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Abstract. We propose a minimizing movement model for quasi-static brittle crack evolution. Cracks
(fissures) appear and/or grow without any prescription of their shape or location when time-dependent
displacements are imposed on the exterior boundary of the body. We use an energetic approach based
on Mumford—Shah type functionals. By the discretization of the time variable we obtain a sequence
of free discontinuity problems.

We find exact solutions and estimations which lead us to the conclusion that in this model crack
appearance is allowed but the constant of Griffittand the critical stress which causes the fracture
in an uni-dimensional traction experiment cannot be both constants of material.

A weak formulation of the model is given in the frame of special functions with bounded de-
formation. We prove the existence of weak constrained incremental solutions of the model. A partial
existence result for the minimizing movement model is obtained under the assumption of uniformly
bounded (in time) power communicated to the body by the rest of the universe.

The model is of applicative interest. A numerical approach and examples, using an Ambrosio—
Tortorelli variational approximation of the energy functional, are given in the last section.

Mathematics Subject Classifications1991): 73M25, 58E30, 49M10.

Key words: brittle fracture propagation, free discontinuity problems, minimizing movements, vari-
ational approximation, functions with bounded deformations.

1. Introduction

This paper concerns the study of quasi-static brittle crack evolution. We work under
the following assumptions: a linear elastic body, with or without initial cracks
inside, evolves in a quasi-static manner under an imposed path of boundary dis-
placements. During its evolution cracks with unprescribed geometry may appear
and/or grow.

The difficulty of brittle crack propagation problems consists in the nature of the
main unknown: the crack itself, at various moments in time. The research in this
field concerns mainly the constitutive behavior of a brittle material, like the basic
paper of Griffith [27]. Amongst the basic references we can quote: Eshelby [24],
Irwin [30], Gurtin [28], [29], Rice [38].

In almost all the studies the geometry of the crack is prescribed. There are few
exceptions, as the papers of Ohtsuka [34—37] or Stumpf and Le [39]. The geometry
of the crack can be prescribed in a strong form, like in the case of a plane rectangu-
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202 MARIUS BULIGA

Figure 1. Example of image segmentation with the Mumford—Shah functional. The left figure
is a black-and-white copy of a Van Gogh'’s painting; in the right figure we see the set of edges.

lar or elliptic crack which is supposed to remain plane rectangular or elliptic during
its growth. We find a weak prescription upon the evolution of the crack in the case
of a body with two-dimensional configuration, when the crack is supposed to have
only an edge, which is a point. Therefore, in this case, the evolution of the crack
is conveniently reduced to the movement of a point. Under these assumptions the
geometrical nature of the main unknown is obscured.

A new direction of research in brittle fracture mechanics begins with the article
of Mumford and Shah [33] regarding the problem of image segmentation. This
problem, which consists in finding the set of edges of an image and constructing a
smoothed (away from the edges) version of that image, turns out to be intimately
related to the problem of brittle crack evolution.

In the article mentioned above Mumford and Shah propose the following vari-
ational approach to the problem of image segmentation: tc R?> — [0, 1] be
the original picture, given as a distribution of grey levels (1 is white and 0 is black).
Letu: Q2 — R be the output picture and I&t be the set of edges of the objects in
the picture.X is (contained in) the set wherehas jumps, i.eu € C}(Q \ K, R).

The pair formed by the smoothed picturend the set of edgels minimizes then
the functional

I(u,K):focqulzdx+/ Blu — g|?dx 4+ y HL(K). (1)
Q Q

The parametes: controls the smoothness away from the edges of the new picture
u, B controls theL? distance between the smoothed picture and the original one
andy controls the total length of the edges given by this variational method. The
authors remark that fo = O the functionall might be useful for an energetic
treatment of fracture mechanics. In the followings is presented a model of brittle
crack appearance in the case of imposed boundary displacements.

The state of a brittle body with reference configurati®iis described by a pair
displacement-cracku, K) is such a pair if:
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ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 203

(1) K is acrack in the body, seen as a surface, B
(2) u is a displacement of the body with the crakk c €2, compatible with the
imposed boundary displacemany, i.e.u € CX(Q\ K) andu = up on 9.

The total energy of the body in the state K) is a Mumford—Shah functional
of the form

E(u,K;u0)=/ w(Vu) dx + F(ug, K).
Q

The first term of the functionak represents the elastic energy of the body with the
displacement. The second term represents the energy consumed to produce the
crack K in the body, with the boundary displacemegtas parameter.

In this model the brittle crack appearance is seen as an equilibrium problem.
When the displacementy is imposed on the (exterior) boundady2 the state
(v, S) of the brittle body is a minimizer of the total enerdy(-, -, ; Ug). The crack
predicted by the model iS. Notice thatS may be the empty-set; in this case the
model predicts that no crack appears whglis imposed.

Brittle crack appearance and image segmentation are free discontinuity prob-
lems. The unknowns, the crack or the collection of edges, are discontinuity surfaces
for the displacement field or for the smoothed image; their location is entirely
unprescribed.

We shall use an energetic approach to quasi-static brittle crack evolution. There-
fore, we proceed to a time discretization which transforms the problem of crack
evolution into a sequence of energy minimization problems. Francfort and Marigo
[26] proceed in the same way in the case of brittle brutal damage evolution. How-
ever, itis only a belief that when the time step goes to zero, the discretized evolution
converges to an almost continuous (in time) evolution. We have found in the frame
of generalized minimizing movements, introduced by De Giorgi [20], stronger
mathematical reasons to support this belief. That is why we introduce in Section 2
the notion of energy minimizing movement as a particular case of a generalized
minimizing movement.

In Section 3, after the preliminaries concerning the statics of a brittle body, the
Griffith criterion of brittle crack propagation is presented in Subsection 3.3, as a
selection criterion amongst all possible crack evolutions. At the end of this section
we formulate the problem of quasi-static brittle crack evolution in the form (14).

In Subsection 4.1 we give an energy minimizing movement formulation to this
problem using a Mumford—Shah energy functional (Definition 4.1). In this model
we have only one material constant connected to fracture, namely the constant of
Griffith G. Some features of the model are explored in Subsection 4.2 in the anti-
plane and uni-dimensional cases. We prove that crack appearance is allowed (we
refer to [18] for more information, especially concerning fiber-matrix debonding
in composites). The relation (23) contains the expression. afhe critical stress
which lead to fracture in an uni-dimensional traction experiment. We infer from
this relation that, andG cannot be both constants of material in this model.
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Section 5 concerns the weak formulation of the incremental (that is discretized
in time) model of crack evolution introduced in Definition 4.1. Subsection 5.1 deals
with special functions with bounded variation or deformation. The existence of
weak constrained incremental solutions of the model (Definition 5.1, Theorem 5.3)
is a consequence of more general results due to De Giorgi and Ambrosio [21],
Ambrosio [1-2], Bellettini, Coscia and Dal Maso, [15], Ambrosio, Coscia and
Dal Maso [6]. The anti-plane case is discussed in Subsection 5.3. We compare the
notions of weak (according to Definition 5.1) and strong (Definition 4.1) solution
in Subsection 5.4.

In Section 6 a comparison is made with the model of Ambrosio and Braides [4],
also based on generalized minimizing movements. In this model viscosity forces
are introduced and crack propagation under imposed constant boundary displace-
ment is allowed; on the contrary, crack appearance can not occur in a physically
acceptable way.

In Section 7 we prove a partial existence result of the energy minimizing move-
ment described in the model, under the assumption of uniformly bounded power
communicated by the rest of the universe to the body during its evolution.

Section 8 is devoted to the numerical approach to the model. We use here func-
tional convergence results of Ambrosio and Tortorelli [11-12] and the numerical
method of Richardson and Mitter [32].

This paper continues a part of the work [17].

2. General Energy Minimizing Movements

An energy minimizing movement is a particular case of a generalized minimizing
movement. The latter notion has been introduced by De Giorgi in [20], inspired
by the paper [13] of Almgren, Taylor and Wang. The definition of a generalized
minimizing movement (according to Ambrosio [3]) is presented below

DEFINITION 2.1. LetS be a topological space and
F:(1,+00) X N x § xS — RU{+0o0}

be a function. For any,g € S, a functionu: [0, +o0) — § is a generalized
minimizing movement associated 0 with initial datumuo, and we writeu €
GMM(F, ug), if there exists a diverging sequente);cy, s; > 1, and there are
functionsu;: N — S such that:

(1) i (0) = uo;
(ii) for any k € N and anyi, u; (k + 1) minimizes the functional

UV F(Si’kv v, ul(k))

overs;
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ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 205

(i) forany ¢t > 0, u;([s;t]) — u(¢) in S asi — +oo.

As the name tells, the notion of a generalized minimizing movement extends
the notion of minimizing movement. Witli, F andug € S as in Definition 2.1,
u: [0, +00) — S is a minimizing movement associated Fowith initial datum
ug, and we writeu € MM (F, ug), if there are functiong, (k), for anys > 1 and
k € N, such that:

(i) us(0) = uo;
(i) forany k € N and anys € (0, +00), us(k + 1) minimizes the functional

V= F(S, ka v’ Ms(k))

overs;
(i) forany ¢t > 0, uy([st]) — u(¢) in § ass — +o0.

The canonical example of (generalized) minimizing movement is given by the
choice:S = R”, f: R" — R Lipschitz continuous and? and

F(s. k,u,v) = f(u) + %w — 2

In this case, for anyig € R" there is only one minimizing movement, namely the
unique solution of the Cauchy problem

u'(t) = =V fu), u(0) = uo.

Notice that the minimizing movement associatedftaand uo might not be
unique, mainly because the functional> F (s, k, u,(k), v) may have more than
one minimizer. The nonunigueness of a generalized minimizing movement is of
higher order, because there might be different generalized minimizing movements
depending on the choice of the diverging sequendeor examples and techniques
of investigation of the set8/ M (F, ug) andGM M (F, ug) we refer to Ambrosio
[3].

An energy minimizing movement is a generalized minimizing movement asso-
ciated to a particular functiof'. It is designed to be a ‘weak stable’ solution of an
evolution problem of the following type

Au(), a),t) =0, Vi>0
%M0<LWMMOn vt >0 (2)
u(0) =ug, «a(0)=ag.

There are two unknowns in this problemandq«. The evolution of the unknown
u is quasi-static. Suppose that we don't have a proper law of evolutien@fthat
the law of evolution that we have gives too many solutions. We may assume that we
have the expression of the total enerffy, o) of the system in the state, «) and
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a set of constraints, not in a differential form, upon the evolution.0fVe make
then a time discretization with time stépand recursively findu}, ,, o}, ;) from
(ul, o), by a minimization process of the total energyunder some constraints.
A weak stable solution of the previous problem is a limit of sequeriegsy}),
when the time step converges to 0.

In the next definitionS may be seen as the space of all pairs= (u, «),
endowed with a topology.

DEFINITION 2.2. LetS be a topological space and
F:(1,+00) x N x § xS — RU{+o00},

F(s,k,x,y) = f(s,x,y) +¢¥(k/s, y)

be a function, withf: N x § x § — R and:[0,00) x § — {0, +oo}. For
any xg € S, an energy minimizing movement associated to the engrgyith
the constraintgy and initial datumxg is any generalized minimizing movement
x: [0, 400) = S, x € GMM(F, xy).

Let us denote by (1) the following set
S ={y eSSy, y =0.

From Definition 2.2 we notice that: [0, +00) — S is an energy minimizing
evolution associated tf, with the constraintg: and initial datumg if there exists
a diverging sequenag;);cy, s; > 1, and there are functions: N — S such that:

(1) x;(0) = xo;
(i) forany k € N and anyi € N, x;(k + 1) minimizes the functionaf over the
setS(k/s;) (in particularx; (k + 1) belongs taS(k/s;));
(i) forany ¢ > 0, x; ([s;¢]) — x(¢) in S asi — +oo.

3. Notations and Preliminaries
3.1. NOTATIONS AND CONSTITUTIVE ASSUMPTIONS

The open bounded s& c R3 represents the reference configuration of an elastic
body andu: Q@ — R3is the displacement field of the body. We shall always sup-
pose, without mentioning further, that the open®@etnd its closure have the same
topological boundary.

The expression of the elastic (or free) energy of the body is

/ w(Vu) dx.
Q
The first Piola-Kirchhoff stress tensSris

dw
S(u) = d_V(VU)
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ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 207

and the equilibrium equation of the body in the absence of volumic forces is
divS(u) =0 in Q.

In this paper we suppose that the body is linear elastic and homogeneous, i.e. the
function w(Vu) has the form

w(Vu) = 3CVu: Vu,
with the elasticity 4-tenso€ having the symmetries
Ciint = Cjiny = Cuij-
Under these assumptions the stress te§Sdmecomes the Cauchy stress tensor
o =0(U) =CVu==Ceu),
wheree (u) is the symmetric part o'u, i.e.
e(U) = 3(Vu+ (Vu)h).
We suppose moreover thatsatisfies the growth conditions
V FeR® F=FT, c|FI? < w(F) < C|FJ?,
wherec andC belong to(0, +0c0).
In the cases of plane or anti-plane displacements the dafhaink? represents
a section in the cylindrical reference configuration of the b@dy R and the body
is supposed to be isotropic.
If uuQ — R?is a plane displacement then the displacement relative to the
three-dimensional configuration of the body has the following expression

(X1, X2, X3) € @ X R > (u1(x1, x2), uz(x1, x2), 0) € R°.

The anti-plane displacement is a functien — R. The three-dimensional
displacement has the following form

(x1, X2, X3) € & X R (0,0, u(xy, x2)) € R®.

In this case the elastic energy takes the form

/mvmzdx,
Q

whereyu is one of the two Lamé’s constants.
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3.2. SIATICS OF A FRACTURED ELASTIC BODY

For any measurable st C R", |B| = £L"(B) denotes the Lebesgue measure of
B and #*(B) the k-dimensional Hausdorff measure Bf

By a crack set in the bod2 we mean (according to Ball [14]) a topologically
closed countably rectifiable set, generically denote&byWe shall always suppose
thatK is a subset of2.

Given the functionf, a pointx € © C R" and an unit vector (or direction)
n € R", the approximate limit off in x associated to the directionis denoted by
f(x,n) and it is defined by the following expression

- Js -0z | f ) = flx.mldy
0—04 |Bo(x) N {y:(y —x)-n =0}

®3)

Given a field of unit vectors € K — n(x) normal toK, the lateral limitsf* and
f~ ofany functionf: 2\ K — R"aref*: K — Randf : K — R, defined by

frf@=Ffone), @) = fx, -n@).
This means thaf * and £~ satisfy the equalities

Vi e K lim pr(x)ﬂ{y:(y—x)»n>0} |f(y) - f+(X)| dy -0
T p—0s |B,(x) N {y:(y —x)-n= 0}

El

Vi e K ||m ./‘Bp(x)ﬂ{y:(y—x)»n<0} |f(y) - f_(x)l dy -0
T =0 |By(x)N{y:(y—x)-n<O0} '

Note that for any € K the triplet(f*(x), f~(x), n(x)) is unique up to a change
of sign ofn and a permutation of *, f~, i.e.

(fT ), f7 ), n)) ~ (f (), f1(x), =n(x)).

We denote by f] = f* — f~ the jump of f over K. Notice that the tensor field
over K defined by[ /1 ® n is uniquely determined by andK. If f takes values

in R™ then the same is true for the symmetric part of the tensor field defined above,
namely

{{f1on};; = %([f]inj + [f1;n).

The jump of f over the crack sek can be described by the following measure

(. K) =[/1ond#e ™, j(f. K)(B) = / Flondse . (@)

BNK

Consider a crack set C 2 formed by a finite collection of smooth surfaces.
By a displacement compatible witti we mean a function: Q \ K — R* (where
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k might be 1, 2 or 3) which i€! and has continuous lateral limits @q. In this
section we shall consider the spa®é-2(Q \ K) as the set of weak displacements
compatible with the crack set.

Let n be the dimension of the reference configuratienFor anyu, € HY?
(32, R™) and for any crack sekt, such that#"~1(32\ K) > 0, a solution (if any)
of the following problem

dive (u) =0, in Q\ K
ct(UWn=0"(UWnN=0, onk (5)
u = up, on a2\ K

will be denoted byu = u(ug, K). The solution is unique up to rigid displacements
of @\ K equal to 0 o Q. If K andd<2 are such that a Korn inequality holds on
the space¥1?(Q \ K), then the problem (5) has a solution. For this paper the fact
thatu(uo, K) is unique up to a class of rigid displacements is irrelevant, therefore
u(uop, K) will be called ‘the solution’ of the problem (5).

We use the same notationi— u(ug, K) —in the anti-plane case, whan= 2,
k = 1 and the problem (5) becomes

wdivVu =0, in Q\K,
(Vu)™n=(Vu) ™ n=0, on K, (6)
U = uop, on 0Q\ K.

The solutionu(ug, K) of the problem (5) minimizes the functional

E(V):/w(VV)dx
Q

over the following set of weak displacements compatible with the crack setd
the boundary displacemeng

(ve WH(Q\ K,R"):v=ug on aQ\K}.
By standard arguments the functional

veWwh(Q, R — / o (U(ug, K)) : Vvdx
Q

depends only on the trace wfon 92, hence it gives raise to the linear continuous
function

T(K): HY?(0Q, R") — H~Y2(HQ, R"),
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210 MARIUS BULIGA

(T(K)ug, V) = / o(U(ug, K)): VW dx forany v =v on Q. 7)
Q

In the latter definition(-, -) is the duality product of the pair of spacls/?(9$2, R")
andH-Y2Q, R").

The functionT (K) is called the Dirichlet-to-Neumann map of the elastic body
Q with the crack seK. Under the assumptions concerning the symmetries of the
elasticity tensolC, the functionT (K) is self-adjoint, that is for any, v we have

(T(K)u, v) = (T(K)v, u). (8

In the same way the Dirichlet-to Neumann map associated to the problem (6) is
defined.

Finally, we remark that the elastic energy of the body can be expressed using
the Dirichlet-to-Neumann map. Indeed, we have

/Qw(VU(Uo, K)) dx = 3(T(K)uo, Uo). 9)

3.3. THE GRIFFITH CRITERION OF BRITTLE CRACK PROPAGATION

Let us consider in the elastic body an initial crack setky which evolves and
becomes at the momentthe crack se,. We assume that the crack set always
increases in time, i.e.,

Vo<t <t, K, C K,. (10)

We suppose that the evolution of the body is quasi-static. At the momnibat
state of the body is characterized by the displacement-crackyi@jt K,), where
u(r) is the displacement of the body, compatible with the crackietLet us
denote byug(z) the trace ofi(r) on d2. We have then the equalityz) = u(ug(z),
K,). We make the assumption that the function> ug(z) is sufficiently regular in
time.

The power given to the body by the rest of the universe at the montexrs the
following expression

P() = /a SN - o(r) d = (T(K (0. L),

Let us consider a given curve— (u(z), K;), such that for any we haveu(r) =
u(uo(?), K,). For a giverr we introduce the following curve of displacements

VT > 0, G(t) = u(ug(® + 1), K;).
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ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 211

G(z) represents the displacement of the body at the moment in the presence
of the crackK;. An easy calculation leads us to the equality

i/ w(Vii(r) dx,_, = P(r). (11)
dr Q

ThereforeP (¢) represents the power consumed at the mombmgtthe body in or-
der to modify its displacement, constrained to follow the path of imposed boundary
displacements — ug(¢), without any modification of the actual crack g&t

The Griffith criterion of brittle crack propagation asserts that during the propaga-
tion of the crackk; the following inequality is true at any moment

% {/ w(Vu(t)) dx + GJf’”l(K,)} < P(1). (12)
Q

HereG is the constant of Griffith, supposed to be a material constant.

The relation (12) can be written in a different form using the mag,). Let us
assume that the crack evolution is smooth in the sense that the funetiol (K,)
is differentiable, i.e., the Dirichlet-to-Neumann map varies smoothly in time. The
Griffith criterion takes the following form

1/d
5 <E[T(K’)]u0(t)’ uo(t)> + Z(T(K)Uo(t), Uo(1))

d
+2(T(K)uo(t), Uo (1)) + Ga{ﬂ"*(m)}

< (T(K)uo(t), Uo(2)).

The functionT (K,) is self-adjoint, therefore we obtain the following expression of
the Griffith criterion

1/d d n—1
§<E[T(K,)]uo(t),uo(t)>+Ga{J€ (K} < 0. (13)

Notice that we have the following equality

d 1/d
P(1) — E/ w(Vu()) dx = 5 <E[T(Kz)]uo(l), Uo(l)>-
Q

The left-hand member of the previous equality is usually called the energy release
rate due only to the crack propagation.

uo(?) plays the role of a time-dependent parameter, since in the last inequality
Uo(¢) does not appear. As we have seen, this is a consequence of relations (8), (9)
and (12).
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The problem of quasi-static brittle propagation of an initial crack in an elastic
body under a time-dependent imposed displacemginj is of the type (2). If we
put apart the constraint (10), we have the following formulation

u() — u(uo(r), K;) =0, vVt >0,
1/d d n—1
§<ETNK0NMQJMU»+4GEL% (KD} <0, V>0,  (14)

u@ =ug, Ko=K.

4. The Model

In the left term of the Griffith criterion (12) there appears the time-derivative of an
energetic functional. Let us consider the &ebf all admissible displacement-crack
pairs(u, K) with the following properties

(1) K c Qis a crack set;

(2) ue CHQ\ K, R");

(3) for #"~t-almost anyx € K there exist the normal(x) at K in x andu®(x),
u—(x).

Notice that the fielah of normals induces an orientation in the neighborhood of
The item (3) in the definition oM can be replaced by imposing the existence of
tracesu™ andu~ of u on K with respect to this orientation.

The Mumford—Shah energy functional ovérhas the following expression

I'M —> RU{+o00}, Iu,K)= / w(Vu) dx + GH"L(K). (15)
Q

4.1. INTRODUCTION OF THE MODEL

According to Definition 2.2 and the constraint (10) we give an energy minimizing
movement formulation to the problem (14) using the functional defined in (15).

DEFINITION 4.1. Let us define the functions

J M x M — R,

J((u,K), (v, L)) = / w(Vv)dx + GH" YL \ K),
Q

v: [0, 00) x M — {0, +o00},
0, if v=up(l) on o\ K

(A, (V,K)) = _
+00, otherwise
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We consider the initial datéug, K) € M such thatup = u(ug(0), K). For any
s > 1 we define the sequences

k € N — u'(k), L*(k), K*(k),

(U (k), L*(k)) € M and(u®(k), K*(k)) € M, recursively:

(i) (u*, K*)(0) = (uo, K), L*(0) = K,
(i) foranyk € N (u*, L*)(k + 1) € M minimizes the functional

(v,L) e M — J(W, K*)(k), (v, L)) + ¥ ((k +1)/s, (v, L))

over M. In order to verify the constraint (10X (k + 1) is defined by the
formula:

K*(k+1) = K*(k) UL*(k + 1).

(u, L): [0, 400) — M is an energy minimizing movement associated/to
with the constraints (10)¢ and initial data(ug, K), and we write(u, L) €
GMM (ug, K, W), if there is a diverging sequence) such that for any > 0
we have

ui([s;t]) — u(r) in L*(Q, R"),

16
Jjsi, LY ([s;¢]) — j(u, L)(r) weakly as Radon measures (16)

asi — oo and
H"HL()) < liminf # (LY ([s;t])). (17)

In the previous definition Js is the step of the discretization of the time vari-
able. The approximate displacement of the body at the mokyeris u* (k). The
active crackat the same moment &° (k) and thetotal crackis K*(k). The state
of the brittle body is(u®(k), L*(k)) while K*(k) takes account of the history of
fissuration. Any sequender— (u*, L*, K*)(k) constructed using the rules (i) and
(i) from the Definition 4.1 is called an incremental solution. We use the same
name for a sequence of displacement-crack pairs (u®, L*)(k). Notice that in
rule (i) the triplet (u®, L*, K¥)(k) appears in the expression of the functiorial
only throughK* (k).

The time step goes to 0 asonverges t@o and the incremental solutiof®,
L) ([s;t]) converges tdqu, L)(¢), for anyr > 0. L(¢) is called theactive crackat
the moment and

K(t) = Usepo,nL(s)

is called thedamaged regiorof the body at the same moment. Notice that the
damaged regioX () might not be a crack set, because #igriori a noncountable
union of surfaces.
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The convergence of the incremental solution to the energy minimizing move-
ment deserves a discussion. The meas(elj) associated to a displacement-
crack pair contains information about the placement and the opening of the crack
L under the displacement The weak convergence afifi, L) ([s;¢]) toj(u, L)(¢)
as Radon measures means that for gy Co(2, M"*") we have

i—00

lim / ([u' ([s;tD)] © n): g dFe™ ™t
L% ([s5;t])

= [ (umlon):¢dsr
L(r)

Therefore (16) asserts that the incremental displacement converges to the displace-
ment at the moment and (in a weak sense) the placement and the opening of
the incremental crack set converges to the placement and the opening of the active
crack set at the same moment. Generdlly L) is not null on the part ol. where
the jump ofu is not null, therefore this measure gives information only about the
opened crack. The role of the condition (17) is to control the area of the £r@agk
in order to eliminate the parts of the active crack which are not opened.

4.2. FEATURES OF THE MODEL

We investigate further the behavior of the model proposed in Definition 4.1 in the
particular case of anti-plane displacements. There are some obvious adjustments
to be madeS is now a bounded domain iR? and the displacement is a scalar
functionu. The functional/ will take the form

J((u, K), (v, L)) = / wlVul2dx + GHYL \ K). (18)
Q

For a displacement-crack pdir, L) we introduce the notation
ju, L) = [u]d3] .

Let us consider a particular type of imposed displacemer&sanWe split the
boundary of the body into three parts

9Q =TIUT2UTY,

rinr; =g, rinrz=g, HTY - #T2) - HN(T) > 0.

At any moment > 0, I'; is force free, i.e. the displacement is not prescribed on
this part of the boundary. OR! andTI"? the imposed displacement is defined by

0 onrI!

uo(t)(x) = :
° t§ on I'2
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ufh=t 3

Figure 2. The geometry of the body and imposed displacement.

whereé is a positive constant with dimension of speed. This displacement is ho-
mogeneous in the time variable

Vi >0, wug(t) =tuo(l).

We suppose that at the moment= 0 there are no cracks in the body. This
assumption takes the foriki = @. At + = 0 we haveup(0) = 0, hence the initial
data arqug = 0, K = ).

Let us consider a time discretization given by the parameteafd the incre-
mental solutiork € N — (u*, L%) (k) introduced in Definition 4.1 for the initial
data and the imposed boundary conditions described above. In order to shorten the
notations we shall omit for the moment the supersaript

The incremental solutiotu, L): N — M is recursively defined by the follow-
ing two rules:

() u(0) =0andK (0) = ¥;

(if) foranyk € N we seek to determine the crack g€k + 1) and the displacement
u(k + 1) such thattu(k + 1), L(k + 1)) € M, u(k + 1) = (k + 1)/sug(1) on
(P1ur?)\ L(k+1) and(u(k + 1), L(k + 1)) is a minimizer of the functional

(v, L) = J((u(k), K (k)), (v, L)),

where(v, L) € M, v = (k + 1)/suo(1) on(F*UT?)\ L. The setk (k + 1) is
given by the formula
K(k+1) =K(k)UL(k+1).

Let uy denote the displacement of the ba@y without cracks, under the pre-
scribed displacement on the boundafy(1). With the use of a notation made
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earlier,uy is defined byuy = u(ug(l), ¥). For anyk € N we have(k/suy, ) € M
andk /sug = k/sug(1) onT1 U I'2, Therefore, with the notation

Ji = J((u(k), K(k)), (u(k + 1), L(k + 1))
for anyk € N we have
Je < J((u(k), K(K)), ((k +1)/sug, 9)).

The last inequality may be written as

k 2
K< (;> / Vg 2 d, (19)
Q

o= f WIVutk + D2 ds + GIHLE + 1)\ K (k). (20)
Q

We can always find a curve @ which is a length minimizer in the family of all
curves inQ separating™! from I'2. Let us denote such a curve y(which exists
but it might not be unique). The cungsplits the domairs2

Q='uQ? Trlcel r1?co?
QNP =¢, QINQ2==:s.
We define the following displacement

0 xe@!

us(x) = 5 co?
X .

It is easy to see that for artye N the pair(k/sug, S) belongs toM andk/sus =
k/suo(1) on(I'1UT?)\ S. We have therefore the inequality

Ji < GHH(S\ K (K)), (21)
with J; given by (20). From (21) we derive the following conclusifor: large time
k/s the crack setk (k) is not void.Indeed, suppose that the functibne N +—
(k/sug, V) is an incremental solution constructed by the rules (i) and (ii) above.

Then for anyk € N the inequality (21) becomes an equality and the inequality
(21) takes the form

2
(f) / | Vugl? de < GH(S), (22)
Q

which lead to a contradiction. Therefore this model can predict crack appearance.
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We get more information about the behavior of the model if we use it in the case
of an uni-axial traction experiment. The body with modulus of elastiEityas the
configuration2 = (0, L) C R and any crack set is a finite collection of points
in the intervalQ2, so the body is either undamaged or totally broken. The imposed
displacement at the timeis

uo(t) = tup(1),

whereug(1l) = 0 atx = Oandug(l) = D atx = L. The functionJ ((u, K), (v, L))
takes the expression

L
(. K). (v, L)) = / LEW () dx + GHL\ K),
0

where #M) is the number of elements of the 9t
At the time k/s we have only two kinds of displacement-crack pairs which
compete. These are:

(1) (k/sugy, D), whereuy(x) = xD/L;
(2) (k/susg, S), whereS = {x1,...,xy} is a crack set andg is a piecewise
constant function off0, L] \ S such that.s(0) = 0 andug(1) = D.

For any displacement-crack pdir, K) we have

L
(k/s)Z/ TEup®de if S=0,
0

G#(S \ K) it S+£0,

J((u, K), (k/sus, ) =

therefore among all pair&/sus, S) it is sufficient to consider only the pairs with
#S)=1orS =40.
For small timek /s the body remains uncracked and for large titvie a crack
appears in the body. Precisely, for smiglk we have
(u(k), K (k)) = (k/sug, 9)
and for largek /s we have

(u(k), K (k)) = (k/sus, S),

with #(S) = 1. An inequality similar to (22) leads us to an equation for the critical
time r. when the crack appears

1
tf/o TEujy)®de = G.
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We obtain the following expression of the uni-axial stress= . Euj, existing in
the uncracked body when the model predicts its fracture:

2EG\Y?
o, = <T) . (23)

We see that the stress and the quantitys cannot be both constants of material in
this model.

5. Existence of weak incremental solutions
5.1. THE SPACES SBV AND SBD

This section is dedicated to a brief voyage through the spaB&sandSBD.

We use the notatiop <« A if the measureu is absolutely continuous with
respect to the measuke For any measurg we denote byu|(B) the variation of
wn over the Borel seB C 2, defined by the relation

I(B) = sup] 3 (Al Uy Ar € B, AN A; =0 Vi £ j}.
i=1

The measurg has finite total variation (ove®) if |u|(2) < +o0.

BV (R, R") is the space of functiona € L(Q, R") with the distributional
derivativeDu representable as a vector measure with finite total variation. We refer
to the book of Evans and Gariepy [25] for the main properties of such functions.
The approximate limit ofi at the pointx € 2 is thatli(x) defined by the equality

. fB (x)|U(y)—0(X)|dy
lim —~ =
p=0; |B,(x)]

The Lebesgue set af is the set of points whene has an approximate limit. The
complementary set is &”" negligible set denoted b§,. De Giorgi proved in [23]
that for anyu € BV (2, R") the setS, is countably rectifiable. Moreover, foi”" 1
almost everye € S, there is a triple{u™ (x), u=(x), n(x)) such that

(1) n(x) is a unit vector normal t&, atx;
(2) (ut(x),u (x)) are the approximate limits af in x associated with the direc-
tion n(x) (for the definition see (3)).

This triplet is uniquely determined up to a change of sign ahd an interchange
of u™, u™. The jump ofu acrossS, is [u] = u™ — u~; notice that the tensor field
[u] ® n overS, is independent of the choice of the field of normals

For anyu € BV (€2, R") the measuréu admits the decomposition into abso-
lute continuous and singular parts with respect to the Lebesgue measuira &
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D“u + D*u. Calderon and Zygmund [19] theorem gives the following decompos-
ition of the measuréu into three mutually singular parts

Du = Vu(x) dx + [ul @ ndH* + C(u).
Vu is the approximate gradient afdefined for almost every € Q2 by the equality

) fB (x)|U(y)—U(X)—VU(X)'()’—X)|d)’
lim —~ =0
p=0, [B,@)lly — x|

The jump part ofDu is
D/u=[u]@nd#. "

C(u) is called the Cantor part du; for any Borel seB C 2 the quantityC (u)(B)
is defined byC (u)(B) = D*u(B \ S,). We have therefore

D% = Vudx, D'u = [u]l @ nd#|, + C(u).

The spac&SBV(2, R") of special functions with bounded variation was intro-
duced by De Giorgi and Ambrosio in the study of a class of free discontinuity prob-
lems ([21], [1], [2]). A general reference BBV and free-discontinuity problems
is Ambrosio, Fusco and Pallara [10]. This space is defined as follows:

SBV(R, R") = {u e BV(2, R"):|D°ul(2\ S,) = 0}.

For anyu € BV (€2, R"), u is a special function with bounded variation if and only
if the Cantor part ofbu is null.

For several versions of the compactness theore8B¥ we refer to the afore-
mentioned papers of De Giorgi and Ambrosio. We shall use this theorem in the
following form:

THEOREMS5.1.Let(u,), be a sequence i8BV(R2, R¥) andC be a constant such
that for anyh

/ VU, |2 dx + #(Sy,) + lupll= < C.
Q

Then there exish e SBV(R2, R¥) and a subsequence, still denoted(ly),,, such
that

u, — u in L%, RY,

Vu, — Vu weakly in L2(Q, M),

D/u, — D’/u weakly as Radon measures
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and
H'HS) < lim inf H"HSy,).

A description of the space of special functions with bounded deform&&id(2),
can be found in Ambrosio, Coscia and Dal Maso [6]. Any functioa L1($2, R")
belongs tdBD() if Eu, the symmetric part of the distributional derivativewpfis
representable as a vector measure with finite total variation.

For anyu € BD(£2) the measur&u decomposes with respect to the Lebesgue
measure into absolute continuous and singular parts

Eu= E% B+ E’u.

We denote by Eu| the variation of the measu®u. Kohn introduced in [31] the
set®,

|EU|(B,(x))
=

Oy, = {x € Q: limsup 0

p—0t P

and proved that it is countably rectifiable. Lkt be the subset of2 of all points
x € Q such that there is a unit vectotx) with the property thati has different
approximate limitsu™(x) = G(x, v(x)), u”(x) = Q(x, —v(x)) defined by the
relation (3). It is straightforward thak, C S,. However,S, may not be countably
rectifiable. In [6] it is proved tha®, coincides withd, up to a#"~! negligible
set, thereford,, is countably rectifiable. The tripléti™ (x), u~(x), n(x)) exists for
H"~1 almost everyx € J,, wheren(x) is the normal unit vector t®, at x; as
previously the tensor field ove, defined by{u] ® n is uniquely determined. We
denote byu] © n its symmetric part.

The difference betwee®, andJ, is subtle. Let us quote only the fact that for a
functionu € SBV(£2, R") these sets coincide up ta7é-negligible set.

The following decomposition theorem is due to Ambrosio, Coscia and Dal
Maso [6] and asserts that

Eu=sU)(x)dr + [ulOndH "t + E(U).

Heree(u) is the approximate symmetric gradient, defined for almost every2
by

=0.

p—0t p" ly — x|

im i/ UQ) —ux) —eWE®Y —x) -y —x) dy
B, (x)

The jump part ofEu is

E‘u=[ulon d,}fl’;ufl.
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Ecu is the Cantor part offu, that is the part ofE*u not concentrated od,.
Therefore we have

E“U = e(u) dx, E‘u= E’u+ E‘u.
The definition ofSBD(R2) is the following:
SBD(S2, R") = {u € BD(Q):|E*u|(Q \ Jy) = O}.
We have the inclusion
SBV(L2, R") C SBD(Q).

For the compactness theorem $BD we refer to Bellettini, Coscia and Dal
Maso [15]. We shall use this theorem in the following form:

THEOREM 5.2. Let us consider the function

Fe M — w(F) = (1/2)CF:F,

sym
with C a positive definite symmetric 4-order tensor. I(et), be a sequence in
SBD(2) andC a constant such that for arly
[ wewdr -+ 300 + ules < c.
Q

Then there exish e SBV(R2, R¥) and a subsequence, still denoted(ly),,, such
that

u, — u in L%, RY,

e(Uy) — e(u)  weakly in L2(Q, M35,

E/u, — E/u weakly as Radon measures
and

FH' ) < lim inf FH" 1y,

5.2. BEXISTENCE OF WEAK CONSTRAINED INCREMENTAL SOLUTIONS

In order to give a weak formulation of the model described in Definition 4.1 let us
weaken first the spadd of displacement-crack pairs. We introduce the new set of
weak displacement-crack paifg

M = {(u, K). K is o-rectifiable u € SBD(2) and
|[Eful(2\ K) = 0}. (24)
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Given(u, K) € M, the sefX is countably rectifiable but it is not necessarily closed;
we have also weaker conditions on the regularity of the displacemehtdirect
consequence of (29) is that any (strong) displacement-crackyaff) such that
u e L*®(2, R") belongs to the seu.

Let us define the functiongl, the weak version of the functiondlintroduced
at Definition 4.1:4: M x M — R,

F(U K0, 1) = [ wew) e+ GHHLN ), (25)
Q

Before the introduction of the weak form of the functidrfrom the same defin-
ition, let us explain what we mean ly= up on the boundary of2. We consider,
for technical reasons, that there is an open bounded séth piecewise Lipschitz
boundary such th& c A. The imposed boundary displacementijse SBD(A)
such thatl,,NQ = @. Then, for anyu € SBD(A), U = Ug ONJ2 means thatl = ug
in A \ . We denote the set of all such functiamgy SBD(£2, ug). The reason for
this choice of defining boundary conditions is that the s@@BB(2, up) is closed
in SBD(A) in the L? convergence. Note th&BD(Q2, ug) can be identified with a
subspace 08BD(£2) by the inclusion mapi — u,,,.

Let us consider a curve of imposed displacements—> ug(1) such that
luo(M) |l L=a)y < +00. We impose a supplementary condition for a displacement
field u to be admissible at the time namely

lUllzoecay < lUo(A) |[LooA)- (26)

The space of all € SBD(£2, ug(A)) such that the constraint (26) holds will be
denoted bySBD™ (€2, Up(2)).
The functiony, introduced instead of, is defined as follows

U: [0, +00) x M — {0, +00},
0 if ue SBD>®(L2, ug(r)) and

T, (U, K)) = H" LK\ Ju) =0,
+o00  otherwise

DEFINITION 5.1 (weak version of Definition 4.1). Let us consider the sp#ce
endowed with the topology given by the convergence

(U, Kp) = (u, K) if u,L? — u. (27)

Let us consider also the functigh the curve of imposed displacements> uo(t)
with the associated functiow and the initial datgug, K) € M such thatug =
u(uo(0), K).

For anys > 1 we recursively definéu®, K*): N — M as:

(i) (u*, K*)(0) = (uo, K);

207215.tex; 28/05/1999; 7:36; p.22



ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 223
(i) forany k € N (u*, Jys)(k + 1) € M minimizes the functional
(v, L) € M= J(U°, K*)(k), (v, L)) + W ((k + 1)/s, (v, L))

over M. In order to verify the constraint (10X°(k + 1) is defined by the
formula

Ks(k + 1) == Ks(k) U Jus(k+1)- (28)

An energy minimizing movement associatedftaith the constraints (10)¥
and initial data(ug, K) is any (u, Jy): [0, +00) — M having the property:
there is a diverging sequen¢e) such that for any > 0 u% ([s;z]) — u(z) €
SBD™(2, up(r)) in L3(2, R") asi — oo. The active crack at the timeis
Juwy and the damaged region at the same instant is

K (1) = Usero.dues)-

Let us remark that the disappearance of the$ét + 1) from the definition of
the incremental solution (28) is only apparent, becau&€ jfL.*) (k+ 1) minimizes
the functional

(V, L) € M= (W, K*)(k), (v, L)) + ¥ ((k + 1) /s, (v, L))
thenW ((k + 1)/s, (U, L*)(k + 1)) = 0, hence
FH' YK\ Jy) =0.
From Theorem 5.2 we notice that functionals liteare L2 sequential lower

semi-continuous and coercive on closed &ts SBD(2) of functions equally
bounded inL> norm. If we consider in particular the functional

Ve V = g((us’ KS)(k)v (Vv ‘JV))
the following theorem is true by a trivial induction:

THEOREM 5.3 (existence of weak incremental constrained solutidregk2, A C
R™ be bounded open sets with piecewise smooth boundary sucf2 that. Let

Uo: N — SBD(A) N L*®°(A)

be a given sequence of imposed displacements suchlthatn @ = @ and
let (ug, K) be a given admissible displacement-crack paircinsuch thatup, =
u(ug(0), K) onog.

Then there exists a sequenee K): N — M such that:

(i) u(0) =ugandkK(0) = K;
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(i) foranyk € N there is(u(k +1), Jyk+1)) € M, such thau(k+1) = ug(k+1)
on a2 and (u(k + 1), Jyx+1)) is @ minimizer of the functional

V,L) e M,V=Ug(k+1) on I+ F(u(k), Kk)),V,L)).
The setK (k + 1) is given by the formula
Kk+1) =Kk)U Ju(k+l)‘

5.3. THE ANTI-PLANE CASE

In the anti-plane case we have to repl&®D(2) by SBV(L2, R). Let us consider
a larger domair2 ¢ A C R?, a boundary conditionly € SBV(A, R) N L®(A)
andu € SBV(A, R) such thau = ug in A \ Q. We don’t need the constraint (26)
because in this case we have a maximum principle. Indeed, with the notations

1w = / HIVUP dr + GHLS),
Q

— u(x) if [u()| < lluollzee(a).
U(x) = .
|uollL=ay  Otherwise

we have the inequality (T) < 7(u) and we notice thal = ugon A \ Q.

The set ofSBV displacements compatible with the boundary displaceragnt
is denoted bySBV(L2, up).

The set of weak displacement-crack pairs will be

N = {(u, K): Kis o-rectifiable u € SBV(2) and
|D*u|(22\ K) = 0}.

For a given path of imposed boundary displacements ug(X) € SBV(A, R) N
L (A, R) we define

®: [0, 4+00) x N — {0, 400},

0 if ue SBV(L2,up(r)) and
(1, (U, K)) = H' UK\ S) =0,
+oo  otherwise
With this setting we obtain the notion of a weak incremental solution in the case
of anti-plane displacements as in Definition 5.1. All we have to do is to replace

the spaceM by ., the function¥ by & andJ, by S,. The existence of weak
incremental solutions is a consequence of Theorem 5.1.
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The partial regularity results of De Giorgi, Carriero and Leaci [22] tell us that
weak incremental solutions give raise to strong incremental solutions. The exist-
ence of incremental solutions is therefore true in the anti-plane case#Fdr
smoothness 08, whereu is a minimizer of the Mumford—Shah functional, we
refer to Ambrosio and Pallara [7], Ambrosio, Fusco and Pallara [8], [9].

5.4. USTIFICATION OF THE WEAK FORMULATION

Let us compare the Definitions 4.1 and 5.1, where strong, respectively weak (con-
strained) energy minimizing movements were introduced.
We consider the Sobolev space associated to the craék ste [5])

we? = {u € SBV(Q, R"): / |Vu|2dx+/[u]2d.}€"‘l < 400,
Q K

|DSU| < ]fn_l}.

Ik
The following equality has been proved in [22]
W2(Q\ K, R") N L®(Q2, R") = Wg(Q, R") N L®(Q, R"). (29)

Therefore ifu = u(up, K) andu € L*°(L2, R") thenu is a special function with
bounded variation. Also, ifu, K) € M is a displacement-crack pair andis
essentially bounded, than € SBV(S2, R") andS, c K. These inclusions may
lead to the introduction of the following space of weak displacement-crack pairs

M = {(u, K): K is o-rectifiable u € SBV(L2, R") and

|D*ul(2\ K) = 0}.
However the bulk part of the functiondl (in weak formg) controls only the sym-
metric part of the gradient of the displacement. This is the reason of considering
the larger space( defined at (24). In conclusion, the péir, L) is replaced by the
pair (u, Jy) (or, in the anti-plane case, Iy, S,)). The weak version of the measure
j(u, L) isthenE/u (or D/u in the anti-plane case).
The following proposition is a direct consequence of Theorem 5.2.

PROPOSITION 5.1Letu, be a sequence ®BD(Q) which converges in?(Q, R")
tou € SBD(R2) such that

/ w(e(Un) dx + L, + Uslle < C (30)
Q

for some constan€ independent ofi. Then there exists a subsequence, still de-

noted byu,,, such that
{ e(uy) — eu)  weakly inL?(Q, M

sym/»

E’u, — E/u  as Radon measures
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and

H" 13y < liminf #"1,,).
h—o00
From this proposition we infer the following corollary

COROLLARY 5.1. Let us considetu, J,): [0, +00) — M an energy minimizing
movement(s;) a diverging sequence and* (k), Jus)) an incremental solution as
in Definition 5.1, such that

usi ([s;1]) = u(r) (31)
in L?(Q, R") asi — oo, for anyr > 0. We have then

E/u¥i([s;t]) — E’u(t) as Radon measures

n—1 R n—1 (32)
H (‘]u(t)) <liminf,_ o H# (Jysi ([s,-t]))-
Therefore the relations (31), (32) are the weak version of (16). Moreover, we
notice that (32) is a consequence of (31). However, this is a priori true only in the
case of weakonstrainedenergy minimizing movements.

6. Introduction of Small Viscosity

In the paper [4] Ambrosio and Braides introduce a generalized minimizing move-
ment based model for the propagation of a crack in the presence of viscous forces
in the body. They give as initial datum at= O the anti-plane displacement

ug € SBV(R2, R) N L*™(R2, R). For a givens they recursively define a sequence
(u;)x in SBV(L2, R) and an increasing sequence of closed rectifiable($gts as
follows: u} = uo, K§ = ¥ anduj , = w, K}, = S,, UK}, wherew is a minimizer

of the functional

vn—)/lelzdx-l—Jfl(Su\K,f)-i-s/|v—ui|2dx (33)
Q Q
over the set of alb such that

v € SBV(Q2, R), [vllee < llutolloo-
The generalized minimizing movements obtained as limits of such incremental
solutions, when diverges, correspond to the following situation: a body evolves
from the initial state:, with the initial crackS,,, under a constant imposed bound-

ary displacement. The equation of evolution for the displacement is

divVu(t) +u(t) =0.
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The authors obtain an existence result for the generalized minimizing movement
introduced by them. After the introduction of the piecewise constant function

u'(t) = upg),

they find the following uniform estimate

you 1. l
lu’ @) —u* ()2 < Mt —t+— if £/ >1. (34)
S

Therefore there exists a diverging seque¢g such that* converges ta uni-
formly in L>°([0, T1, L?>(2, R)), forall T > 0 and

u € COY2([0, +00); L3(2, R)). (35)

This result is obtained under the assumption of constant imposed boundary
displacement, equal to the trace on the boundary of the initial dagum

It is natural to introduce the Lamé constanand the viscosity. in the expres-
sion of the functional (33) and modify it as follows

UH/mwzdfo”l(su\K;)Hs/ v — ul Pd.
Q Q

We obtain the more physical case of an anti-plane displacement satisfying at any
moment: the equation

div uVu(r) + ri(r) = 0.

The estimate (34) becomes

1 .
lu® (') —u* ()2 < M/t —t+ o if t'>1.
A

We expect to obtain our model, in the case of anti-plane displacements, when the
viscosityA converges to 0. It is easy to see that fonverges to 0 then the uniform
estimate from above is lost.

We notice that the crack appearance can not occur in this model in a physically
acceptable way.

Indeed suppose that for any- ¢ > 0 we have

Siiy C Suy-

This hypothesis means that the damaged region

K(t) = Usero.0Su(s)
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is the active cracls,,,. We suppose moreover that the energy
E(1) = / |Vu(®)|? dx + #*(K (1))
Q

is a decreasing function.
From the above suppositions, the compactness theorédBihand (35) we
infer that:

(a) the functiory — E(¢) is decreasing lower semicontinuous,
(b) the functiory — #1(K (¢)) is increasing lower semicontinuous,
(c) the elastic energy

> / [Vu(r)|? dx
Q

is a decreasing function (from (a) and (b)) and it is lower semicontinuous.

A straightforward consequence of items (a), (b), (c) is that for iathye lateral
limits of the functions — #(K (s)) at the moment are both equal to the value
H(K (1)), that is the length of the crack grows continuously with time.

We mention however that we don'’t know if for any minimizing movemegm)
the energyE (1) decreases with time. Again from the compactness theoré&SBh
all we can prove is that for any< " we have the inequalities

liminf E(u* (¢)) > liminf E@" (1)),
E(u(r)) < liminf Eu" (1)), E(u(t")) < liminf E@® (t')),
where

E@u) = / IVu|?dx + HX(S,).
Q

7. A Partial Existence Result

The main open theoretical problem is the general existence of an energy minimiz-

ing movement according to our definitions. Below is described a partial existence

result based on a sound physical assumption (36). Nevertheless, we do not know if
(36) can be proved from the basic assumptions of the model.

THEOREM 7.1. Let us consider for any given an incremental solutiot

(U (k), K°(k)) € M, according to Definition4.1, such thatu®(k) are equally
bounded inL*. Let us suppose that the power communicated by the rest of the
universe to the body is uniformly bounded at any tim€he incremental form of
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this assumption consists in the existence of a congtasuch that for anyt ands
we have

(T3 3(Uo((k + 1)/5) + Uo(k/s)), Aug(k, 5)) < P/s, (36)

whereT] = T(K*(k)) and Aug(k, s) = Ug((k 4+ 1)/s) — Uo(k/s). Then for any
t > Othere exist diverging sequences); and (k;); such thatk; /s; converges to,

ui(k) > u@r) in LA, R"),

37
js, L5y (ki) — j(u, L)(r) weakly as Radon measures 37

asi — oo and
H"HL(r)) < liminf #(L* (k). (38)

Proof. For anyk € N we introduce the displacement
V' (k + 1) = u(Uo((k + 1)/s), K’ (k)).

From the minimality assumption on the incremental solution we have for any
k € N the inequality

J((W k), K*(k)), (V'(k+ 1), K* (k) = J(k,s),
J(k,s) = J((U(k), K*(k)), (u'(k + 1), K*(k + 1))).

Also, becauser (k) is uniformly (with respect ta ands) essentially bounded,
from the relation (29) and the minimality of the incremental solution we have
FH"L(L* (k) \ Jusry) = O for anys, k. The latter inequality means that

/ w(VV(k +1)dx > / w (VU (k + 1)) dx
Q Q
+GH" YK (k+ 1)\ K*(k)).

The crack growth conditiok™* (k) c K*(k + 1) implies that the latter relation can
be written as

</ w(VvS(k+1))dx—/ w(VuS(k))dX)
Q Q

+/ w(VU (k) dx + GH" (K (k))
Q

> / w(VU (k + 1) dx + GH"(K* (k + 1)).
Q
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This is the incremental form of the Griffith criterion of crack propagation (12).
Indeed, we have

/Q w(VV' (k + 1)) dv = 3(T(K* (k) Uo((k + 1)/5), Uo((k + 1)/5)),

/Qw(VUS(k))dx = %(T(Ks(k))uo(k/S), Uo(k/s)),
therefore
/ w(VV (k + 1)) dx —/ w(VU* (k)) dx
Q Q

= (T(K* (k) 3(Uo((k + 1)/s) + Uo(k/s)),
Uo((k + 1)/s5) — Ug(k/s)).

V¥ (k + 1) represents the displacement of the body with the boundary displacement
uo(k/s+1/s) in the presence of the cradk® (k). u® (k) represents the displacement

of the body with the boundary displacementk/s) in the presence of the same
crackK* (k). According to (11), the quantity

(/ w(Vvs(k+1))dx—/ w(VuS(k))dX)/G)
Q Q N

is the discretized expression of the power communicated by the rest of the universe
to the body at the timg/s, when a time discretization with stegslis considered.
We deduce from the inequality (39) that

P/s + / w(VU (k) dx + GH"L(K* (k))
Q

> /Qw(VUS(k + 1) dr + GH"HK (k + D).
We have therefore
Pk/s > /Q w(VU (k + 1)) dx + GH"1(K* (k + 1)).
FromL’(k +1) C K*(k + 1) we infer that
P/s > [ w(U -+ D) de + 6oL G+ D).

The latter inequality and the equally boundednesa*¢f) allow us to apply the
compactness Theorem f&BD 5.2. We deduce that for any > 0 there exist
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diverging sequences;); and(k;); such thak; /s; converges te and(u®, L) (k;)
converges to an element &f (u, L)(¢) in the sense of the relations (37), (38).

8. Numerical Approach to the Model

The models presented in this paper are of applicative interest. In order to use them
we have to know how to minimize a Mumford—Shah functional. This can be done
by approximating, in the sense of variational convergence, the original functional
by a volume integral. There are several ways to approximate the Mumford—Shah
functional by volume integrals (for a general reference we quote Braides [16]).
One idea is to replace the displacement-crack paitk) with the pair (u, 1),
where f is a smoothed version of the characteristic function of the craclKset
taking values in the intervdD, 1]. The original functional may be replaced by an
Ambrosio—Tortorelli approximation, introduced in [11], [12].

Let us consider, for givep: 2 — R andc > 0, functionals of the form

Ie(u, f) = /Q{Ot¢(f)|Vu|2+/3(u—g)2+

2
+y [cwwﬁ + %] } dx. (39)
We suppose that the functiops v have the following properties:

(@) ¥ (x) > 0foranyx € (0, 1];
(b) Jo 2cyY2(x) dx = 1;
(€) 9(0) =1,¢(1) =0andgp(x) € (0, 1) foranyx € (0, 1).

Under these assumptions it is known that whernverges to 0 theh. converges
in the variational sense (@r-convergence) to the Mumford—Shah functional

1(u)=a/ |W|2dx+ﬁ/ u— g2dx + 7 H#Y(S,). (40)
Q Q

This result, due to Ambrosio and Tortorelli, tells us that for arny SBV(S2, R)
the followings are true:

(i) for any sequenceuy, f,, cy) such that, — u and f, — 0in L?, ¢, — 0,
we have

liminf I, (up, fn) = I(u);
h—o0

(i) there is a sequence:,, f;, c,) such that, — u and f, — 0inL?, ¢, — 0,
and

lim supl., (up, fn) < I(u).

h— o0
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A consequence of this result is that if:

() (un, fr) is a minimizer of the functional,, andc, — 0; and
(i) there is a functiont € SBV(RQ, R) such that, — u and f;, — 0in L?,

thenu is a minimizer of the Mumford—Shah functional

The numerical approach to the problem of minimizing the Mumford—Shah func-
tional consists in the replacement of this functional with an approximate functional
I.. After a numerical minimization of,. over a conveniently chosen set we obtain
a minimizing pair(u©, f¢). The function /¢ represents an approximation of the
characteristic function of the s&};, whereu is a minimizer ofI.

We shall use this idea for the model presented here, in the anti-plane case.
Instead of a sequence of incremental solutions K,) we shall consider a se-
quence of pairsu;, f;). The crack-growth conditiok, C K1 will be replaced
by: fi(x) < fi1(x) foranyx e Q. Notice thatf; is an approximation of the
characteristic function of the damaged region.

We shall not be concerned further with the regularity of the functions that we
are dealing with. We se¥ to be the space of all pairs of smooth enough functions
u:Q C R> - R, f:Q — [0, 1]. The number and functionsp, v are given, as
well as a sequence of imposed boundary displacemgnis, C 32 — R. As for
the material constants, we get= G/u, which has the dimension of a length.

DEFINITION 8.1. Let us define the functions

JooM x M — R,

2
F(g) =/ {<b<g>|Vv|2+y [cw<g>|Vg|2+ %]} dx,
Q

F(g) ifg>f,
+o00 otherwise

Je((u, ), (v, 8) = {
W:N x M — {0, +00},

0 if 1-—g)(w—uj) =0o0nTl,,

Y(n, (v, g) = { .
+o0o0  otherwise
We consider the initial daté:q, fo) such thatg = u(ug, K) and f satisfies

supl| f(x) — xk (0)|:x € 2} < c,

whereyy is the characteristic function of the skt
We recursively define the sequeneg, f;) as follows:

(I) (M(C)’ f(g) = (MO’ fO)’
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(ii) forany k € N the pair(u 4, fi,,) minimizes overM the functional

v, 8) = Je((up, £, (v, 8)) + Wk +1, (v, 8)).

For the approximate model described in Definition 8.1 we shall use the gradient
descent method described in Richardson and Mitter [32]. The dofh&iscret-
ized in pixels and the various partial derivatives of functiehand ¢ are replaced
by finite differences. With the notation

i, f) = Je((ug, £, @, )

the gradient descent of the functiongl has the form
i =—C,0,J (u, f),
f==Cpdpdi, f)

with variable controlsC, andC. In order to respect the constrant, after each
step of the descent a projection pfon the convex set

{g:2—[0,1:g(x) > fi(x) Vx € Q}

is performed. The boundary condition for the displacemeig satisfied in the
usual way by setting the value ofon the pixels 0B$2 equal to the value aff .
The simplest choice for the functiogsandyr is

¢ (x) = (1—x)? Y(x) = 1.

Richardson and Mitter remark in [32] that the paramgtdsee (1)), which is
equal to 0 in Definitions 4.1 and 8.1, has a strong influence on the speed of the
gradient descent method they propose: siiatuses low speed of the gradient
descent. In our probler is null and this causes a very slow rate of convergence.
There is an empirical reason for which the Mumford—Shah functional behaves
badly wheng is zero, in the problem of crack evolution: unlike the case of image
segmentation, where the information is scattered all §¥ein the problem of
crack evolution the displacement that causes the growth of the crack is a datum
concentrated on the boundary @f The viscous force induced kg/should serve
to transport this information inside.

For numerical reasons we shall mix our model with an Ambrosio and Braides
model with small, but not zero, viscosity. We replace the functiohly

Jo(u, ), (v, 8) = Je((u, f), (v,8) + Bs /Q v — ul?dx.

The sequence of imposed boundary displacem@iss the discretized in time
version of a path of displacements(¢). For a fixed step of discretizatiorydwe
have

ug = uo(n/s).

207215.tex; 28/05/1999; 7:36; p.33



234 MARIUS BULIGA

L

@ (b) ©
Figure 3. (a) The initial geometry of the body; (b) and (c) the aspect of the evolving cracks.

@ (b) ©

Figure 4. (a) The initial displacement of the body; (b) and (c) represent the displacement of
the body fractured as in (b) and (c) previous pictures.

In order to eliminate the effects of the viscosity we replace also the sequef)ce
with the following one, for a given naturat

Vne N, ke{0,1,...P - LU =up.

Therefore at any time/s, the boundary displacement becomgé:/s) and after
that it remains constant in the intenjal/s, (n + P)/s], in order to let the influence
of the viscosity to become negligible.

In Figure 1 we see how the Richardson and Mitter method works for the image
segmentation problem. Recall that the Mumford—Shah functional (1) is used. The
parameters, 8 andy have been left to our choice, in order to get a good result.

The results of the numerical method for a cylinder with a rectangular cross-
section of 0.1 mx 0.1 m are shown in the next four figures. We remove from this
cross-section small rectangles (Figures 3 and 4) or parts of ellipsis (Figures 5 and
6) and study what happened with the body obtained in this way during an imposed
path of boundary displacements. The material (carbon steel) has the cgnstant
G/pn = 0.0000025 m and it has a pure elastic behavior. The boundary conditions
are described further. The rectangular section is a sq@afel] x [0, 0.1]. The
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_-

@ (b) ©
Figure 5. (a) The initial geometry; (b) final aspect of the cracks; (c) final displacement.

@ (b) ©
Figure 6. (a) The initial geometry of the body; (b) final aspect of the cracks (c) final
displacement.

displacement is imposed on the facd$, 0.1] x {0}, whereug is constant and
equal to 0, andO, 0.1] x {0.1}, where the displacemenfj is constant and grows
slowly with n, from the value 0 m to the value@41 m. The other two faces are
force free.

The approximate characteristic function of the crack, i.e., the fungfida —
[0, 1] is represented with the following convention: there are 256 grey levels,
numbered from 0 (black) to 255 (white); the number 0 (no crack there) corresponds
to the level 255 and the number 1 (certainly a crack there) corresponds to the
level 0. We have a linear correspondence between the numbers(@dmand
the intermediary grey level. In this way we obtain a kind of picture of the shape of
the crack in the cross-section of the body. Therefore a pixel is black either if there
was no material there from the start, or if it belongs to the actual crack. Irrelevant
black pixels appear on the boundary of the picture, maybe as an effect of error
accumulation during the minimization process.

The displacement functianis represented in the complete square cross-section,
but is irrelevant in the portions removed from the section. The representation was
made with the following convention: the 255 level (white) correspond to the max-
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@ (b)

Figure 7. Examples of local minima.

imum value ofu and the 0 level (black) correspond to the minimum valuer;of
all the intermediary values of are represented as grey levels, with a linear law of
correspondence.

9. Final Remarks

This energetic approach to quasi-static brittle fracture propagation has the quality
that it does not contain any prescription of the shape or location of the cracks. We
have seen that the model provides a way of working with cracks which suddenly
appear in the body. We have partially investigated this feature of the model and we
have concluded that the model is not compatible with a critical stress based model
of damage of an elastic body.

In this paper we did not study the bifurcation of an existing crack. A crack
bifurcates when its shape suffers a change of topology. The most common example
is a crack in a two-dimensional configuration, initially with only one edge in the
body, which develops in time new branches. During this phenomenon the number
of edges of the crack increases.

The numerical results presented in the last section have the following feature:
during the evolution of the crack new concentrations of the elastic energy density
do not appeain the interior of the bodylt may seem that we have an example of
crack bifurcation in Figures 3(b) and (c), but the two branches from the top of the
Figure 3(b) do not grow simultaneously. We have noticed that a first crack grows to
the left until its edge reaches the boundary of the rectangle and, after that, a second
crack grows to the right.

There is no method to find the global minimum of a functional like the
Ambrosio—Tortorelli approximation. We have experimented with our programs for
a large variety of data. We have obtained from time to time solutions which were

207215.tex; 28/05/1999; 7:36; p.36



ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 237

obviously local but not global minima. We have found that some of these local
minima loose old edges (Figure 7(a)), eventually developing instead new ones
(Figure 7(b)).

Our numerical results indicate that there is a sort of conservation law of ‘edges’
(i.e. maxima or singularities of the elastic energy density) of the solutions of the
model, asserting that during the evolution of the crack the number of these ‘edges’
can only decrease. If such a conservation law is true, it may be a consequence of
the fact that in the Mumford—Shah functional there is no term which controls the
creation of a new ‘edge’.
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