider expressions of the surface energy F, different from (3.1); for example,

F(v, S) =
∫

S
φ(v+, v−, n) ds,

where n is a field of normals over S, v+ and v− are the lateral limits of v on S with respect to the directions n and −n,
respectively, and φ has the property

φ(v+, v−, n) = φ(v−, v+, −n).

The function φ, depending on the displacement of the ‘lips’ of the crack, is a potential for surface forces acting on the
crack. The expression (3.1) does not lead to such forces.

In general, we shall suppose that the function F has the properties:
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(h1) is sub-additive: for any two crack sets A, B we have

F(A ∪ B; u0) ≤ F(A; u0) + F(B; u0);

(h2) for any x ∈ � and r > 0, let us denote by δx
r the dilatation of center x and coefficient r:

δx
r (y) = x + r(y − x).

Then, there is a constant C ≥ 1 such that, for any A ⊂ � with F(A; u0) < +∞, we have

F(δx
r (A) ∩�; u0) ≤ Crn−1F(A; u0).

The particular case F(A; u0) = GHn−1(A) satisfies these two assumptions. In general these assumptions are satisfied
for functions F(·; u0) which are measures absolutely continuous with respect to the area measure Hn−1.

A weaker property than (h2) is the property (h3) below. We do not explain here why (h3) is weaker than (h2), but
remark that (h3) is satisfied by the same class of examples given for (h2).

For any A ⊂ �, let us denote by B(A, r) the tubular neighborhood of A:

B(A, r) =
⋃
x∈A

B(x, r).

We shall suppose that F satisfies the following property:

(h3) for any A ⊂ � such that F(A; u0) < +∞, we have

lim sup
r→0

F(∂B(A, r) ∩ �; u0)

r
< +∞.

4. The Space of Admissible States of a Brittle Body
Definition 4.1. The class of admissible states of a brittle body with respect to the crack F and with respect to the imposed
displacement u0 is defined as the collection of all states (v, S) such that:

(a) u = u0 on ∂� \ S;
(b) F ⊂ Su.

This class of admissible states is denoted by Adm(F, u0).

An admissible displacement u is a function which has to be equal to the imposed displacement on the boundary of �
(condition (a)). Any such function u is reasonably smooth in the set�\Su and the function u is allowed to have jumps along
the set S. Physically the set represents the collection of all cracks in the body under the displacement u. The condition (b)
tells us that the collection of all cracks associated with an admissible displacement u contains F, at least.

For some states (u, S), the crack set S may have parts lying on the boundary of �, that is, S ∩ ∂� is a surface with
positive area. In such cases we think about S ∩ ∂� as a region where the body has been detached from the machine which
imposed upon the body the displacement u0.

In a weak sense the whole space of states of a brittle body may be identified with the space of special functions with
bounded deformation SBD(�); see12. Indeed, to every displacement field u, which is a special function with bounded
deformation, we associate the state of the brittle body described by (u, Su), where generally for any set A we denote by
A the topological closure of A. (Note that, technically, the crack set Su may not be a collection of surfaces with Lipschitz
regularity.)

On the space of states of a brittle body we introduce a partial order relation. The definition is connected to Definition
4.1 and the brittle fracture hypothesis.

Definition 4.2. Let (u, S), (v, L) ∈ Stat(�) be two states of a brittle body with reference configuration �. If

(a) S ⊂ L,
(b) u = v on ∂� \ L,
(c) E(v, L) ≤ E(u, S),

then we write (v, L) ≤ (u, S). This is a partial order relation.
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There are many pairs (u, S), (v, L) ∈ Stat(�) such that (v, L) ≤ (u, S) and (u, S) ≤ (v, L), but u �= v. Nevertheless,
such pairs have the same total energy E, the same crack set S = L and u = v on ∂� \ L.

For a given boundary displacement u0 and for a given initial crack set K, on the set of admissible states Adm(u0, K)
we have the same partial order relation.

Definition 4.3. An element (u, S) ∈ Adm(u0, K) is minimal with respect to the partial order relation ≤ if, for any (v, L) ∈
Adm(u0, K), the relation (v, L) ≤ (u, S) implies (eu, S) ≤ (v, L).

The set of equilibrium states with respect to a given crack K and imposed boundary displacement u0 is denoted by
Eq(u0, K) and it consists of all minimal elements of Adm(u0, K) with respect to the partial order relation ≤.

An element (u, S) ∈ Adm(u0, K) with the property that for any (v, L) ∈ Adm(u0, K) we have E(u, S) ≤ E(v, L) is called
an absolute minimal state. The set of absolute minimal states is denoted by Absmin(u0, K).

The physical interpretation of equilibrium states can be made as follows. An equilibrium state (u, S) ∈ Eq(u0, K) is
one such that any other state (v, L) ∈ Adm(u0, K), which is comparable to (u, S) with respect to the relation ≤, has the
property (u, S) ≤ (v, L). In other words, equilibrium states are those with the following property: the total energy E cannot
be made smaller by enlarging the crack set S or by modifying the displacement u compatible with the crack set S and
imposed boundary displacement u0.

Absolute minimal states are just equilibrium states with minimal energy.

Remark 4.4. There might exist several minimal elements of Adm(u0, K), such that any two of them are not comparable
with respect to the partial order relation ≤.

For given expressions of the functions w and F, we formulate the following hypothesis.

Equilibrium hypothesis (EH). For any piecewise C1 imposed boundary displacement u0 and any crack K the set of
equilibrium states Eq(u0, K) is not empty.

Without supplementary hypothesis on the total energy E, the EH does not imply that the set of absolute minimal states
Absmin(u0, K) is non-empty. Therefore, the following hypothesis is stronger than EH.

Strong equilibrium hypothesis (SEH). For any piecewise C1 imposed boundary displacement u0 and any crack K the set
of equilibrium states Absmin(u0, K) is not empty.

5. Models of Quasistatic Evolution of Brittle Cracks
We shall describe here two models of quasistatic brittle crack propagation, Francfort and Marigo5,6 and Mielke [7, Section
7.6], the other proposed by Buliga11,10. At first sight the models seem to be identical, but subtle differences exist. Further,
instead of referring to a particular different model, we shall write about a general model of brittle crack propagation based
on energy functionals as if there is only one general model, with different variants, according to the choice among axioms
listed further namely axioms (A1) – (A5) Def5.2 for the model of Buliga, respectively axioms (A1), (A2), (A3´), (A4) for
the model of Francfort and Marigo. Whenever necessary, the exposition will contain variants of statements or assumptions
which specialize the general model to one of the actual models in use.

As an input of the model we have an initial crack set K ⊂ � and a curve of imposed displacements t ∈ [0, T] �→ u0(t)
on the boundary of �, the initial configuration of the body.

We like to think about the configuration� as being an open, bounded subset of R
n, n = 1, 2, 3, with sufficiently regular

boundary (that is, piecewise Lipschitz boundary).
The initial crack set K has the status of an initial condition. Thus, we suppose that ∂ (Rn \�) = ∂�. For the same

configuration � we may consider any crack set K ⊂ � as an initial crack. The crack set K may be empty.

Remark 5.1. Models suitable for the evolution of brittle cracks under applied forces would be of great interest. The present
formulations of the models of brittle crack propagation allow only the introduction of conservative force fields, as is done
in [7] or [6]. The reason for this is that models based on energy minimization cannot deal with arbitrary force fields. In
the case of a conservative force field, it is enough to introduce the potential of the force field inside the expression of the
total energy of the fractured body. Thus, in this particular case we do not have to change substantially the formulation of
the model presented here, but only to slightly modify the expression of the energy functional.

In order to simplify the model presented here, we suppose that no conservative force fields are imposed on � or parts
of ∂�. In the models described in [7] or [6] such forces may be imposed.
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Definition 5.2. A solution of the model is a curve of states of the brittle body t ∈ [0, T] �→ (u(t), St) such that:

(A1) (initial condition) K ⊂ S0;
(A2) (boundary condition) for any t ∈ [0, T] we have u(t) = u0(t) on ∂� \ St;
(A3) (quasistatic evolution) for any t ∈ [0, T] we have (u(t), St) ∈ Eq(u0(t), St);
(A4) (irreversible fracture process) for any t ≤ t′ we have St ⊂ St′ ;
(A5) (selection principle) for any t ≤ t′ and for any state (v, St) ∈ Adm(u0(t′), St) we have E(v, St) ≥ E(u(t′), St′ ).

From Definition 4.3 we see that (A2) is just a part of (A3). The axiom (A2) is present in the previous definition only
for expository reasons.

The selection principle (A5) enforces the irreversible fracture process axiom (A4). Indeed, we may have severe non-
uniqueness of solutions of the model. The axiom (A5) selects among all solutions satisfying (A1), ..., (A4) the ones that
are energetically economical. The crack set St does not grow too fast, according to (A5). For an imposed displacement
u0(t′), the body with the crack set St′ is softer than the same body with the crack set St, for any t ≤ t′.

As presented in Definition 5.2, the model has been proposed in Buliga11. In the models described in [7] and [5, 6] we
do not need the selection principle (A5) and the axiom (A3) takes the stronger form:

(A3’) (quasistatic evolution) for any t ∈ [0, T] we have (u(t), St) ∈ Absmin(u0(t), St) A supplementary energy balance
condition in imposed in [5, 6]. As explained by Mielke [7, Section 7.6], the time incremental formulation of the model
of Francfort and Marigo can nevertheless be reduced to the axioms (A1), (A2), (A3´), (A4).

6. The Existence Problem
The existence of equilibrium or absolutely minimal states clearly depends on the ellipticity properties of the elastic energy
potential w (as shown, for example, in [4, 12] or [5]). This is related to the existence of minimizers of the elastic energy
functional, as shown by relation (7.1) further on. Some form of ellipticity of the function w is sufficient, but it is not clear
if such conditions are also necessary. Much effort, especially of a mathematical nature, has been spent on this problem.

In this paper we are not concerned with the existence problem, however. Our purpose is to find general properties of
solutions of brittle fracture propagation models based on Mumford–Shah functionals. These properties do not depend on
particular forms of the elastic energy potential w, but on the hypothesis made in the general model. As any other model,
the one studied in this paper is better fitted to some physical situations than others. If some property of solutions of this
model are incompatible with a particular physical case, then we must deduce that the model is not fitted for this particular
case (meaning that at least one of the hypotheses of the model is not suitable to this physical case). We are thus able to
provide complementary information to that provided by the existence problem. See the conclusions section for more on
this subject.

7. Absolute Minimal States Versus Equilibrium States
The differences between the models come from the differences between equilibrium states and absolute minimal states.

Absolute minimal states are equilibrium states, but not any equilibrium state is an absolute minimal state.
Let us denote by (u, S) an equilibrium state of the body with respect to the imposed displacement u0 and initial crack

set K.
Consider first the class of all admissible pairs (v, S′) with a fixed crack set S such that S = S. We have, as an application

of Definition 4.3, that

∫
�

w(∇u) dx ≤
∫
�

w(∇v) dx ∀ v, v = u0 on ∂� \ s, v ∈ C1(� \ s). (7.1)

Thus any equilibrium state minimizes the elastic energy functional (in the class of admissible pairs with the same asso-
ciated crack set). A sufficient condition for the existence of such minimizers is the polyconvexity of the elastic energy
potential w.

The elastic energy potential function w : Mn×n(R) → R associates to any strain F ∈ Mn×n(R) (here n = 2 or 3) the
real value w(F) ∈ R. If this function is smooth enough then we can define the (Cauchy) stress tensor as coming from the
elastic energy potential:

σ (u) = ∂w(F)

∂F
(∇u).
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The variational inequality (7.1) implies that in the sense of distributions we have

div σ (u) = 0

and that on the crack set S we have
σ (u)+n = σ (u)−n = 0,

where the signs + and − denote the lateral limits of σ (u) with respect to the field of normals n.

7.1. Configurational Relations for Absolute Minimal States

We can also make smooth variations of the pair (u, S). Here appears the first difference between the absolute minimal and
equilibrium states. We suppose further that S \ K �= ∅; in fact, we suppose that S \ K is a surface with positive area.

If (v, L) ∈ Adm(u0, K) is an admissible state and φ ∈ D is a diffeomorphism of � with compact support, such that
K ⊂ φ(K), then (v ◦ φ−1,φ(S)) is admissible too.

If (u, S) is an absolute minimal state then, as an application of Definition 4.3, we have

E(u, S) ≤ E(u ◦ φ−1,φ(S)) ∀φ ∈ D , K ⊂ φ(K). (7.2)

We may use (7.2) in order to derive a first variation equality.
We shall restrict further to the group D(K) of diffeomorphisms φ ∈ D such that supp (φ − id) ∩ K = ∅. Vector fields

η which generate one-parameter flows in D(K) are those with the property supp η ∩ K = ∅. Further we shall work only
with such vector fields.

We shall admit that for any smooth vector field η there exist the derivatives at t = 0 of the functions

t �→
∫
�

w(∇(u ◦ φ−1
t )) dx, t �→ F(φt(K); u0),

where φt is the one-parameter flow generated by the vector field η. The relation (7.2) implies then that

d

dt |t=0
F(φt(S); u0) = − d

dt |t=0

∫
�

w(∇(u ◦ φ−1
t )) dx. (7.3)

Let us compute the right-hand side of (7.3). We have

− d

dt |t=0

∫
�

w(∇(u ◦ φ−1
t )) dx =

∫
�

{−w(∇u) div η + σ (u)ij(∇u)ik(∇η)kj

}
dx.

For any vector field η, let us define, for any x ∈ S, λ(x) = η(x) · n(x), ηT (x) = η(x) − λ)(x)n(x), where n is a fixed field
of normals over S.

With this notation, and recalling that the divergence of the stress field equals 0, we have

− d

dt |t=0

∫
�

w(∇(u ◦ φ−1
t )) dx =

∫
S
[w(∇u)]λ d Hn−1

+ lim
r→0

∫
∂Br(dS)

{
[w(∇u)]λ − [σ (u)ij(∇u)ik]ηknj

}
d Hn−1. (7.4)

Definition 7.1. We introduce three kinds of variations in terms of a vector field η which generates a one-parameter flow
φt ∈ D(K):

(a) (crack neutral variations) for η = 0 on S, we have φt(S) = S for any t;
(b) (crack normal variations) for η = λn on S \ K, with λ : S → R a scalar, smooth function, such that λ(x) = 0 for

any x ∈ K ∪ dS;
(c) (crack tangential variations) for η · n = 0 on S.

For case (a) of crack neutral variations, the relation (7.4) gives no new information when compared with (7.1).
In case (b) of crack normal variations, the relation (7.4) implies that

d

dt |t=0
F(φt(K); u0) =

∫
S
[w(∇u)]λ d Hn−1.
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In the particular case F(S; u0) = Hn−1(S) we obtain
∫

S
{[w(∇u)] + H} λ dHn−1 = 0,

where H = −divsn = − div n + ni,jninj is the mean curvature of the surface S. Therefore, we have

[w(∇u)(x)] + H(x) = 0 (7.5)

for any x ∈ S \ K.
In case (c) of crack tangential variations, the relation (7.4) implies that

d

dt |t=0
F(φt(S); u0) =

= lim
r→0

∫
∂Br(dS)

{
[w(∇u)]λ − [σ (u)ij(∇u)ik]ηknj

}
dHn−1. (7.6)

This last relation admits a well-known interpretation, briefly explained in the next subsection.

7.2. Absolute Minimal States for n = 2

Let us consider the case n = 2 and the function

F(S; u0) = G H1(S),

where H1 is the one-dimensional Hausdorff measure, i.e. the length measure. Let us suppose, for simplicity, that the initial
crack set K is empty and the crack set S of the absolute minimal state (u, S) has only one edge, i.e. dS = {x0}. Let us
choose a vector field η with compact support in � such that η is tangent to S. The equality (7.6) then becomes

G η(x0) · τ (x0) = lim
r→0

∫
∂Br(x0)

{
[w(∇u)]η · n − [σ (u)ij(∇u)ik]ηknj

}
dHn−1,

where τ (x) is the unitary tangent in x ∈ K at K. If we suppose, moreover, that the crack S is straight near x0, and the
material coordinates are chosen such that near x0 we have η(x) = τ (x) = (1, 0), then the equality (7.6) takes the form

G = lim
r→0

∫
∂Br(x0)

{
[w(∇u)]n1 − [σ (u)ij(∇u)i1]nj

}
dHn−1. (7.7)

We recognize in the right-hand term of (7.7) the integral J of Rice; therefore, at the edge of the crack the integral J has to
be equal to the constant G, interpreted as the constant of Griffith.

The equality (7.7) tells us that at the edge of a crack set belonging to an absolute minimal state the Griffith criterion is
fulfilled with equality.

7.3. Configurational Inequalities

For equilibrium states that are not absolute minimal states we obtain just an inequality, instead of the equality from relation
(7.6). Also, for such equilibrium states there is no relation like (7.5) between the mean curvature of the crack set and the
jump of the elastic energy potential. We explain this further.

The reason for this lies in the fact that if (u, S) ∈ Eq(u0, K) is an equilibrium state with S \ K having positive area, and
φ ∈ D(K) is a diffeomorphism preserving the initial crack set K, then we do not generally have the relation (7.2).

Indeed, in order to be able to compare (u, S) with (u ◦ φ−1,φ(S)), we have to impose S ⊂ φ(S). Only for these
diffeomorphisms φ ∈ D(K) is the relation (7.2) true. The class of these diffeomorphisms is not a group, like D(K), but
only a semigroup. Technically, this is the reason for having only an inequality replacing (7.6), and for the disappearance
of relation (7.5).

There is a necessary condition on the edge dS of the crack set S in order to have a trivial vector field η which generates
a one-parameter flow φt ∈ D(K) with S ⊂ φt(S) for any t ∈ [0, T] (with T > 0 sufficiently small). This condition is
dS \ K �= ∅.
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Thus, for (u, S) ∈ Eq(u0, K) with S \ K with positive area, and dS \ K �= ∅, we have

E(u, S) ≤ E(u ◦ φ−1
t ,φt(S)) ∀t ∈ [0, T], (7.8)

for any one-parameter flow φt ∈ D(K) with S ⊂ φt(S) for any t ∈ [0, T].
In relation (7.8), crack normal variations (case (b) of Definition 7.1) are prohibited. However, these types of variations

lead us to the relation (7.5). We deduce that for an equilibrium state (u, S) ∈ Eq(u0, K) , such that S \ K has positive area,
and dS \ K �= ∅, the relation (7.5) does not necessarily hold.

The crack tangential variations (case (c) of Definition 7.1) are allowed in relation (7.8) only for t ≥ 0. That is why we
get only a first variation inequality:

d

dt |t=0
F(φt(S); u0)

≥ lim
r→0

∫
∂Br(dK)

{
[w(∇u)]λ − [σ (u)ij(∇u)ik]ηknj

}
dHn−1, (7.9)

for any vector field η which generates one-parameter flow φt ∈ D(K) with S ⊂ φt(S) for any t ∈ [0, T].
The physical interpretation of relation (7.9) is as follows: the crack set S of an equilibrium state satisfies the Griffith

criterion of fracture, but, distinct from the case of an absolute minimal state, there is an inequality instead of the previous
equality. We are aware of at least one example where this inequality is strict. This case concerns a crack set in three
dimensions formed by a pair of intersecting, transversal planar cracks. Such a crack set has an edge (in the form of a
cross), but also a ‘tip’ (at the intersection of the edges of the planar cracks). The physical implications of the inequality
(7.9) are that such a 3D crack may propagate in different ways, either along a crack tangential variation, or along a more
topologically complex shape, by loosing its ‘tip’.

We may interpret the Griffith criterion of fracture, in the form given by relation (7.9), as a first-order stability condition
for the crack S associated to the state of a brittle body. Surprisingly then, absolute minimal states are first-order neutral
(stable and unstable), even if globally stable (as global minima of the total energy). There might exist equilibrium states
for which we have a strict inequality in relation (7.9). Such states are surely not absolute minimal, but they seem to be
first-order stable, if our interpretation of (7.9) is physically sound.

7.4. Concentration of Energy from Comparison with Admissible States

We can obtain energy concentration estimates from comparison of the energy of the equilibrium state (u, S) ∈ Eq(u0, K)
with other particular admissible pairs.

Let x0 ∈ � be a fixed point and r > 0 such that B(x0, r) ⊂ �. We construct the following admissible pair (vr, Sr):

vr(x) =
{

u(x) if x ∈ � \ B(x0, r),
0 if x ∈ � ∩ B(x0, r),

Sr = S ∪ ∂B(x0, r).

We then have the inequality E(u, S) ≤ E(vr, Sr), for any r > 0 sufficiently small. We use the properties (h1) and (h2) of
F to deduce that, for any x0 ∈ � and r > 0, we have

∫
B(x0,r)

w(∇u) dx ≤ C�n(x; u0) rn−1, (7.10)

where �n(x0; u0) is a number defined by
�n(x0; u0) = F(∂B(x0, 1); u0).

In the case of a Griffith-type surface energy F(S; u0) = GHn−1(S) we have

�n(x0; u0) = Gωn,

with ωn the area of the boundary of the unit ball in n dimensions, that is, ω1 = 2, ω2 = 2π , ω3 = 4π2.
This inequality leads us to the following energy concentration property for u:

lim sup
r→0

∫
B(x0,r) w(∇u) dx

rn−1
≤ C�n(x0; u0). (7.11)
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The term from the left-hand side of the relation (7.11) is the concentration factor of the elastic energy around the point
x0.

The relation (7.11) shows that the distribution of elastic energy of the body in the state (u, S) is what we expect it to be,
from the physical viewpoint. Indeed, let us go back to the case n = 2. It is well known that in the case of linear elasticity
in two dimensions, if (v, S) is a displacement–crack pair such that div σ (v) = 0 outside S and σ (v)+n = σ (v)−n = 0
on S, then v behaves like

√
r near the edge of the crack; hence the elastic energy behaves like r−1. We then recover the

relation (7.11) for n = 2.
The relation (7.11) does imply that the elastic energy concentration has an upper bound, but it does not imply that the

energy concentration is positive at the tip of the crack. In the case n = 2, for example, and for the general form of the
elastic energy density, the relation (7.11) tells us that if there is a concentration of energy (that is, if the density of elastic
energy goes to infinity around the point x in the reference configuration) then the elastic energy density behaves like r−1.
But it might happen that the elastic energy density is nowhere infinite. In this case we simply have

lim sup
r→0

∫
B(x0,r) w(∇u) dx

rn−1
= 0,

which is not in contradiction with (7.11).
From the hypothesis (h3) on the surface energy F we get a slightly different estimate. We need first a definition.

Definition 7.2. For the equilibrium state (u, S) ∈ Eq(u0, K) and for any open set A ⊂ � we define

CE(u, S)(A) = lim sup
r→0

∫
B((dS∩A,r)∩� w(∇u) dx

r
,

CF(S; u0)(A) = lim sup
r→0

F(∂B(dS ∩ A, r); u0)

r
.

The functions CE(u, S)(·), CF(S; u0)(·) are sub-additive functions which by well-known techniques induce outer
measures over the σ -algebra of Borelian sets in �.

The function CE(u, S)(·) is called the elastic energy concentration measure associated with the equilibrium state (u, S).
Likewise, the function CF(S; u0)(·) is called the surface energy concentration measure associated with (u, S).

Theorem 7.3. Let (u, S) ∈ Eq(u0, K) be an equilibrium state. Then for any open set A ⊂ � we have

CE(u, S)(A) ≤ CF(S; u0)(A).

Proof. We consider, for any closed subset A of �, the admissible state (ur,A, Sr,A) given by

ur,A(x) =
{

u(x) if x ∈ � \ B(dS ∩ A, r),
0 if x ∈ � ∩ B(dS ∩ A, r),

Sr,A = S ∪ ∂B(dS ∩ A, r).

The state (u, S) is an equilibrium state and (ur,A, Sr,A) is a comparable state; therefore we obtain

∫
B(dS∩A,r)∩�

w(∇u) dx ≤ F(∂B(dS ∩ A, r); u0).

We get eventually

lim sup
r→0

∫
B(dS∩A,r)∩� w(∇u) dx

r
≤ lim sup

r→0

F(∂B(dS ∩ A, r); u0)

r
. �

Theorem 7.3 shows that an equilibrium state satisfies a kind of Irwin-type criterion. Indeed, an Irwin criterion is
formulated in terms of stress intensity factors. Closer inspection reveals that really it is formulated in terms of the elastic
energy concentration factor and that, for special geometries of the crack set and for linear elastic materials, we are able to
compute the energy concentration factor as a combination of stress intensity factors.
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8. Energy Release Rate and Energy Concentration
From relations (7.3) and (7.6), we deduce that a good generalization of the J integral of Rice (which is classically a
number) might be a functional

η , supp η ⊂⊂ � �→ − d

dt |t=0

∫
�

w(∇(u.φ−1
t )) dx,

where φt is the flow generated by η.

Definition 8.1. For any equilibrium state (u, S) ∈ Eq(u0, K) and for any vector field η which generates a one-parameter
flow φt ∈ D(K), such that (there is a T > 0 with) S ⊂ φt(S) for all t ∈ [0, T], we define the energy release rate along the
vector field η by

ER(u, S)(η) = − d

dt |t=0

∫
�

w(∇(u ◦ φ−1
t )) dx. (8.1)

Denote by V(K, S) the family of all vector fields η generating a one-parameter flow φt ∈ D(K), such that there is
a T > 0 with S ⊂ φt(S) for all t ∈ [0, T]. Formally this set plays the role of the tangent space at the identity for the
(infinite-dimensional) semigroup of all φ ∈ D(K) such that S ⊂ φ(S).

Note that ER(u, S)(η) is a linear expression in the variable η. Indeed, we have

ER(u, S)(η) =
∫
�

{
σ (∇u)ijui,kηk,j − w(∇u) div η

}
dx.

Nevertheless, the set V(K, S) is not a vector space (mainly because the class of all φ ∈ D(K) such that S ⊂ φ(S) is
only a semigroup and not a group). Therefore, the energy release rate is not a linear functional in a classical sense.

Definition 8.2. With the notation from Definition 8.1, the total variation of the energy release rate in a open set D ⊂ � is
defined by

|ER|(u, S)(D) = sup ER(u, S)(η), (8.2)

over all vector fields η ∈ V(K, S), with support in D, supp η ⊂ D, such that, for all x ∈ �, we have ‖η(x)‖ ≤ 1.
The function |ER|(u, S)(·) is positive and sub-additive and therefore induces an outer measure over the σ -algebra of

Borelian sets in �.
We call this function the energy release rate associated with (u, S) ∈ Eq(u0, K).

The number |ER(u, S)|(D) measures the maximal elastic energy release rate that can be obtained by propagating the
crack set S inside the set D, with sub-unitary speed, by preserving its shape topologically.

In the case n = 2, as explained in Section 7.2, let x0 be the crack tip of the crack set S and J the Rice integral. Then
for an open set D ⊂ � we have:

− |ER(u, S)|(D) = J if the crack tip belongs to D, that is, x0 ∈ D;
− |ER(u, S)|(D) = 0 if the crack tip does not belong to D.

For short, if we denote by δx0 the Dirac measure centered at the crack tip x0, we can write

|ER(u, S)| = J δx0.

It is therefore the appropriate generalization of the Rice integral in three dimensions.
Suppose that for any crack set L and boundary displacement u0 the surface energy has the expression

F(S; u0) = GHn−1(S).

Then CF(S, u0)(�) is just G times the perimeter (length if n = 3) of the edge of the crack S which is not contained in K
(technically, it is the Hausdorff measure Hn−2 of dS \ K).

There is a mathematical formula which expresses the perimeter of the edge of an arbitrary crack set L as an ‘area
release rate’. Indeed, it is well known that the variation of the area of the crack set φt(L), along a one-parameter flow
generated by the vector field η ∈ V(K, L), has the expression

d

dt |t=0
Hn−1(φt(S)) =

∫
S

divtanη dHn−1(x),
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where the operator divtan is the tangential divergence with respect to the surface S. If we denote by n the field of normals
to the crack set S, then the expression of divtan operator is

divtanη = ηi,i − ηi,jninj.

Further, the perimeter of dS\K, the edge of the crack set S outside K, admits the following description, similar in principle
to the expression of the elastic energy release rate given in Definition 8.2:

Hn−2(dS \ K) = sup

{∫
S

divtanη dHn−1(x) : η ∈ V(K, S), ∀x ∈ X ‖η(x)‖ ≤ 1

}
.

By putting together this expression of the perimeter with relation (7.6) we obtain the following proposition.

Proposition 8.3. If for any crack set L we have F(L; u0) = GHn−1(L), then for any absolute minimal state (u, S) ∈
Absmin(u0, K) such that S \ K �= ∅, we have

|ER(u, S)|(�) = CF(u, S)(�).

At this point let us note that for a general equilibrium state in three dimensions (u, S) ∈ Eq(u0, K) there is no obvious
connection between the energy release rate |ER(u, S)|, as in Definition 8.2, and the elastic energy concentration CE(u, S),
as in Definition 7.2.

The following theorem gives a relation between these two quantities.

Theorem 8.4. Let (u, S) ∈ Eq(u0, K) be an equilibrium state of the brittle body with reference configuration �, and let
D ⊂ � be an arbitrary open set. Then we have the following inequality:

|ER(u, S)|(D) ≤ CE(u, S)(D). (8.3)

Remark 8.5. For an arbitrary crack set L, we cannot a priori deduce from the EH the existence of a displacement u′ with
(u′, L) ∈ Adm(u0, K) and such that for any other state (v, L) ∈ Adm(u0, K) we have

∫
�

w(∇u′) dx ≤
∫
�

w(∇v) dx.

From the mechanical point of view such an assumption is natural. There are mathematical results which support this
hypothesis, but to the best of our knowledge, not with the regularity needed in this paper. Fortunately, we shall not need to
make such an assumption in order to prove Theorem 8.4.

Proof of Theorem 8.4. (First part) Let us consider an arbitrary vector field η ∈ V(K, S), with compact support in D, such
that for any x ∈ � we have ‖η(x)‖ ≤ 1.

In order to prove the theorem it is enough to show that

ER(u, S)(η) ≤ CE(u, S)(D). (8.4)

Indeed, suppose (8.4) is true for any vector field η ∈ V(K, S), with compact support in D, such that for any x ∈ � we have
‖η(x)‖ ≤ 1. Then, by taking the supremum with respect to all such vector fields η and using Definition 8.2, we get the
desired relation (8.3).

The inequality (8.4) is a consequence of Proposition 8.6 and relation (8.9), which are of independent interest. We
shall resume the proof of Theorem 8.4, by giving the proof of the inequality (8.4), after we prove the afore-mentioned
results. �

Let φt be the one-parameter flow generated by the vector field η. We can always find a curvilinear coordinate system
(α1, . . . ,αn−1, γ ) in the open set D such that

- on the part of the edge dS ∩ supp η of the crack set S we have γ = 0,
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- the surface γ = t (constant) is the boundary of an open set Bt such that

φt(S) \ S ⊂ Bt ⊂ supp η ⊂ D,

- there exists T > 0 such that for all t ∈ [0, T] we have

Bt ⊂ B(dS ∩ D, t) ∩ D, (8.5)

where B(dS ∩ D, t) is the tubular neighborhood of dS ∩ D of radius t.
Consider also the one-parameter flow ψt, t ≥ 0, which is equal to the identity outside the open set D and, in the

curvilinear coordinates just introduced, it has the expression

ψt(x(αi, γ )) = x(αi, t + γ ).

Notice that ψt(�) = � \ Bt. We shall use this notation for proving that the elastic energy concentration is a kind of energy
release rate, after the following result.

Proposition 8.6. With the notation defined previously before, we have

lim
t→0

1

t

(∫
�\Bt

w(∇u) dx −
∫
�\Bt

w(∇(u ◦ ψ−1
t )) dx

)
= 0. (8.6)

Proof. Recalling that ψt(�) = � \ Bt, we use the change of variables x = ψt(y) to prove that (8.6) is equivalent with

lim
t→0

1

t

(∫
�

(
w(∇u(y)(∇ψt)

−1(y)) − w((∇u)(ψt(y))
)

det ∇ψt(y) dy

)
= 0.

The previous relation is just

d

dt |t=0

∫
�

(
w(∇u(y)(∇ψt)

−1(y)) − w((∇u)(ψt(y))
)

det ∇ψt(y) dy = 0. (8.7)

We shall prove this from (u, S) ∈ Eq(u0, K) and from an approximation argument. We shall use the notation from
Section 7.1.

Denote by ω the vector field which generates the one-parameter flow ψt. Let us compute, using integration by parts,

d

dt |t=0

∫
�

(
w(∇u(y)(∇ψt)

−1(y)) − w((∇u)(ψt(y)))
)

det ∇ψt(y) dy

=
∫
�

(
σijui,jkωk + σijui,kωk,j

)
dy. (8.8)

For any γ > 0 sufficiently small, choose a smooth scalar function f γ : � → [0, 1] such that

(a) f γ (x) = 0 for all x ∈ Bγ , f γ (x) = 1 for all x ∈ � \ B2γ ;
(b) as γ goes to 0 we have

lim
γ→0

∫
�

f γ
(
σijui,jkωk + σijui,kωk,j

)
dy =

∫
�

(
σijui,jkωk + σijui,kωk,j

)
dy,

lim
γ→0

∫
�

f γ,j σijui,kωk dy = 0.

For all sufficiently small γ > 0 it is true that
∫
�

(
σijui,jkω

γ

k + σijui,kω
γ

k,j

)
dy

=
∫
�

(
f γ

(
σijui,jkωk + σijui,kωk,j

) + f γ,j σijui,kωk

)
dy.
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Thus, from (a) and (b) above we get the equality

lim
γ→0

∫
�

(
σijui,jkω

γ

k + σijui,kω
γ

k,j

)
dy =

∫
�

(
σijui,jkωk + σijui,kωk,j

)
dy.

Recall that (u, S) is an equilibrium state and therefore the stress field σ = σ (∇u) has divergence equal to 0. Integration by
parts shows that, for any sufficiently small γ > 0, we have

∫
�

(
σijui,jkω

γ

k + σijui,kω
γ

k,j

)
dy =

∫
�

−σij,j
(
ui,kω

γ

k

)
dy = 0.

We have therefore obtained the relation ∫
�

(
σijui,jkωk + σijui,kωk,j

)
dy = 0.

This is equivalent to relation (8.7), and by computation (8.8). �

A straightforward consequence of (8.6) is that the elastic energy concentration is related to a kind of configurational
energy release rate. Namely, we see that

lim sup
t→0

1

t

∫
Bt

w(∇u) dx =

= lim sup
t→0

1

t

(∫
�

w(∇u) dx −
∫
�\Bt

w(∇(u ◦ ψ−1
t )) dx

)
. (8.9)

We now turn back to the proof of Theorem 8.3. Recall that what is left to prove is relation (8.4).

Proof of Equation (8.4). By construction, for all sufficiently small t > 0 we have

1

t

∫
B(dS,t)∩D

w(∇u) dx ≥ 1

t

∫
Bt

w(∇u) dx

because Bt ⊂ B(dS, t) ∩ D. We write the right-hand side of this inequality as a sum of three terms:

1

t

∫
Bt

w(∇u) dx

= 1

t

(∫
�

w(∇u) dx −
∫
�

w(∇(u ◦ φ−1
t )) dx

)

+ 1

t

(∫
�

w(∇(u ◦ φ−1
t )) dx −

∫
�\Bt

w(∇(u ◦ ψ−1
t )) dx

)

+ 1

t

(∫
�\Bt

w(∇(u ◦ ψ−1
t )) dx −

∫
�\Bt

w(∇(u)) dx

)
.

As t goes to 0, the first term converges to EC(u, S)(η) and the third term converges to 0 by Proposition 8.6. We want to
show that

lim
t→0

1

t

(∫
�

w(∇(u ◦ φ−1
t )) dx −

∫
�\Bt

w(∇(u ◦ ψ−1
t )) dx

)
= 0. (8.10)

The proof of this limit is identical to the proof of Proposition 8.6. Indeed, in that proof we worked with the one-parameter
flow ψt generated by the vector field ω. This one-parameter flow is a semigroup (with respect to composition of functions),
but after inspection of the proof it can be seen that we only used the following: for any x ∈ � \ S

lim
t→0

ψt(x) = x and
d

dt |t=0
ψt(x) = ω(x).

Therefore, we can modify the proof of Proposition 8.6 by considering, instead of ψt, the diffeomorphisms λt defined by

λt = ψt ◦ φ−1
t .
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The rest of the proof goes exactly as before, thus leading us to relation (8.10).
Eventually, we have

CE(u, S)(D) = lim sup
t→0

1

t

∫
B(dS,t)∩D

w(∇u) dx

≥ lim sup
t→0

1

t

∫
B(dS,t)∩D

w(∇u) dx = ES(u, S)(η)

+ lim
t→0

1

t

(∫
�

w(∇(u ◦ φ−1
t )) dx −

∫
�\Bt

w(∇(u ◦ ψ−1
t )) dx

)

+ lim
t→0

1

t

(∫
�\Bt

w(∇(u ◦ ψ−1
t )) dx −

∫
�\Bt

w(∇(u)) dx

)
= ES(u, S)(η)

and (8.4) is therefore proven. �

9. A Constraint on Some Minimal Solutions
Let us consider now a solution of the model of brittle crack propagation described in Section 5. More precisely, for
given boundary conditions u0(t) and an initial crack set K, we shall call a solution (u(t), St) ∈ Eq(u0(t), St) of the model
described by axioms (A1),..., (A5), an ‘equilibrium solution’. Likewise, a solution (u(t), St) ∈ Absmin(u0(t), St) of the
model described by axioms (A1),(A2),(A3’),(A4), will be called a ‘minimal solution’.

We shall deal with a minimal solution (u(t), St) ∈ Absmin(u0(t), St) for which the crack set St propagates smoothly,
without topological changes. Namely, we shall suppose that there exists a vector field η with compact support in �, such
that for all t ∈ [0, T] we have St = φt(K), where φt is the one-parameter flow generated by η.

Because the problem is quasistatic, time enters only as a parameter; therefore, we may suppose moreover that for all
x ∈ � we have η(x) ≤ 1.

At each moment t ∈ [0, T] we shall have η ◦ φt ∈ V(K, St).

Theorem 9.1. Suppose that for any crack set L and boundary displacement u0 the surface energy has the expression

F(S; u0) = GHn−1(S).

Let (u(t), St) ∈ Absmin(u0(t), St) be a minimal solution, with S0 = K, such that exists a vector field η with ‖η(x)‖ ≤ 1 for
all x ∈ � and for all t ∈ [0, T] we have St = φt(K), where φt is the one-parameter flow generated by η.

Then, for any t ∈ [0, T] and any open set D ⊂ �, we have the equalities

|ER(u(t),φt(S))|(D) = EC(u(t),φt(S))(D)

= CF(φt(S); u0(t))(D) = GHn−2(dS \ K). (9.1)

Proof. Theorems 8.4 and 7.3 tell us that for any open set D ⊂ � and for any t ∈ [0, T] we have

|ER(u(t),φt(S))|(D) ≤ EC(u(t),φt(S))(D) ≤ CF(φt(S); u0(t))(D).

Proposition 8.3 tells that

CF(φt(S); u0(t))(�) = |ER(u(t),φt(S))|(�).

We deduce that for any open set D ⊂ � and for any t ∈ [0, T] the string of equalities (9.1) is true. �

This result is natural in 2D linear elasticity. Nevertheless, in the case of 3D elasticity, the constraints on the elastic
energy concentration provided by Theorem 9.1 might be too hard to satisfy.

Indeed, from (9.1) we deduce that, in particular, the elastic energy concentration has to be absolutely continuous with
respect to the perimeter measure of the edge of the crack.
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10. Conclusions
We have proposed a general model of brittle crack propagation based on Mumford–Shah functionals. We have defined
equilibrium and absolute minimal solutions of the model.

By a combination of analytical and configurational analysis, we have defined measures of the energy release rate and
energy concentrations for equilibrium and absolute minimal solutions and we have shown that there is a difference between
such solutions, as shown mainly by Theorems 7.3, 8.4 and 9.1.
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