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Abstract. We study algebraic and geometric properties of metric spaces

endowed with dilatation structures, which are emergent during the passage

through smaller and smaller scales. In the limit we obtain a generalization

of metric affine geometry, endowed with a noncommutative vector addition

operation and with a modified version of ratio of three collinear points. This

is the geometry of normed affine group spaces, a category which contains the

ones of homogeneous groups, Carnot groups or contractible groups. In this

category group operations are not fundamental, but derived objects, and the

generalization of affine geometry is not based on incidence relations.

1. Introduction

The point of view that dilatations can be taken as fundamental objects which
induce a differential calculus is relatively well known. The idea is simple: in a
vector space V define the dilatation based at x and of coefficient ε > 0 as the
function which associates to y the value

δxε y = x+ ε(y − x) .

Then for a function f : V→W between vector spaces V and W we have:(
δ
f(x)
ε−1 fδ

x
ε

)
(u) = f(x) +

1
ε

[f(x+ ε(u− x))− f(x)] ,

thus the directional derivative of f at x, along u− x appears as:

f(x) + Df(x)(u− x) = lim
ε→0

(
δ
f(x)
ε−1 fδ

x
ε

)
(u) .
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Until recently there was not much interest into the generalization of such a differ-
ential calculus, based on other dilatations than the usual ones, probably because
nobody knew any fundamentally different example.

This changed gradually due to different lines of research, like the study of hy-
poelliptic operators Hörmander [22], harmonic analysis on homogeneous groups
Folland, Stein [14], probability theory on groups Hazod [20], Siebert [27], studies
in geometric analysis in metric spaces in relation with sub-riemannian geome-
try Belläıche [2], groups with polynomial growth Gromov [18], or Margulis type
rigidity results Pansu [26].

Another line of research concerns the differential calculus over general base
fields and rings, Bertram, Glöckner and Neeb [3]. As the authors explain, it
is possible to construct such a differential calculus without using the specific
properties of the base field (or ring). In their approach it is not made a distinction
between real and ultrametric differential calculus (and even not between finite
dimensional and infinite dimensional differential calculus). They point out that
differential calculus (integral calculus not included) seems to be a part of analysis
which is completely general, based only on elementary results in linear algebra
and topology.

The differential calculus proposed by Bertram, Glöckner and Neeb is a gen-
eralization of “classical” calculus in topological vector spaces over general base
fields, and even over rings. The operation of vector addition is therefore abelian,
modifications being made in relation with the multiplication by scalars.

A different idea, emergent in the studies concerning geometric analysis in metric
spaces, is to establish a differential calculus in homogeneous groups, in particu-
lar in Carnot groups. These are noncommutative versions of topological vector
spaces, in the sense that the operation of addition (of “vectors”) is replaced by a
noncommutative group operation and there is a replacement of multiplication by
scalars in a general base field with a multiplicative action of (0,+∞) by group
automorphisms.

In fact this is only a part of the nonsmooth calculus encountered in geometric
analysis on metric spaces. For a survey see the paper by Heinonen [21]. The
objects of interest in nonsmooth calculus as described by Heinonen are spaces of
homogeneous type, or metric measured spaces where a generalization of Poincaré
inequality is true. In such spaces the differential calculus goes a long way: Sobolev
spaces, differentiation theorems, Hardy spaces. It is noticeable that in such a
general situation we don’t have enough structure to define differentials, but only
various constructions corresponding to the norm of a differential of a function.
Nevertheless see the remarkable result of Cheeger [10], who proves that to a
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metric measure space satisfying a Poincaré inequality we can associate an L∞

cotangent bundle with finite dimensional fibers. Other important works which
might also be relevant in relation to this paper are David, Semmes [12], where
spaces with arbitrary small neighbouhoods containing similar images of the whole
space are studied, or David, Semmes [13], where they study rectifiability proper-
ties of subsets of Rn with arbitrary small neighbourhoods containing “big pieces
of bi-Lipschitz images” of the whole subset.

A particular case of a space of homogeneous type where more can be said is a
normed homogeneous group, definition 2. According to [14] p. 5, a homogeneous
group is a connected and simply connected Lie group whose Lie algebra is endowed
with a family of dilatations {δε : ε ∈ (0,+∞)}, which are algebra automorphisms,
simultaneously diagonalizable. As in this case the exponential of the group is a
bijective mapping, we may transform dilatations of the algebra into dilatations of
the group, therefore homogeneous groups are conical groups. Also, they can be
described as nilpotent Lie groups positively graded.

Carnot groups are homogeneous groups which are stratified, meaning that the
first nontrivial element of the graduation generates the whole group (or algebra).
The interest into such groups come from various sources, related mainly to the
study of hypo-elliptic operators Hörmander [22], and to extensions of harmonic
analysis Folland, Stein [14].

Pansu introduced the first really new example of such a differential calculus
based on other than usual dilatations: the ones which are associated to a Carnot
group. He proved in [26] the potential of what is now called Pansu derivative, by
providing an alternative proof of a Margulis rigidity type result, as a corollary of
the Rademacher theorem for Lipschitz functions on Carnot groups. Rademacher
theorem, stating that a Lipschitz function is derivable almost everywhere, is a
mathematical crossroad, because there meet measure theory, differential calculus
and metric geometry. In [26] Pansu proves a generalization of this theorem for
his new derivative.

The challenge to extend Pansu results to general regular sub-riemannian man-
ifolds, taken by Margulis, Mostow [24] [25], Vodopyanov [28] and others, is diffi-
cult because on such general metric space there is no natural underlying algebraic
structure, as in the case of Carnot groups, where we have the group operation as
a non commutative replacement of the operation of addition in vector spaces.

On a regular sub-riemannian manifold we have to construct simultaneously
several objects: tangent spaces to a point in the sub-riemannian space, an oper-
ation of addition of “vectors” in the tangent space, and a derivative of the type
considered by Pansu. Dedicated to the first two objects is a string of papers,
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either directly related to the subject, as Belläıche [2], or growing on techniques
which appeared in the paper dedicated to groups of polynomial growth of Gromov
[18], continuing in the big paper Gromov [19].

In these papers dedicated to sub-riemannian geometry the lack of a underlying
algebraic structure was supplanted by using techniques of differential geometry.
At a closer look, this means that in order to construct the fundamentals of a
non standard differential calculus, the authors used the classical one. This seems
to me comparable to efforts to study hyperbolic geometry on models, like the
Poincaré disk, instead of intrinsically explore the said geometry.

Dilatation structures on metric spaces, introduced in [6], describe the approxi-
mate self-similarity properties of a metric space. A dilatation structure is a notion
related, but more general, to groups and differential structures.

The basic objects of a dilatation structure are dilatations (or contractions).
The axioms of a dilatation structure set the rules of interaction between different
dilatations.

The point of view of dilatation structures is that dilatations are really funda-
mental objects, not only for defining a notion of derivative, but as well for all
algebraic structures that we may need.

This viewpoint is justified by the following results obtained in [6], explained in
a condensed and improved presentation, in the first part of this paper. A metric
space (X, d) which admits a strong dilatation structure (definition 4) has a metric
tangent space at any point x ∈ X (theorem 6.1), and any such metric tangent
space has an algebraic structure of a conical group (theorem 6.2).

Conical groups are generalizations of homogeneous Lie groups, but also of p-
adic nilpotent groups, or of general contractible groups. A conical group is a
locally compact group endowed with a family of dilatations {δε : ε ∈ Γ}. Here Γ
is a locally compact abelian group with an associated morphism ν : Γ→ (0,+∞)
which distinguishes an end of Γ, namely the filter generated by the pre-images
ν−1(0, r), r > 0. This end, is denoted by 0 and ε ∈ Γ → 0 means ν(ε) → 0 in
(0,+∞). Any contractible group is a conical group and to any conical group we
can associate a family of contractible groups.

The structure of contractible groups is known in some detail, due to Siebert
[27], Wang [31], Glöckner and Willis [16], Glöckner [15] and references therein.

By a classical result of Siebert [27] proposition 5.4, we can characterize the
algebraic structure of the metric tangent spaces associated to dilatation structures
of a certain kind: they are homogeneous groups (corollary 6.3). The corollary 6.3
thus represents a generalization of difficult results in sub-riemannian geometry
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concerning the structure of the metric tangent space at a point of a regular sub-
riemannian manifold. This line of research is pursued further in the paper [9].

Morphisms of dilatation structures generalize the notion of affine transforma-
tion. A dilatation structure on a metric space induce a family of dilatation struc-
tures on the same space, at different scales. We explain that canonical morphisms
between these induced dilatation structures lead us to a kind of emergent affinity
on smaller and smaller scale.

Finally we characterize contractible groups in terms of dilatation structures.
To a normed contractible group we can naturally associate a linear dilatation
structure (proposition 7.6). Conversely, by theorem 7.7 any linear and strong
dilatation structure comes from the dilatation structure of a normed contractible
group.

We are thus led to the introduction of a noncommutative affine geometry, in
the spirit of Bertram “affine algebra”, which is commutative according to our
point of view. In such a geometry incidence relations are no longer relevant,
being replaced by algebraic axioms concerning dilatations. We define a version of
the ratio of three collinear points (replaced by a “ratio function” which associates
to a pair of points and two positive numbers the third point) and we prove that
it is the basic invariant of this geometry. Moreover, it turns out that this is the
geometry of normed affine group spaces, a notion which is to conical groups as a
normed affine space is to a normed topological vector space (theorem 2.2).
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2. Affine structure in terms of dilatations

2.1. Affine algebra. Bertram [4] Theorem 1.1 (here theorem 2.1) and paragraph
5.2, proposes the following algebraic description of affine geometry and of affine
metric geometry over a field K of characteristic different from 2, which is not based
on incidence notions, but on algebraic relations concerning “product maps”. He
then pursues to the development of generalized projective geometries and their
relations to Jordan algebras. For our purposes, we changed the name of “product
maps” (see the theorem below) from “π” to “δ”, more precisely:

πr(x, y) = δxr y .

Further, in theorem 2.1 and definition 1 is explained this point of view.

Theorem 2.1. The category of affine spaces over a field K of characteristic
different from 2 is equivalent with the category of sets V equipped with a family
δr, r ∈ K, of “product maps”

δr : V× V→ V , (x, y) 7→ δxr y

satisfying the following properties (Af1) - (Af4):
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(Af1) The map r 7→ δxr is a homomorphism of the unit group K× into the group
of bijections of V fixing x, that is

δx1y = y , δxr δ
x
s y = δxrsy , δ

x
rx = x .

(Af2) For all r ∈ K and x ∈ V the map δxr is an endomorphism of δs, s ∈ K:

δxr δ
y
s z = δ

δxr y
s δxr z .

(Af3) The “barycentric condition”: δxr y = δy1−r x.
(Af4) The group generated by the δxr δ

y
r−1 (r ∈ K×, x, y ∈ V) is abelian, that is

for all r, s ∈ K×, x, y, u, v ∈ V

δxr δ
y
r−1 δ

u
s δ

v
s−1 = δus δ

v
s−1 δxr δ

y
r−1 .

More precisely, in every affine space over K, the maps

(2.1) δxr y = (1− r)x+ ry

with r ∈ K, satisfy (Af1) - (Af4). Conversely, if product maps with the properties
(Af1) - (Af4) are given and x ∈ V is an arbitrary point then

u +x v := δx2 δ
u
1
2
v , r u := δxru

defines on V the structure of a vector space over K with zero vector x, and this
construction is inverse to the preceding one. Affine maps g : V→ V′ in the usual
sense are precisely the homomorphisms of product maps, that is maps g : V→ V′
such that g πr(x, y) = π′r(gx, gy) for all x, y ∈ V, r ∈ K.

We shall use the name “real normed affine space” in the following sense.

Definition 1. A real normed affine space is an affine space V over R together
with a distance function d : V× V→ K such that:

(Af5) for all x ∈ V ‖ · ‖x := d(x, ·) : V→ K is a norm on the vector space (V, x)
with zero vector x.

(Af6) the distance d is translation invariant: for any x, y, u, v ∈ V we have:

d(x+u v, y +u v) = d(x, y) .

We remark that the field of product maps δxr (together with the distance func-
tion d for the metric case) is the central object in the construction of affine
geometry over a general field.
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2.2. Focus on dilatations. There is another, but related, way of generalizing
the affine geometry, which is the one of dilatation structures [6]. In this approach
product maps of Bertram are replaced by “dilatations”.

For this we have to replace the field K by a commutative group Γ (instead of
the multiplicative group K×) endowed with a “valuation map” ν : Γ→ (0,+∞),
which is a group morphism. We write ε → 0, ε ∈ Γ, for ν(ε) → 0 in (0,+∞).
We keep axioms like (Af1), (Af2) (from Theorem 2.1), but we modify (Af5) (from
Definition 1). There will be one more axiom concerning the relations between the
distance and dilatations. This is explained in theorem 2.2.

The conditions appearing in theorem 2.2 are a particular case of the system
of axioms of dilatation structures, introduced in [6]. Dilatation structures are
also a generalization of homogeneous groups, definition 2, in fact we arrived to
dilatation structures after an effort to find a common algebraic and analytical
ground for homogeneous groups and sub-riemannian manifolds.

The axioms of a dilatation structure are partly algebraic and partly of an an-
alytical nature (by using uniform limits). Metric spaces endowed with dilatation
structures have beautiful properties. The most important is that for any point in
such a space there is a tangent space (in the metric sense) realized as a “normed
conical group”. Any normed conical group has an associated dilatation structure
which is “linear” in the sense that it satisfies (Af2). However, conical groups
form a family much larger than affine spaces (in the usual sense, over R or C).
Building blocks of conical groups are homogeneous groups (graded Lie groups)
or p-adic versions of them. By renouncing to (Af3) and (Af4) we thus allow
noncommutativity of the “vector addition” operation.

Let us explain how we can recover the usual affine geometry from the viewpoint
of dilatation structures. For simplicity we take here Γ = (0,+∞) and V is a real,
finite dimensional vector space.

Here is the definition of a normed homogeneous group. See section 4.2 for more
details on the particular case of stratified homogeneous groups.

Definition 2. A normed homogeneous group is a connected and simply con-
nected Lie group whose Lie algebra is endowed with a family of dilatations
{δε : ε ∈ (0,+∞)}, which are algebra automorphisms, simultaneously diagonal-
izable, together with a homogeneous norm.

Since the Lie group exponential is a bijection we shall identify the Lie algebra
with the Lie group, thus a normed homogeneous group is a group operation on a
finite dimensional vector space V. The operation will be denoted multiplicatively,
with 0 as neutral element, as in Folland, Stein [14]. We thus have a linear action
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δ : (0,+∞) → Lin(V,V) on V, and a homogeneous norm ‖ · ‖ : V → [0,+∞),
such that:

(a) for any ε ∈ (0,+∞) the transformation δε is an automorphism of the
group operation: for any x, y ∈ V we have δε(x · y) = δεx · δεy,

(b) the family {δε : ε ∈ (0,+∞)} is simultaneously diagonalizable: there is a
finite direct sum decomposition of the vector space V

V = V1 + ...+ Vm

such that for any ε ∈ (0,+∞) we have:

x =
m∑
i=1

xi ∈ Vm 7→ δεx =
m∑
i=1

εixi .

(c) the homogeneous norm has the properties:
(c1) ‖x‖ = 0 if and only if x = 0,
(c2) ‖x · y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ V,
(c3) for any x ∈ V and ε > 0 we have ‖δεx‖ = ε ‖x‖.

Definition 3. To a normed homogeneous group (V, δ, ·, ‖ · ‖) we associate a
normed affine group space (V,+·, δ·· , d). Here we use the sign “+” for an op-
eration which was denoted multiplicatively, for compatibility with the previous
approach of Bertram, see theorem 2.1. The normed affine group space (V,+·, δ·· , d)
is described by the following points:

- for any u ∈ V the function +u : V×V→ V, x+u v = x ·u−1 · v is the left
translation of the group operation · with the zero element u. In particular
we have x+0 y = x · y.

- for any x, y ∈ V and ε ∈ (0,+∞) we define

δxε y = x · δε(x−1 · y)

and remark that the definition is invariant with the choice of the base
point for the operation in the sense: for any u ∈ V we have:

δxε y = x+u δ
u
ε ( invu(x) +u y) ,

where invu(x) is the inverse of x with respect to the operation +u, (by
computation we get invu(x) = u · x−1 · u),

- the distance d is defined as: for any x, y ∈ V we have d(x, y) = ‖x−1 · y‖.
As previously, remark that the definition does not depend on the choice
of the base point for the operation, that is: for any u ∈ V we have

d(x, y) = ‖invu(x) +u y‖u , ‖x‖u := ‖u−1 · x‖ .
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Equally, this is a consequence of the invariance of the norm with respect
to left translations (by any group operation +u, u ∈ V).

Theorem 2.2. The category of normed affine group spaces is equivalent with
the category of locally compact metric spaces (X, d) equipped with a family δε,
ε ∈ (0,+∞), of dilatations

δε : X ×X → X , (x, y) 7→ δxε y

satisfying the following properties:
(Af1’) The map ε 7→ δεx is a homomorphism of the multiplicative group (0,+∞)

into the group of continuous, with continuous inverse functions of X fixing
x, that is

δx1y = y , δxr δ
x
s y = δxrsy , δ

x
rx = x ,

(A2) the function δ : (0,+∞) × X × X → X defined by δ(ε, x, y) = δxε y is
continuous. Moreover, it can be continuously extended to [0,+∞)×X×X
by δ(0, x, y) = x and the limit

lim
ε→0

δxε y = x

is uniform with respect to x, y in compact set.
(A3’) for any x ∈ X and for any u, v ∈ X, ε ∈ (0,+∞) we have

1
ε
d (δxεu, δ

x
ε v) = d(u, v) ,

(A4) for any x, u, v ∈ X, ε ∈ (0,+∞) let us define

∆x
ε (u, v) = δ

δxεu

ε−1 δ
x
ε v .

Then we have the limit

lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.
(Af2’) For all ε ∈ (0,+∞) and x ∈ X the map δxε is an endomorphism of δs,

s ∈ (0,+∞):
δxr δ

y
s z = δ

δxr y
s δxr z .

More precisely, in every normed affine group space, the maps δxε and distance
d satisfy (Af1’), (A2), (A3’), (A4), (Af2’). Conversely, if dilatations δxε and
distance d are given, such that they satisfy the collection (Af1’), (A2), (A3’),
(A4), (Af2’), for an arbitrary point x ∈ V the following expression

Σx(u, v) := lim
ε→0

δxε−1 δ
δxεu
ε v
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together with δxε and distance d defines on V the structure of a normed affine
group space, and this construction is inverse to the preceding one. The arrows of
this category are bilipschitz invertible homomorphisms of dilatations, that is maps
g : V→ V̂ such that g δxε y = δ̂gxr gy for all x, y ∈ V, ε ∈ (0,+∞).

Moreover, the category of locally compact real normed affine spaces is a subcat-
egory of the previous one, namely the category of locally compact metric spaces
(X, d) equipped with a family δε, ε ∈ (0,+∞), of dilatations satisfying (Af1’),
(A2), (A3’), (A4), (Af2’) and

(Af3) the “barycentric condition”: for all ε ∈ (0, 1) δxε y = δy1−ε x

The arrows of this category are exactly the affine, invertible maps.

Proof. Here we shall prove the easy implication, namely why the conditions
(Af1’), (A2), (A3’), (A4), (Af2’) and (Af3) are satisfied in a real normed affine
space.

For the real normed affine space V let us fix for simplicity a point 0 ∈ V and
work with the vector space V with zero vector 0. Since a real normed affine space
is a particular example of a homogeneous group, definition 2 and observations
inside apply. The dilatation based at x ∈ V, of coefficient ε > 0, is the function

δxε : V→ V , δxε y = x+ ε(−x+ y) .

For fixed x the dilatations based at x form a one parameter group which contracts
any bounded neighbourhood of x to a point, uniformly with respect to x. Thus
(Af1’), (A2) are satisfied. (A3’) is also obvious.

The meaning of (A4) is that using dilatations we can recover the operation of
addition and multiplication by scalars. We shall explain this in detail since this
will help the understanding of the axioms of dilatation structures, described in
section 3.

For x, u, v ∈ V and ε > 0 we define the following compositions of dilatations:

(2.2) ∆x
ε (u, v) = δ

δxεu

ε−1 δ
x
ε v ,

Σxε (u, v) = δxε−1δ
δxεu
ε (v) , invxε (u) = δ

δxεu

ε−1x .

The meaning of this functions becomes clear if we compute:

∆x
ε (u, v) = x+ ε(−x+ u) + (−u+ v) ,

Σxε (u, v) = u+ ε(−u+ x) + (−x+ v) ,

invxε (u) == x+ ε(−x+ u) + (−u+ x) .
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As ε→ 0 we have the limits:

lim
ε→0

∆x
ε (u, v) = ∆x(u, v) = x+ (−u+ v) ,

lim
ε→0

Σxε (u, v) = Σx(u, v) = u+ (−x+ v) ,

lim
ε→0

invxε (u) = invx(u) = x− u+ x ,

uniform with respect to x, u, v in bounded sets. The function Σx(·, ·) is a group
operation, namely the addition operation translated such that the neutral element
is x:

Σx(u, v) = u+x v .

The function invx(·) is the inverse function with respect to the operation +x

invx(u) +x u = u +x inv
x(u) = x

and ∆x(·, ·) is the difference function

∆x(u, v) = invx(u) +x v .

Notice that for fixed x, ε the function Σxε (·, ·) is not a group operation, first of
all because it is not associative. Nevertheless, this function satisfies a “shifted”
associativity property, namely

Σxε (Σxε (u, v), w) = Σxε (u,Σδ
x
εu
ε (v, w)) .

Also, the inverse function invxε is not involutive, but shifted involutive:

inv
δxεu
ε (invxεu) = u .

Affine continuous transformations A : V→ V admit the following description in
terms of dilatations. (We could dispense of continuity hypothesis in this situation,
but we want to illustrate a general point of view, described further in the paper).

Proposition 2.3. A continuous transformation A : V → V is affine if and only
if for any ε ∈ (0, 1), x, y ∈ V we have

(2.3) Aδxε y = δAxε Ay .

The proof is a straightforward consequence of representation formulæ (2.2) for
the addition, difference and inverse operations in terms of dilatations.

In particular any dilatation is an affine transformation, hence for any x, y ∈ V
and ε, µ > 0 we have

(2.4) δyµ δ
x
ε = δ

δyµx
ε δyµ .
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Thus we recover (Af2’) (see also condition (Af2)). The barycentric condition
(Af3) is a consequence of the commutativity of the addition of vectors. The easy
part of the theorem 2.2 is therefore proven.

The second, difficult part of the theorem is to prove that axioms (Af1’), (A2),
(A3’), (A4), (Af2’) describe normed affine group spaces. This is a direct conse-
quence of several general results from this paper: theorem 4.1 and proposition 7.6
show that normed affine group spaces satisfy the axioms, corollary 6.3, theorem
7.7, proposition 8.6 and theorem 8.9 show that conversely a space where the ax-
ioms are satisfied is a normed affine group space, moreover that in the presence
of the barycentric condition (Af3) we get real normed affine spaces. �

Some compositions of dilatations are dilatations. This is precisely stated in
the next theorem, which is equivalent with the Menelaos theorem in euclidean
geometry.

Theorem 2.4. For any x, y ∈ V and ε, µ > 0 such that εµ 6= 1 there exists an
unique w ∈ V such that

δyµ δ
x
ε = δwεµ .

For the proof see Artin [1]. A straightforward consequence of this theorem is
the following result.

Corollary 2.5. The inverse semigroup generated by dilatations of the space V is
made of all dilatations and all translations in V.

Proof. Indeed, by theorem 2.4 a composition of two dilatations with coefficients
ε, µ with εµ 6= 1 is a dilatation. By direct computation, if εµ = 1 then we obtain
translations. This is in fact compatible with (2.2), but is a stronger statement,
due to the fact that dilatations are affine in the sense of relation (2.4).

Any composition between a translation and a dilatation is again a dilatation.
The proof is done. �

The corollary 2.5 allows us to describe the ratio of three collinear points in a
way which will be generalized to normed affine group spaces. Indeed, in a real
normed affine space V, for any x, y ∈ V and α, β ∈ (0,+∞) such that αβ 6= 1,
there is an unique z ∈ V and γ = 1/αβ such that

δxα δ
y
β δ

z
γ = id
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We easily find that x, y, z are collinear

(2.5) z =
1− α

1− αβ
x +

α(1− β)
1− αβ

y

and the ratio of these three points, named r(xα, yβ , zγ) is:

r(xα, yβ , zγ) =
α

1− αβ

Conversely, let x, y, z ∈ V which are collinear, such that z is in between x and y.
Then we can easily find (non unique) α, β, γ ∈ (0,+∞) such that αβγ = 1 and
δxα δ

y
β δ

z
γ = id.

It is then almost straightforward to prove the well known fact that any affine
transformation is also geometrically affine, in the sense that it transforms triples of
collinear points into triples of collinear points (use commutation with dilatations)
and it preserves the ratio of collinear points. (The converse is also true.)

3. Dilatation structures

A dilatation structure (X, d, δ) over a metric space (X, d) is an assignment to
any point x ∈ X of a group of ”dilatations” {δxε : ε ∈ Γ}, together with some
compatibility conditions between the distance and the dilatations and between
dilatations based in different points.

A basic difficulty in stating the axioms of a dilatation structure is related to
the domain of definition and the image of a dilatation. In the first two subsections
we shall neglect the problems raised by domains and codomains of dilatations.

The axioms state that some combinations between dilatations and the distance
converge uniformly, with respect to some finite families of points in an arbitrary
compact subset of the metric space (X, d), as ν(ε) converges to 0.

We present here an introduction into the subject of dilatation structures. For
more details see Buliga [6].

3.1. Notations. Let Γ be a topological separated commutative group endowed
with a continuous group morphism ν : Γ → (0,+∞) with inf ν(Γ) = 0. Here
(0,+∞) is taken as a group with multiplication. The neutral element of Γ is
denoted by 1. We use the multiplicative notation for the operation in Γ.

The morphism ν defines an invariant topological filter on Γ (equivalently, an
end). Indeed, this is the filter generated by the open sets ν−1(0, a), a > 0. From
now on we shall name this topological filter (end) by ”0” and we shall write
ε ∈ Γ→ 0 for ν(ε) ∈ (0,+∞)→ 0.
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The set Γ1 = ν−1(0, 1] is a semigroup. We note Γ̄1 = Γ1 ∪ {0} On the set
Γ̄ = Γ∪ {0} we extend the operation on Γ by adding the rules 00 = 0 and ε0 = 0
for any ε ∈ Γ. This is in agreement with the invariance of the end 0 with respect
to translations in Γ.

The space (X, d) is a complete, locally compact metric space. For any r > 0
and any x ∈ X we denote by B(x, r) the open ball of center x and radius r in the
metric space X.

On the metric space (X, d) we work with the topology (and uniformity) induced
by the distance. For any x ∈ X we denote by V(x) the topological filter of open
neighbourhoods of x.

The dilatation structures, which will be introduced soon, are invariant to the
operation of multiplication of the distance by a positive constant. They should
also be seen, as examples show, as local objects, therefore we may safely suppose,
without restricting the generality, that all closed balls of radius at most 5 are
compact.

3.2. Axioms of dilatation structures. We shall list the axioms of a dilatation
structure (X, d, δ), in a simplified form, without concerning about domains and
codomains of functions. In the next subsection we shall add the supplementary
conditions concerning domains and codomains of dilatations.

A1. For any point x ∈ X there is an action δx : Γ → End(X, d, x), where
End(X, d, x) is the collection of all continuous, with continuous inverse
transformations φ : (X, d)→ (X, d) such that φ(x) = x.

This axiom (the same as (A1) from theorem 2.1 or theorem 2.2) tells us that
δxεx = x for any x ∈ X, ε ∈ Γ, also δx1y = y for any x, y ∈ X, and δxε δ

x
µy = δxεµy

for any x, y ∈ X and ε, µ ∈ Γ.

A2. The function δ : Γ×X×X → X defined by δ(ε, x, y) = δxε y is continuous.
Moreover, it can be continuously extended to Γ̄×X ×X by δ(0, x, y) = x

and the limit

lim
ε→0

δxε y = x

is uniform with respect to x, y in compact set.

We may alternatively put that the previous limit is uniform with respect to
d(x, y).

A3. There is A > 1 such that for any x there exists a function (u, v) 7→
dx(u, v), defined for any u, v in the closed ball (in distance d) B̄(x,A),
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such that

lim
ε→0

sup
{
| 1
ε
d(δxεu, δ

x
ε v) − dx(u, v) | : u, v ∈ B̄d(x,A)

}
= 0

uniformly with respect to x in compact set.

It is easy to see that:

(a) The function dx is continuous as an uniform limit of continuous functions
on a compact set,

(b) dx is symmetric dx(u, v) = dx(v, u) for any u, v ∈ B̄(x,A),
(c) dx satisfies the triangle inequality, but it can be a degenerated distance

function: there might exist v, w such that dx(v, w) = 0.

We make the following notation which generalizes the notation from (2.2):

∆x
ε (u, v) = δ

δxεu

ε−1 δ
x
ε v .

The next axiom can now be stated:

A4. We have the limit

lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

Definition 4. A triple (X, d, δ) which satisfies A1, A2, A3, but dx is degenerate
for some x ∈ X, is called degenerate dilatation structure.

If the triple (X, d, δ) satisfies A1, A2, A3 and dx is non-degenerate for any
x ∈ X, then we call it a dilatation structure.

If a dilatation structure satisfies A4 then we call it strong dilatation structure.

3.3. Axiom 0: domains and codomains of dilatations. The problem of do-
mains and codomains of dilatation cannot be neglected. In the section dedicated
to examples of dilatation structures we present the particular case of an ultramet-
ric space which is also a ball of radius one. As dilatations approximately contract
distances, it follows that the codomain of a dilatation δxε with ν(ε) < 1 can not be
the whole space. There are other examples showing that we can not always take
the domain of a dilatation to be the whole space. That is because the topology
of small balls can be different from the topology of big ones (like in the case of a
sphere).

For all these reasons we need to impose some minimal conditions on the do-
mains and codomains of dilatations. These conditions will be explained in the
following. They will be considered as part of a new axiom, called Axiom 0.
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For any x ∈ X there is an open neighbourhood U(x) of x such that for any
ε ∈ Γ1 the dilatations are functions

δxε : U(x)→ Vε(x) .

The sets Vε(x) are open neighbourhoods of x.
The number 1 < A which appears in axiom A3 has the property that for any

x ∈ X we have B̄d(x,A) ⊂ U(x). There is a number B > A such that for any
ε ∈ Γ with ν(ε) ∈ (1,+∞) the associated dilatation is a function

δxε : Wε(x)→ Bd(x,B) .

We have the following string of inclusions, for any ε ∈ Γ1, and any x ∈ X:

Bd(x, ν(ε)) ⊂ δxεBd(x,A) ⊂ Vε(x) ⊂Wε−1(x) ⊂ δxεBd(x,B) .

In relation with the axiom A4 we need the following condition on the co-
domains Vε(x): for any compact set K ⊂ X there are R = R(K) > 0 and
ε0 = ε(K) ∈ (0, 1) such that for all u, v ∈ B̄d(x,R) and all ε ∈ Γ, ν(ε) ∈ (0, ε0),
we have

δxε v ∈Wε−1(δxεu) .

These conditions are important for describing dilatation structures on the
boundary of the dyadic tree, for example. In the first formulation of the ax-
ioms given in [6] some of these assumptions are part of the Axiom 0, others can
be found in the initial formulation of the Axioms 1, 2, 3.

4. Groups with dilatations

For a dilatation structure the metric tangent spaces have a group structure
which is compatible with dilatations. This structure, of a normed group with
dilatations, is interesting by itself. The notion has been introduced in [5], [6]; we
describe it further.

We shall work further with local groups. Such objects are not groups: they are
spaces endowed with an operation defined only locally, satisfying the conditions of
a uniform group. In [5] we use a slightly non standard definition of such objects.
For the purposes of this paper it seems enough to mention that neighbourhoods
of the neutral element in a uniform group are local groups. See section 3.3 [6] for
details about the definition of local groups.

Definition 5. A group with dilatations (G, δ) is a local group G with a local
action of Γ (denoted by δ), on G such that
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H0. the limit lim
ε→0

δεx = e exists and is uniform with respect to x in a compact
neighbourhood of the identity e.

H1. the limit

β(x, y) = lim
ε→0

δ−1
ε ((δεx)(δεy))

is well defined in a compact neighbourhood of e and the limit is uniform.
H2. the following relation holds

lim
ε→0

δ−1
ε

(
(δεx)−1

)
= x−1 ,

where the limit from the left hand side exists in a neighbourhood of e and
is uniform with respect to x.

Definition 6. A normed group with dilatations (G, δ, ‖ · ‖) is a group with di-
latations (G, δ) endowed with a continuous norm function ‖ · ‖ : G → R which
satisfies (locally, in a neighbourhood of the neutral element e) the properties:

(a) for any x we have ‖x‖ ≥ 0; if ‖x‖ = 0 then x = e,
(b) for any x, y we have ‖xy‖ ≤ ‖x‖+ ‖y‖,
(c) for any x we have ‖x−1‖ = ‖x‖,
(d) the limit lim

ε→0

1
ν(ε)
‖δεx‖ = ‖x‖N exists, is uniform with respect to x in

compact set,
(e) if ‖x‖N = 0 then x = e.

In a normed group with dilatations we have a natural left invariant distance
given by

(4.1) d(x, y) = ‖x−1y‖ .

Any locally compact normed group with dilatations has an associated dilatation
structure on it. In a group with dilatations (G, δ) we define dilatations based in
any point x ∈ G by

(4.2) δxεu = xδε(x−1u).

The following result is theorem 15 [6].

Theorem 4.1. Let (G, δ, ‖·‖) be a locally compact normed local group with dilata-
tions. Then (G, d, δ) is a dilatation structure, where δ are the dilatations defined
by (4.2) and the distance d is induced by the norm as in (4.1).
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4.1. Conical groups.

Definition 7. A normed conical group N is a normed group with dilatations
such that for any ε ∈ Γ the dilatation δε is a group morphism and such that for
any ε > 0 ‖δεx‖ = ν(ε)‖x‖.

A conical group is the infinitesimal version of a group with dilatations ([6]
proposition 2).

Proposition 4.2. Under the hypotheses H0, H1, H2 (G, β, δ, ‖ · ‖N ) is a locally
compact, local normed conical group, with operation β, dilatations δ and homoge-
neous norm ‖ · ‖N .

4.2. Carnot groups. Carnot groups appear in sub-riemannian geometry as mod-
els of tangent spaces, [2], [18], [26]. In particular such groups can be endowed
with a structure of sub-riemannian manifold.

Definition 8. A Carnot (or stratified homogeneous) group is a pair (N,V1)
consisting of a real connected simply connected group N with a distinguished
subspace V1 of the Lie algebra Lie(N), such that the following direct sum decom-
position occurs:

n =
m∑
i=1

Vi , Vi+1 = [V1, Vi] .

The number m is the step of the group. The number Q =
m∑
i=1

i dimVi is called

the homogeneous dimension of the group.

Because the group is nilpotent and simply connected, the exponential mapping
is a diffeomorphism. We shall identify the group with the algebra, if is not locally
otherwise stated.

The structure that we obtain is a set N endowed with a Lie bracket and a group
multiplication operation, related by the Baker-Campbell-Hausdorff formula. Re-
mark that the group operation is polynomial.

Any Carnot group admits a one-parameter family of dilatations. For any ε > 0,
the associated dilatation is:

x =
m∑
i=1

xi 7→ δεx =
m∑
i=1

εixi .

Any such dilatation is a group morphism and a Lie algebra morphism.
In a Carnot group N let us choose an euclidean norm ‖ · ‖ on V1. We shall

endow the group N with a structure of a sub-riemannian manifold. For this take
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the distribution obtained from left translates of the space V1. The metric on that
distribution is obtained by left translation of the inner product restricted to V1.

Because V1 generates (the algebra) N then any element x ∈ N can be written
as a product of elements from V1, in a controlled way, described in the following
useful lemma (slight reformulation of Lemma 1.40, Folland, Stein [14]).

Lemma 4.3. Let N be a Carnot group and X1, ..., Xp an orthonormal basis for
V1. Then there is a natural number M and a function g : {1, ...,M} → {1, ..., p}
such that any element x ∈ N can be written as:

(4.3) x =
M∏
i=1

exp(tiXg(i)) .

Moreover, if x is sufficiently close (in Euclidean norm) to 0 then each ti can be
chosen such that | ti |≤ C‖x‖1/m.

As a consequence we get:

Corollary 4.4. The Carnot-Carathéodory distance

d(x, y) = inf
{∫ 1

0

‖c−1ċ‖ dt : c(0) = x, c(1) = y,

c−1(t)ċ(t) ∈ V1 for a.e. t ∈ [0, 1]
}

is finite for any two x, y ∈ N . The distance is obviously left invariant, thus it
induces a norm on N .

The Carnot-Carathéodory distance induces a homogeneous norm on the Carnot
group N by the formula: ‖x‖ = d(0, x). From the invariance of the distance with
respect to left translations we get: for any x, y ∈ N

‖x−1y‖ = d(x, y)

For any x ∈ N and ε > 0 we define the dilatation δxε y = xδε(x−1y). Then
(N, d, δ) is a dilatation structure, according to theorem 4.1.

4.3. Contractible groups.

Definition 9. A contractible group is a pair (G,α), where G is a topological
group with neutral element denoted by e, and α ∈ Aut(G) is an automorphism
of G such that:

- α is continuous, with continuous inverse,
- for any x ∈ G we have the limit lim

n→∞
αn(x) = e.



INFINITESIMAL AFFINE GEOMETRY OF DILATATION STRUCTURES 111

For a contractible group (G,α), the automorphism α is compactly contractive
(Lemma 1.4 (iv) [27]), that is: for each compact set K ⊂ G and open set U ⊂ G,
with e ∈ U , there is N(K,U) ∈ N such that for any x ∈ K and n ∈ N, n ≥
N(K,U), we have αn(x) ∈ U .

If G is locally compact then α compactly contractive is equivalent with: each
identity neighbourhood of G contains an α-invariant neighbourhood. Further on
we shall assume without mentioning that all groups are locally compact.

Any conical group can be seen as a contractible group. Indeed, it suffices to
associate to a conical group (G, δ) the contractible group (G, δε), for a fixed ε ∈ Γ
with ν(ε) < 1.

Conversely, to any contractible group (G,α) we may associate the conical group

(G, δ), with Γ =
{

1
2n

: n ∈ N
}

and for any n ∈ N and x ∈ G

δ 1
2n
x = αn(x) .

(Finally, a local conical group has only locally the structure of a contractible
group.)

The structure of contractible groups is known in some detail, due to Siebert
[27], Wang [31], Glöckner and Willis [16], Glöckner [15] and references therein.

For this paper the following results are of interest. We begin with the definition
of a contracting automorphism group [27], definition 5.1.

Definition 10. Let G be a locally compact group. An automorphism group on
G is a family T = (τt)t>0 in Aut(G), such that τt τs = τts for all t, s > 0.

The contraction group of T is defined by

C(T ) =
{
x ∈ G : lim

t→0
τt(x) = e

}
.

The automorphism group T is contractive if C(T ) = G.

It is obvious that a contractive automorphism group T induces on G a struc-
ture of conical group. Conversely, any conical group with Γ = (0,+∞) has an
associated contractive automorphism group (the group of dilatations based at the
neutral element).

Further is proposition 5.4 [27].

Proposition 4.5. For a locally compact group G the following assertions are
equivalent:

(i) G admits a contractive automorphism group;
(ii) G is a simply connected Lie group whose Lie algebra admits a positive

graduation.
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5. Other examples of dilatation structures

5.1. Riemannian manifolds. The following interesting quotation from Gromov
book [17], pages 85-86, motivates some of the ideas underlying dilatation struc-
tures, especially in the very particular case of a riemannian manifold:

“3.15. Proposition: Let (V, g) be a Riemannian manifold with g continuous.
For each v ∈ V the spaces (V, λd, v) Lipschitz converge as λ→∞ to the tangent
space (TvV, 0) with its Euclidean metric gv.

Proof+ : Start with a C1 map (Rn, 0)→ (V, v) whose differential is isometric
at 0. The λ-scalings of this provide almost isometries between large balls in Rn and
those in λV for λ→∞. Remark: In fact we can define Riemannian manifolds
as locally compact path metric spaces that satisfy the conclusion of Proposition
3.15.“

The problem of domains and codomains left aside, any chart of a Riemannian
manifold induces locally a dilatation structure on the manifold. Indeed, take
(M,d) to be a n-dimensional Riemannian manifold with d the distance on M

induced by the Riemannian structure. Consider a diffeomorphism φ of an open
set U ⊂M onto V ⊂ Rn and transport the dilatations from V to U (equivalently,
transport the distance d from U to V ). There is only one thing to check in order to
see that we got a dilatation structure: the axiom A3, expressing the compatibility
of the distance d with the dilatations. But this is just a metric way to express
the distance on the tangent space of M at x as a limit of rescaled distances (see
Gromov Proposition 3.15, [17], p. 85-86). Denoting by gx the metric tensor at
x ∈ U , we have:

[dx(u, v)]2 =

= gx

(
d

d ε |ε=0

φ−1 (φ(x) + ε(φ(u)− φ(x))) ,
d

d ε |ε=0

φ−1 (φ(x) + ε(φ(v)− φ(x)))
)

A basically different example of a dilatation structure on a riemannian manifold
will be explained next. Let M be a n dimensional riemannian manifold and exp
be the geodesic exponential. To any point x ∈ M and any vector v ∈ TxM the
point expx(v) ∈M is located on the geodesic passing thru x and tangent to v; if
we parameterize this geodesic with respect to length, such that the tangent at x
is parallel and has the same direction as v, then expx(v) ∈M has the coordinate
equal with the length of v with respect to the norm on TxM . We define implicitly
the dilatation based at x, of coefficient ε > 0 by the relation:

δxε expx(u) = expx (εu) .
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It is not straightforward to check that we obtain a strong dilatation structure, but
it is true. There are interesting facts related to the numbers A,B and the minimal
regularity required for the riemannian manifold. This example is different from
the first because instead of using a chart (same for all x) we use a family of charts
indexed with respect to the basepoint of the dilatations.

5.2. Dilatation structures on the boundary of the dyadic tree. We shall
take the group Γ to be the set of integer powers of 2, seen as a subset of dyadic
numbers. Thus for any p ∈ Z the element 2p ∈ Q2 belongs to Γ. The operation
is the multiplication of dyadic numbers and the morphism ν : Γ → (0,+∞) is
defined by

ν(2p) = d(0, 2p) =
1
2p
∈ (0,+∞) .

The dyadic tree T is the infinite rooted planar binary tree. Any node has two
descendants. The nodes are coded by elements of X∗, X = {0, 1}. The root is
coded by the empty word and if a node is coded by x ∈ X∗ then its left hand
side descendant has the code x0 and its right hand side descendant has the code
x1. We shall therefore identify the dyadic tree with X∗ and we put on the dyadic
tree the natural (ultrametric) distance on X∗. The boundary (or the set of ends)
of the dyadic tree is then the same as the compact ultrametric space Xω.
Xω is the set of words infinite at right over the alphabet X = {0, 1}:

Xω = {f | f : N∗ → X} = XN∗ .

A natural distance on this set is defined for different x, y ∈ Xω by the formula

d(x, y) =
1

2m

where m is the length of largest common prefix of the words x and y. This
distance is ultrametric. The metric space (Xω, d) is isometric with the space of
dyadic integers. The metric space is then a ball of radius 1.

A trivial dilatation structure is induced by the identification with dyadic inte-
gers and it has the following expression:

δx2py = x+ 2p(y − x)

where the operations are done with dyadic integers.
More complex dilatation structures are given by the following construction.

See theorem 6.5 [7] for more details.

Definition 11. A function W : N∗×Xω → Isom(Xω) is smooth if for any ε > 0
there exists µ(ε) > 0 such that for any x, x′ ∈ Xω such that d(x, x′) < µ(ε) and
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for any y ∈ Xω we have

1
2k
d(W x

k (y),W x′

k (y)) ≤ ε ,

for an k such that d(x, x′) < 1/2k.

Theorem 5.1. To any smooth function W : N∗ ×Xω → Isom(Xω) in the sense
of definition 11 is associated a dilatation structure (Xω, d, δ), induced by functions
δx2 , defined by δx2x = x and otherwise by: for any q ∈ X∗, α ∈ X, x, y ∈ Xω we
have

(5.1) δqαx2 qᾱy = qαx̄1W
qαx
|q|+1(y) .

5.3. Sub-riemannian manifolds. Regular sub-riemannian manifolds provide
examples of dilatation structures. In the paper [8] this is explained in all details.
See section 4.2 for the most basic example of a dilatation structure on a sub-
riemannian manifold: the case of a Carnot group.

More general, the dilatation structures constructed over normed groups with
dilatations (theorem 4.1), with Γ = (0,+∞) and ν = id, provide more examples
of sub-riemannian dilatation structures.

A sub-riemannian manifold is a triple (M,D, g), where M is a connected man-
ifold, D is a completely non-integrable distribution on M , and g is a metric
(Euclidean inner-product) on the distribution (or horizontal bundle) D. A hori-
zontal curve c : [a, b] → M is a curve which is almost everywhere derivable and
for almost any t ∈ [a, b] we have ċ(t) ∈ Dc(t). The class of horizontal curves is
denoted by Hor(M,D). The following theorem of Chow [11] is well known.

Theorem 5.2. (Chow) Let D be a distribution of dimension m in the manifold
M . Suppose there is a positive integer number k (called the rank of the distribution
D) such that for any x ∈ X there is a topological open ball U(x) ⊂ M with
x ∈ U(x) such that there are smooth vector fields X1, ..., Xm in U(x) with the
property:

(C) the vector fields X1, ..., Xm span Dx and these vector fields together with
their iterated brackets of order at most k span the tangent space TyM at every
point y ∈ U(x).

Then M is locally connected by horizontal curves.

The Carnot-Carathéodory distance (or CC distance) associated to the sub-
riemannian manifold is the distance induced by the length l of horizontal curves:

d(x, y) = inf {l(c) : c ∈ Hor(M,D) , c(a) = x , c(b) = y} .
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Chow condition (C) is used to construct an adapted frame starting from a
family of vector fields which generate the distribution D. A fundamental result
in sub-riemannian geometry is the existence of normal frames. This existence
result is based on the accumulation of various results by Belläıche [2], first to
speak about normal frames, providing rigorous proofs for this existence in a flow
of results between theorem 4.15 and ending in the first half of section 7.3 (page
62), Gromov [19] in his approximation theorem p. 135 (conclusion of the point
(a) below), as well in his convergence results concerning the nilpotentization of
vector fields (related to point (b) below), Vodopyanov and others [28] [29] [30]
concerning the proof of basic results in sub-riemannian geometry under very weak
regularity assumptions (for a discussion of this see [8]). There is no place here to
submerge into this, we shall just assume that the object defined below exists.

Definition 12. An adapted frame {X1, ..., Xn} is a normal frame if the following
two conditions are satisfied:

(a) we have the limit

lim
ε→0+

1
ε
d

(
exp

(
n∑
1

εdeg XiaiXi

)
(y), y

)
= A(y, a) ∈ (0,+∞)

uniformly with respect to y in compact sets and a = (a1, ..., an) ∈ W ,
with W ⊂ Rn compact neighbourhood of 0 ∈ Rn,

(b) for any compact set K ⊂M with diameter (with respect to the distance
d) sufficiently small, and for any i = 1, ..., n there are functions

Pi(·, ·, ·) : UK × UK ×K → R

with UK ⊂ Rn a sufficiently small compact neighbourhood of 0 ∈ Rn such
that for any x ∈ K and any a, b ∈ UK we have

exp

(
n∑
1

aiXi

)
(x) = exp

(
n∑
1

Pi(a, b, y)Xi

)
◦ exp

(
n∑
1

biXi

)
(x)

and such that the following limit exists

lim
ε→0+

ε−deg XiPi(εdeg Xjaj , εdeg Xkbk, x) ∈ R

and it is uniform with respect to x ∈ K and a, b ∈ UK .

With the help of a normal frame we can prove the existence of strong dilatation
structures on regular sub-riemannian manifolds. The following is a consequence
of theorems 6.3, 6.4 [8].
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Theorem 5.3. Let (M,D, g) be a regular sub-riemannian manifold, U ⊂ M

an open set which admits a normal frame. Define for any x ∈ U and ε > 0
(sufficiently small if necessary), the dilatation δxε given by:

δxε

(
exp

(
n∑
i=1

aiXi

)
(x)

)
= exp

(
n∑
i=1

aiε
degXiXi

)
(x)

Then (U, d, δ) is a strong dilatation structure.

6. Properties of dilatation structures

6.1. Tangent bundle. A reformulation of parts of theorems 6,7 [6] is the follow-
ing.

Theorem 6.1. A dilatation structure (X, d, δ) has the following properties.

(a) For all x ∈ X, u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all
µ ∈ (0, A) we have:

dx(u, v) =
1
µ
dx(δxµu, δ

x
µv) .

We shall say that dx has the cone property with respect to dilatations.
(b) The metric space (X, d) admits a metric tangent space at x, for any point

x ∈ X. More precisely we have the following limit:

lim
ε→0

1
ε

sup {| d(u, v)− dx(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .

For the next theorem (composite of results in theorems 8, 10 [6]) we need the
previously introduced notion of a normed conical local group.

Theorem 6.2. Let (X, d, δ) be a strong dilatation structure. Then for any x ∈ X
the triple (U(x),Σx, δx) is a normed local conical group, with the norm induced
by the distance dx.

The conical group (U(x),Σx, δx) can be regarded as the tangent space of
(X, d, δ) at x. Further will be denoted by: TxX = (U(x),Σx, δx).

The dilatation structure on this conical group has dilatations defined by

(6.1) δ̄x,uε y = Σx (u, δxε∆x(u, y)) .
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6.2. Topological considerations. In this subsection we compare various topolo-
gies and uniformities related to a dilatation structure.

The axiom A3 implies that for any x ∈ X the function dx is continuous,
therefore open sets with respect to dx are open with respect to d.

If (X, d) is separable and dx is non degenerate then (U(x), dx) is also separable
and the topologies of d and dx are the same. Therefore (U(x), dx) is also locally
compact (and a set is compact with respect to dx if and only if it is compact with
respect to d).

If (X, d) is separable and dx is non degenerate then the uniformities induced
by d and dx are the same. Indeed, let {un : n ∈ N} be a dense set in U(x), with
x0 = x. We can embed (U(x), (δx, ε)) (see definition 18) isometrically in the
separable Banach space l∞, for any ε ∈ (0, 1), by the function

φε(u) =
(

1
ε
d(δxεu, δ

x
εxn)− 1

ε
d(δxεx, δ

x
εxn)

)
n

.

A reformulation of point (a) in theorem 6.1 is that on compact sets φε uniformly
converges to the isometric embedding of (U(x), dx)

φ(u) = (dx(u, xn)− dx(x, xn))n .

Remark that the uniformity induced by (δ, ε) is the same as the uniformity induced
by d, and that it is the same induced from the uniformity on l∞ by the embedding
φε. We proved that the uniformities induced by d and dx are the same.

From previous considerations we deduce the following characterization of tan-
gent spaces associated to a dilatation structure.

Corollary 6.3. Let (X, d, δ) be a strong dilatation structure with group Γ =
(0,+∞). Then for any x ∈ X the local group (U(x),Σx) is locally a simply con-
nected Lie group whose Lie algebra admits a positive graduation (a homogeneous
group).

Proof. Use the facts: (U(x),Σx) is a locally compact group (from previous
topological considerations) which admits δx as a contractive automorphism group
(from theorem 6.2). Apply then Siebert proposition 4.5 ( which is [27] proposition
5.4). �

6.3. Differentiability with respect to dilatation structures. We briefly ex-
plain the notion of differentiability associated to dilatation structures (section 7.2
[6]). First we need the natural definition below.
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Definition 13. Let (N, δ) and (M, δ̄) be two conical groups. A function f : N →
M is a conical group morphism if f is a group morphism and for any ε > 0 and
u ∈ N we have f(δεu) = δ̄εf(u).

The definition of the derivative with respect to dilatations structures follows.

Definition 14. Let (X, d, δ) and (Y, d, δ) be two strong dilatation structures and
f : X → Y be a continuous function. The function f is differentiable in x if there
exists a conical group morphism Qx : TxX → Tf(x)Y , defined on a neighbourhood
of x with values in a neighbourhood of f(x) such that

(6.2) lim
ε→0

sup
{

1
ε
d
(
f (δxεu) , δ

f(x)

ε Qx(u)
)

: d(x, u) ≤ ε
}

= 0,

The morphism Qx is called the derivative of f at x and will be sometimes denoted
by Df(x).

The function f is uniformly differentiable if it is differentiable everywhere and
the limit in (6.2) is uniform in x in compact sets.

7. Infinitesimal affine geometry of dilatation structures

7.1. Affine transformations.

Definition 15. Let (X, d, δ) be a dilatation structure. A transformation A : X →
X is affine if it is Lipschitz and it commutes with dilatations in the following sense:
for any x ∈ X, u ∈ U(x) and ε ∈ Γ, ν(ε) < 1, if A(u) ∈ U(A(x)) then

Aδxε = δA(x)
ε A(u) .

The local group of affine transformations, denoted by Aff(X, d, δ) is formed by
all invertible and bi-lipschitz affine transformations of X.

Aff(X, d, δ) is indeed a local group. In order to see this we start from the
remark that if A is Lipschitz then there exists C > 0 such that for all x ∈ X and
u ∈ B(x,C) we have A(u) ∈ U(A(x)). The inverse of A ∈ Aff(X, d, δ) is then
affine. Same considerations apply for the composition of two affine, bi-lipschitz
and invertible transformations.

In the particular case of X finite dimensional real, normed vector space, d the
distance given by the norm, Γ = (0,+∞) and dilatations δxεu = x+ ε(u− x), an
affine transformation in the sense of definition 15 is an affine transformation of
the vector space X.

Proposition 7.1. Let (X, d, δ) be a dilatation structure and A : X → X an affine
transformation. Then:
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(a) for all x ∈ X, u, v ∈ U(x) sufficiently close to x, we have:

AΣxε (u, v) = ΣA(x)
ε (A(u), A(v)) .

(b) for all x ∈ X, u ∈ U(x) sufficiently close to x, we have:

A invx(u) = invA(x)A(u) .

Proposition 7.2. Let (X, d, δ) be a strong dilatation structure and A : X → X

an affine transformation. Then A is uniformly differentiable and the derivative
equals A.

The proofs are straightforward, just use the commutation with dilatations.

7.2. Infinitesimal linearity of dilatation structures. We begin by an ex-
planation of the term ”sufficiently closed“, which will be used repeatedly in the
following.

We work in a dilatation structure (X, d, δ). Let K ⊂ X be a compact,
non empty set. Then there is a constant C(K) > 0, depending on the set K
such that for any ε, µ ∈ Γ with ν(ε), ν(µ) ∈ (0, 1] and any x, y, z ∈ K with
d(x, y), d(x, z), d(y, z) ≤ C(K) we have

δyµz ∈ Vε(x) , δxε z ∈ Vµ(δxε y) .

Indeed, this is coming from the uniform (with respect to K) estimates:

d(δxε y, δ
x
ε z) ≤ εdx(y, z) + εO(ε) ,

d(x, δyµz) ≤ d(x, y) + d(y, δyµz) ≤ d(x, y) + µdy(y, z) + µO(µ) .

Definition 16. A property P(x1, x2, x3, ...) holds for x1, x2, x3, ... sufficiently
closed if for any compact, non empty set K ⊂ X, there is a positive constant
C(K) > 0 such that P(x1, x2, x3, ...) is true for any x1, x2, x3, ... ∈ K with
d(xi, xj) ≤ C(K).

For example, we may say that the expressions

δxε δ
y
µz , δ

δxε y
µ δxε z

are well defined for any x, y, z ∈ X sufficiently closed and for any ε, µ ∈ Γ with
ν(ε), ν(µ) ∈ (0, 1].

Definition 17. A dilatation structure (X, d, δ) is linear if for any ε, µ ∈ Γ such
that ν(ε), ν(µ) ∈ (0, 1], and for any x, y, z ∈ X sufficiently closed we have

δxε δ
y
µz = δ

δxε y
µ δxε z .
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This definition means simply that a linear dilatation structure is a dilatation
structure with the property that dilatations are affine in the sense of definition
15.

Let us look to a dilatation structure in finer details. We do this by defining
induced dilatation structures from a given one.

Definition 18. Let (X, δ, d) be a dilatation structure and x ∈ X a point. In a
neighbourhood U(x) of x, for any µ ∈ (0, 1) we define the distances:

(δx, µ)(u, v) =
1
µ
d(δxµu, δ

x
µv).

The next theorem shows that on a dilatation structure we almost have trans-
lations (the operators Σxε (u, ·)), which are almost isometries (that is, not with
respect to the distance d, but with respect to distances of type (δx, µ)). It is
almost as if we were working with a normed conical group, only that we have to
use families of distances and to make small shifts in the tangent space, as it is
done at the end of the proof of theorem 7.3.

Theorem 7.3. Let (X, δ, d) be a (strong) dilatation structure. For any u ∈ U(x)
and v close to u let us define

δ̂x,uµ,ε v = Σxµ(u, δ
δxµu
ε ∆x

µ(u, v)) = δxµ−1δ
δxµu
ε δxµv .

Then (U(x), (δx, µ), δ̂xµ) is a (strong) dilatation structure.
The transformation Σxµ(u, ·) is an isometry from (δδ

x
µu, µ) to (δx, µ). Moreover,

we have Σxµ(u, δxµu) = u.

Proof. We have to check the axioms. The first part of axiom A0 is an easy
consequence of theorem 6.1 for (X, δ, d). The second part of A0, A1 and A2 are
true based on simple computations.

The first interesting fact is related to axiom A3. Let us compute, for v, w ∈
U(x),

1
ε

(δx, µ)(δ̂x,uµ,ε v, δ̂
x,u
µε w) =

1
εµ
d(δxµδ̂

x,u
µε v, δ

x
µδ̂
x,u
µε w) =

=
1
εµ
d(δ

δxµu
ε δxµv, δ

δxµu
ε δxµw) =

1
εµ
d(δ

δxµu
εµ ∆x

µ(u, v), δ
δxµu
εµ ∆x

µ(u,w)) =

= (δδ
x
µu, εµ)(∆x

µ(u, v),∆x
µ(u,w)).

The axiom A3 is then a consequence of axiom A3 for (X, d, δ) and we have

lim
ε→0

1
ε

(δx, µ)(δ̂x,uµε v, δ̂
x,u
µε w) = dδ

x
µu(∆x

µ(u, v),∆x
µ(u,w)).
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The axiom A4 is also a straightforward consequence of A4 for (X, d, δ). The
second part of the theorem is a simple computation. �

The induced dilatation structures (U(x), (δx, µ), δ̂xµ) should converge in some
sense to the dilatation structure on the tangent space at x, as ν(µ) converges to
zero. Remark that for strong dilatation structures we have one easy convergence:

lim
µ→0

δ̂x,uµ,ε v = δ̄x,uε v ,

where δ̄x are the dilatations in the tangent space at x, cf. (6.1). Indeed, this
comes from:

δ̂x,uµ,ε v = Σxµ(u, δ
δxµu
ε ∆x

µ(u, v))

so, when ν(µ) converges to 0 we get the mentioned limit.
The following proposition gives a more precise estimate: the order of approx-

imation of the dilatations δ by dilatations δ̂xε , in neighbourhoods of δxε y of order
ε, as ν(ε) goes to zero.

Proposition 7.4. Let (X, d, δ) be a dilatation structure. With the notations of
theorem 7.3 we introduce

δ̂x,uε v = δ̂x,uε,ε v = δxε−1δ
δxεu
ε δxε v .

Then we have for any x, y, v sufficiently closed:

(7.1) lim
ε→0

1
ε

(δx, ε)
(
δ
δxε y
ε v , δ̂

x,δxε y
ε v

)
= 0 .

Proof. We start by a computation:

1
ε

(δx, ε)
(
δ
δxε y
ε v , δ̂

x,δxε y
ε v

)
=

1
ε2
d
(
δxε δ

δxε y
ε v , δxε δ̂

x,δxε y
ε v

)
=

=
1
ε2
d
(
δxε2Σxε (y, v) , δxε2 δ

x
ε−2δ

δx
ε2y

ε2 ∆x
ε (δxε y, v)

)
=

=
1
ε2
d (δxε2Σxε (y, v) , δxε2Σxε2 (y,∆x

ε (δxy, v))) .

This last expression converges as ν(ε) goes to 0 to

dx (Σx(y, v),Σx(y,∆x(x, v))) = dx (v,∆x(x, v)) = 0

�
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The result from this proposition indicates that strong dilatation structures are
infinitesimally linear. In order to make a precise statement we need a measure
for nonlinearity of a dilatation structure, given in the next definition. Then we
have to repeat the computations from the proof of proposition 7.4 in a slightly
different setting, related to this measure of nonlinearity.

Definition 19. The following expression:

(7.2) Lin(x, y, z; ε, µ) = d
(
δxε δ

y
µz , δ

δxε y
µ δxε z

)
is a measure of lack of linearity, for a general dilatation structure.

The next theorem shows that indeed, infinitesimally any strong dilatation
structure is linear.

Theorem 7.5. Let (X, d, δ) be a strong dilatation structure. Then for any
x, y, z ∈ X sufficiently close we have

(7.3) lim
ε→0

1
ε2
Lin(x, δxε y, z; ε, ε) = 0 .

Proof. From the hypothesis of the theorem we have:

1
ε2
Lin(x, δxε y, z; ε, ε) =

1
ε2
d
(
δxε δ

δxε y
ε z , δ

δx
ε2y
ε δxε z

)
=

=
1
ε2
d
(
δxε2 Σxε (y, z) , δxε2 δ

x
ε−2 δ

δx
ε2y
ε δxε z

)
=

=
1
ε2
d (δxε2 Σxε (y, z) , δxε2 Σxε2(y , ∆x

ε (δxε y, z))) =

= O(ε2) + dx (Σxε (y, z) , Σxε2(y , ∆x
ε (δxε y, z))) .

The dilatation structure satisfies A4, therefore as ε goes to 0 we obtain:

lim
ε→0

1
ε2
Lin(x, δxε y, z; ε, ε) = dx (Σx(y, z) , Σx(y , ∆x(x, z))) =

= dx (Σx(y, z) , Σx(y, z)) = 0 . �
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7.3. Linear strong dilatation structures. Remark that for general dilatation
structures the ”translations” ∆x

ε (u, ·) are not affine. Nevertheless, they commute
with dilatation in a known way: for any u, v sufficiently close to x and µ ∈ Γ,
ν(µ) < 1, we have:

∆x
ε

(
δxµu, δ

x
µv
)

= δ
δxεµu
µ ∆x

εµ(u, v) .

This is important, because the transformations Σxε (u, ·) really behave as trans-
lations. The reason for which such transformations are not affine is that dilata-
tions are generally not affine.

Linear dilatation structures are very particular dilatation structures. The next
proposition gives a family of examples of linear dilatation structures.

Proposition 7.6. The dilatation structure associated to a normed conical group
is linear.

Proof. Indeed, for the dilatation structure associated to a normed conical group
we have, with the notations from definition 17:

δ
δxε y
µ δxε z =

(
xδε(x−1y)

)
δµ
(
δε(y−1x)x−1 x δε(x−1z)

)
=

=
(
xδε(x−1y)

)
δµ
(
δε(y−1x) δε(x−1z)

)
=
(
xδε(x−1y)

)
δµ
(
δε(y−1z)

)
=

= x
(
δε(x−1y) δε δµ(y−1z)

)
= x δε

(
x−1y δµ(y−1z)

)
= δxε δ

y
µz .

Therefore the dilatation structure is linear. �

The affinity of translations Σxε is related to the linearity of the dilatation struc-
ture, as described in the theorem below, point (a). As a consequence, we prove
at point (b) that a linear and strong dilatation structure comes from a conical
group.

Theorem 7.7. Let (X, d, δ) be a dilatation structure.

(a) If the dilatation structure is linear then all transformations ∆x
ε (u, ·) are

affine for any u ∈ X.
(b) If the dilatation structure is strong (satisfies A4) then it is linear if and

only if the dilatations come from the dilatation structure of a conical
group, precisely for any x ∈ X there is an open neighbourhood D ⊂ X

of x such that (D, dx, δ) is the same dilatation structure as the dilatation
structure of the tangent space of (X, d, δ) at x.

Proof. (a) If dilatations are affine, then let ε, µ ∈ Γ, ν(ε), ν(µ) ≤ 1, and
x, y, u, v ∈ X such that the following computations make sense. We have:

∆x
ε (u, δyµv) = δ

δxεu

ε−1 δ
x
ε δ
y
µv .
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Let Aε = δ
δxεu

ε−1 . We compute:

δ
∆x
ε (u,y)

µ ∆x
ε (u, v) = δ

Aεδ
x
ε y

µ Aεδ
x
ε v .

We use twice the affinity of dilatations:

δ
∆x
ε (u,y)

µ ∆x
ε (u, v) = Aεδ

δxε y
µ δxε v = δ

δxεu

ε−1 δ
x
ε δ
y
µv .

We proved that:
∆x
ε (u, δyµv) = δ

∆x
ε (u,y)

µ ∆x
ε (u, v) ,

which is the conclusion of the part (a).
(b) Suppose that the dilatation structure is strong. If dilatations are affine,

then by point (a) the transformations ∆x
ε (u, ·) are affine as well for any u ∈ X.

Then, with notations made before, for y = u we get

∆x
ε (u, δuµv) = δ

δxεu
µ ∆x

ε (u, v) ,

which implies
δuµv = Σxε (u, δxµ∆x

ε (u, v)) .

We pass to the limit with ε→ 0 and we obtain:

δuµv = Σx(u, δxµ∆x(u, v)) .

We recognize at the right hand side the dilatations associated to the conical group
TxX.

By proposition 7.6 the opposite implication is straightforward, because the
dilatation structure of any conical group is linear. �

8. Noncommutative affine geometry

We propose here to call ”noncommutative affine geometry“ the generaliza-
tion of affine geometry described in theorem 2.2, but without the restriction
Γ = (0,+∞). For short, noncommutative affine geometry in the sense ex-
plained further is the study of the properties of linear strong dilatation structures.
Equally, by theorem 7.7, it is the study of normed conical groups.

As a motivation for this name, in the proposition below we give a relation,
true for linear dilatation structures, with an interesting interpretation. We shall
explain what this relation means in the most trivial case: the dilatation structure
associated to a real normed affine space. In this case, for any points x, u, v, let us
denote w = Σxε (u, v). Then w equals (approximatively, due to the parameter ε)
the sum u+x v. Denote also w′ = ∆u

ε (x, v); then w′ is (approximatively) equal to
the difference between v and x based at u. In our space (a classical affine space
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over a vector space) we have w = w′. The next proposition shows that the same
is true for any linear dilatation structure.

Proposition 8.1. For a linear dilatation structure (X, δ, d), for any x, u, v ∈ X
sufficiently closed and for any ε ∈ Γ, ν(ε) ≤ 1, we have:

Σxε (u, v) = ∆u
ε (x, v) .

Proof. We have the following string of equalities, by using twice the linearity of
the dilatation structure:

Σxε (u, v) = δxε−1δ
δxεu
ε v = δuε δ

x
ε−1v =

= δ
δuε x

ε−1 δ
u
ε v = ∆u

ε (x, v) .

The proof is done. �

8.1. Inverse semigroups and Menelaos theorem. Here we prove that for
strong dilatation structures linearity is equivalent to a generalization of the state-
ment from corollary 2.5. The result is new for Carnot groups and the proof seems
to be new even for vector spaces.

Definition 20. A semigroup S is an inverse semigroup if for any x ∈ S there is
an unique element x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1.

An important example of an inverse semigroup is I(X), the class of all bijective
maps φ : domφ → imφ, with domφ, imφ ⊂ X. The semigroup operation is the
composition of functions in the largest domain where this makes sense.

By the Vagner-Preston representation theorem [23] every inverse semigroup is
isomorphic to a subsemigroup of I(X), for some set X.

Definition 21. A dilatation structure (X, d, δ) has the Menelaos property if for
any two sufficiently closed x, y ∈ X and for any ε, µ ∈ Γ with ν(ε), ν(µ) ∈ (0, 1)
we have

δxε δ
y
µ = δwεµ ,

where w ∈ X is the fixed point of the contraction δxε δ
y
µ (thus depending on x, y

and ε, µ).

Theorem 8.2. A linear dilatation structure has the Menelaos property.

Proof. Let x, y ∈ X be sufficiently closed and ε, µ ∈ Γ with ν(ε), ν(µ) ∈ (0, 1).
We shall define two sequences xn, yn ∈ X, n ∈ N.
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We begin with x0 = x, y0 = y. Suppose further that xn, yn were defined and
that they are sufficiently closed. Then we use twice the linearity of the dilatation
structure:

δxnε δynµ = δ
δxnε yn
µ δxnε = δ

δδ
xn
ε yn
µ xn
ε δ

δxnε yn
µ .

We shall define then by induction

(8.1) xn+1 = δ
δxnε yn
µ xn , yn+1 = δxnε yn .

Provided that we prove by induction that xn, yn are sufficiently closed, we arrive
at the conclusion that for any n ∈ N

(8.2) δxnε δynµ = δxε δ
y
µ .

The points x0, y0 are sufficiently closed by hypothesis. Suppose now that xn, yn
are sufficiently closed. Due to the linearity of the dilatation structure, we can
write the first part of (8.1) as:

xn+1 = δxnε δynµ xn .

Then we can estimate the distance between xn+1, yn+1 like this:

d(xn+1, yn+1) = d(δxnε δynµ xn, δ
xn
ε yn) = ν(ε) d(δynµ xn, yn) = ν(εµ)d(xn, yn) .

From ν(εµ) < 1 it follows that xn+1, yn+1 are sufficiently closed. By induction
we deduce that for all n ∈ N the points xn, yn are sufficiently closed. We also find
out that

(8.3) lim
n→∞

d(xn, yn) = 0 .

From relation (8.2) we deduce that the first part of (8.1) can be written as:

xn+1 = δxnε δynµ xn = δxε δ
y
µxn .

The transformation δxε δ
y
µ is a contraction of coefficient ν(εµ) < 1, therefore we

easily get:

(8.4) lim
n→∞

xn = w ,

where w is the unique fixed point of the contraction δxε δ
y
µ.

We put together (8.3) and (8.4) and we get the limit:

(8.5) lim
n→∞

yn = w .

Using relations (8.4), (8.5), we pass to the limit with n→∞ in relation (8.2):

δxε δ
y
µ = lim

n→∞
δxnε δynµ = δwε δ

w
µ = δwεµ .

The proof is done. �
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Corollary 8.3. Let (X, d, δ) be a strong linear dilatation structure, with group
Γ and the morphism ν injective. Then any element of the inverse subsemigroup
of I(X) generated by dilatations is locally a dilatation δxε or a left translation
Σx(y, ·).

Proof. Let (X, d, δ) be a strong linear dilatation structure. From the linear-
ity and theorem 8.2 we deduce that we have to care only about the results of
compositions of two dilatations which are isometries.

The dilatation structure is strong, therefore by theorem 7.7 the dilatation struc-
ture is locally coming from a conical group.

Let us compute a composition of dilatations δxε δ
y
µ, with ν(εµ) = 1. Because

the morphism ν is injective, it follows that µ = ε−1. In a conical group we can
make the following computation (here δε = δeε with e the neutral element of the
conical group):

δxε δ
y
ε−1z = xδε

(
x−1yδε−1

(
y−1z

))
= xδε

(
x−1y

)
y−1z .

Therefore the composition of dilatations δxε δ
y
µ, with εµ = 1, is a left translation.

Another easy computation shows that composition of left translations with
dilatations are dilatations. The proof end by remarking that all the statements
are local. �

A counterexample. The Corollary 8.3 is not true without the injectivity assump-
tion on ν. Indeed, consider the Carnot group N = C × R with the elements
denoted by X ∈ N , X = (x, x′), with x ∈ C, x′ ∈ R, and operation

X Y = (x, x′)(y, y′) = (x+ y, x′ + y′ +
1
2
Imxȳ)

We take Γ = C∗ and morphism ν : Γ → (0,+∞), ν(ε) =| ε |. Dilatations are
defined as: for any ε ∈ C∗ and X = (x, x′) ∈ N :

δεX = (εx, | ε |2 x′)

These dilatations induce the field of dilatations δXε Y = Xδε(X−1Y ).
The morphism ν is not injective. Let now ε, µ ∈ C∗ with εµ = −1 and

ε ∈ (0, 1). An elementary (but a bit long) computation shows that for X = (0, 0)
and Y = (y, y′) with y 6= 0, y′ 6= 0, the composition of dilatations δXε δ

Y
µ is not a

left translation in the group N , nor a dilatation. �

Further we shall suppose that the morphism ν is always injective, if not explic-
itly stated otherwise. Therefore we shall consider Γ ⊂ (0,+∞) as a subgroup.
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8.2. On the barycentric condition. The barycentric condition is (Af3): for
any ε ∈ (0, 1) δxε y = δy1−ε x. In particular, the condition (Af3) tells that the
transformation y 7→ δyεx is also a dilatation. Is this true for linear dilatation
structures? Theorem 2.2 indicates that (Af3) is true if and only if this is a
dilatation structure of a normed real affine space.

Proposition 8.4. Let X be a normed conical group with neutral element e, dilata-
tions δ and distance d induced by the homogeneous norm ‖ · ‖, and ε ∈ (0, 1)∩ Γ.
Then the function

hε : X → X , hε(x) = xδε(x−1) = δxε e

is invertible and the inverse gε has the expression

gε(y) =
∞∏
k=0

δεk(y) = lim
N→∞

N∏
k=0

δεk(y)

Remark. As the choice of the neutral element is not important, the previous
proposition says that for any ε ∈ (0, 1) and any fixed y ∈ X the function x 7→ δxε y

is invertible.

Proof. Let ε ∈ (0, 1) be fixed. For any natural number N we define gN : X → X

by

gN (y) =
N∏
k=0

δεk(y)

For fixed y ∈ X (gN (y))N is a Cauchy sequence. Indeed, for any N ∈ N we have:

d(gN (y), gN+1(y)) = ‖δεN+1(y)‖

thus for any N,M ∈ N, M ≥ 1 we have

d(gN (y), gN+M (y)) ≤

(
M∑

k=N+1

εk

)
‖y‖ ≤ εN+1

1− ε
‖y‖

Let then gε(y) = lim
N→∞

gN (y). We prove that gε is the inverse of hε. We have,

for any natural number N and y ∈ X

y δεgN (y) = gN+1(y)

By passing to the limit with N we get that hε ◦ gε(y) = y for any y ∈ X.
Let us now compute

gN ◦ hε(x) =
N∏
k=0

δεk(xδε(x−1)) =
N∏
k=0

δεk(x) δεk+1(x−1) =
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= x δεN+1(x−1)

therefore as N goes to infinity we get gε ◦ hε(x) = x. �

For any ε ∈ (0, 1) the functions hε, gε are homogeneous, that is

hε(δµx) = δµ hε(x) , gε(δµy) = δµ gε(y)

for any µ > 0 and x, y ∈ X.
In the presence of the barycentric condition we get the following:

Corollary 8.5. Let (X, d, δ) be a strong dilatation structure with group Γ ⊂
(0,+∞), which satisfies the barycentric condition (Af3). Then for any u, v ∈ X
and ε ∈ (0, 1) ∩ Γ the points invu(v), u and δuε v are collinear in the sense:

d(invu(v), u) + d(u, δuε v) = d(invu(v), δuε v)

Proof. There is no restriction to work with the group operation with neutral
element e and denote δε := δeε . With the notation from the proof of the proposition
8.4, we use the expression of the function gε, we apply the homogeneous norm
‖ · ‖ and we obtain:

‖gε(y)‖ ≤

( ∞∑
k=0

εk

)
‖x‖ =

1
1− ε

‖y‖

with equality if and only if e, y and yδεy are collinear in the sense d(e, y) +
d(y, yδεy) = d(e, yδεy). The barycentric condition can be written as: hε(x) =
δ1−ε(x). We have therefore:

‖x‖ = ‖gε ◦ hε(x)‖ ≤ 1
1− ε

‖hε(x)‖ =
1− ε
1− ε

‖x‖ = ‖x‖

therefore e, x and xδεx are on a geodesic. This is true also for the choice: e =
invu(v), x = u, which gives the conclusion. �

We can actually say more in the case Γ = (0,+∞).

Proposition 8.6. Let (X, d, δ) be a strong dilatation structure with group Γ =
(0,+∞), which satisfies the barycentric condition (Af3). Then for any x ∈ X the
group operation Σx is abelian and moreover the graduation of X, as a homoge-
neous group with respect to the operation Σx has only one level.
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Proof. Let us denote the neutral element by e instead of x and denote δε :=
δeε . According to corollary 6.3 X is a Lie homogeneous group. The barycentric
condition implies: for any x ∈ X and ε ∈ (0, 1) we have δ1−εy = yδεy

−1, which
implies:

δ1−ε(y) δε(y) = y

for any y and for any ε ∈ (0, 1). This fact implies that {δµy : µ ∈ (0,+∞)} is a
one parameter semigroup. Moreover, let fy : R → X, defined by: if ε > 0 then
fy(ε) = δεy, else fy(ε) = δεy

−1. Then fy is a group morphism from R to X, with
fy(1) = y. Therefore fy(ε) = exp(εy) = εy. According to definition 2 the
group X is identified with its Lie algebra and any element y has a decomposition

y = y1 + y2 + ... + ym and δεy =
m∑
j=1

εjyj . We proved that m = 1, otherwise

said that the graduation of the group has only one level, that is the group is
abelian. �

8.3. The ratio of three collinear points. In this section we prove that the non-
commutative affine geometry is a geometry in the sense of the Erlangen program,
because it can be described as the geometry of collinear triples (see definition 22).
Collinear triples generalize the basic ratio invariant of classical affine geometry.

Indeed, theorem 8.2 provides us with a mean to introduce a version of the ratio
of three collinear points in a strong linear dilatation structure. We define here
collinear triples, the ratio function and the ratio norm.

Definition 22. Let (X, d, δ) be a strong linear dilatation structure. Denote by
xα = (x, α), for any x ∈ X and α ∈ (0,+∞). An ordered set (xα, yβ , zγ) ∈
(X × (0,+∞))3 is a collinear triple if:

(a) αβγ = 1 and all three numbers are different from 1,
(b) we have δxα δ

y
β δ

z
γ = id.

The ratio norm r(xα, yβ , zγ) of the collinear triple (xα, yβ , zγ) is given by the
expression:

r(xα, yβ , zγ) =
α

1− αβ
.

Let (xα, yβ , zγ) be a collinear triple. Then we have: δxα δ
y
β = δzαβ with α, β, αβ

not equal to 1. By theorem 8.2 the point z is uniquely determined by (xα, yβ),
therefore we can express it as a function z = w(x, y, α, β). The function w is
called the ratio function.

In the next proposition we obtain a formula for w(x, y, α, β). Alternatively this
can be seen as another proof of theorem 8.2.
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Proposition 8.7. In the hypothesis of proposition 8.4, for any ε, µ ∈ (0, 1) and
x, y ∈ X we have:

w(x, y, ε, µ) = gεµ (hε(x)hµ(δεy))

Proof. Any z ∈ X with the property that for any u ∈ X we have δxε δ
y
µ(u) =

δzεµ(u) satisfies the equation:

(8.6) x δε
(
x−1yδµ(y−1)

)
= zδεµ(z−1)

This equation can be put as:

hε(x) δε (hµ(y)) = hεµ(z)

From proposition 8.4 we obtain that indeed exists and it is unique z ∈ X solution
of this equation. We use further homogeneity of hµ and we get:

z = w(x, y, ε, µ) = gεµ (hε(x)hµ(δεy)) �

Remark that if (xα, yβ , zγ) is a collinear triple then any circular permutation
of the triple is also a collinear triple. We can not deduce from here a collinearity
notion for the triple of points {x, y, z}. Indeed, as the following example shows,
even if (xα, yβ , zγ) is a collinear triple, it may happen that here are no numbers
α′, β′, γ′ such that (yβ

′
, xα

′
, zγ

′
) is a collinear triple.

Collinear triples in the Heisenberg group. The Heisenberg group H(n) = R2n+1

is a 2-step Carnot group. For the points of X ∈ H(n) we use the notation
X = (x, x̄), with x ∈ R2n and x̄ ∈ R. The group operation is :

X Y = (x, x̄)(y, ȳ) = (x+ y, x̄+ ȳ +
1
2
ω(x, y))

where ω is the standard symplectic form on R2n. We shall identify the Lie algebra
with the Lie group. The bracket is

[(x, x̄), (y, ȳ)] = (0, ω(x, y)) .

The Heisenberg algebra is generated by

V = R2n × {0}

and we have the relations V + [V, V ] = H(n), {0} × R = [V, V ] = Z(H(n)).
The dilatations on H(n) are

δε(x, x̄) = (εx, ε2x̄) .

For X = (x, x̄), Y = (y, ȳ) ∈ H(n) and ε, µ ∈ (0,+∞), εµ 6= 1, we compute
Z = (z, z̄) = w(x̃, ỹ, ε, µ) with the help of equation (8.6). This equation writes:

((1− ε)x, (1− ε2)x̄) (ε(1− µ)y, ε2(1− µ2)ȳ) = ((1− εµ)z, (1− ε2µ2)z̄)
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After using the expression of the group operation we obtain:

Z =
(

1− ε
1− εµ

x+
ε(1− µ)
1− εµ

y,
1− ε2

1− ε2µ2
x̄+

ε2(1− µ2)
1− ε2µ2

ȳ +
ε(1− ε)(1− µ)

2(1− ε2µ2)
ω(x, y)

)
Suppose now that (Xα, Y β , Zγ) and (Y β

′
, Xα′ , Zγ

′
) are collinear triples such

that X = (x, 0), Y = (y, 0) and ω(x, y) 6= 0. From the computation of the ratio
function, we get that there exist numbers k, k′ 6= 0 such that:

z = kx + (1− k)y = (1− k′)x + k′y ,

z̄ =
k(1− k)

2
ω(x, y) =

k′(1− k′)
2

ω(y, x) .

From the equalities concerning z we get that k′ = 1− k. This lead us to contra-
diction in the equalities concerning z̄. Therefore, in this case, if (Xα, Y β , Zγ) is a
collinear triple then there are no α′, β′, γ′ such that (Y β

′
, Xα′ , Zγ

′
) is a collinear

triple. �

In a general linear dilatation structure the relation (2.5) does not hold. Nev-
ertheless, there is some content of this relation which survives in the general
context.

Proposition 8.8. For x, y sufficiently closed and for ε, µ ∈ Γ with ν(ε), ν(µ) ∈
(0, 1), we have the distance estimates:

(8.7) d(x,w(x, y, ε, µ)) ≤ ν(ε)
1− ν(εµ)

d(x, δyµx)

(8.8) d(y, w(x, y, ε, µ)) ≤ 1
1− ν(εµ)

d(y, δxε y)

Proof. Further we shall use the notations from the proof of theorem 8.2, in
particular w = w(x, y, ε, µ). We define by induction four sequences of points (the
first two sequences are defined as in relation (8.1)):

xn+1 = δ
δxnε yn
µ xn , yn+1 = δxnε yn

x′n+1 = δ
δ
y′n
ε x′n
µ xn , y′n+1 = δ

x′n+1
ε y′n

with initial conditions x0 = x, y0 = y, x′0 = x, y′0 = δxε y. The first two sequences
are like in the proof of theorem 8.2, while for the third and fourth sequences we
have the relations x′n = xn, y′n = yn+1. These last sequences come from the fact
that they appear if we repeat the proof of theorem 8.2 starting from the relation:

δ
δxε y
µ δxε = δwεµ .



INFINITESIMAL AFFINE GEOMETRY OF DILATATION STRUCTURES 133

We know that all these four sequences converge to w as n goes to∞. Moreover,
we know from the proof of theorem 8.2 that for all n ∈ N we have

d(xn, xn+1) = d(x, δxε δ
y
µx)ν(εµ)n

There is an equivalent relation in terms of the sequence y′n, which is the following:

d(y′n, y
′
n+1) = d(δxε y, δ

δxε y
µ δxε δ

x
ε y)ν(εµ)n

This relation becomes: for any n ∈ N, n ≥ 1

d(yn, yn+1) = d(y, δxε y)ν(εµ)n+1

For the first distance estimate we write:

d(x,w) ≤
∞∑
n=0

d(xn, xn+1) = d(x, δxε δ
y
µx)

( ∞∑
n=0

ν(εµ)n
)

=
ν(ε)

1− ν(εµ)
d(x, δyµx)

For the second distance estimate we write:

d(y, w) ≤ d(y, y1) +
∞∑
n=1

d(yn, yn+1) = d(y, y1) +
ν(εµ)

1− ν(εµ)
d(y, δxε y) =

= d(y, δxε y)
(

1 +
ν(εµ)

1− ν(εµ)

)
=

1
1− ν(εµ)

d(y, δxε y)

and the proof is done. �

For a collinear triple (xα, yβ , zγ) in a general linear dilatation structure we
cannot say that x, y, z lie on the same geodesic. This is false, as shown by easy
examples in the Heisenberg group, the simplest noncommutative Carnot group.

Nevertheless, theorem 8.2 allows to speak about collinearity in the sense of
definition 22.

Affine geometry is the study of relations which are invariant with respect to
the group of affine transformations. An invertible transformation is affine if and
only if it preserves the ratio of any three collinear points. We are thus arriving
to the following definition.

Definition 23. Let (X, d, δ) be a linear dilatation structure. A geometrically
affine transformation T : X → X is a Lipschitz invertible transformation such that
for any collinear triple (xα, yβ , zγ) the triple ((Tx)α, (Ty)β , (Tz)γ) is collinear.

The group of geometric affine transformations defines a geometry in the sense
of Erlangen program. The main invariants of such a geometry are collinear triples.
There is no obvious connection between collinearity and geodesics of the space,
as in classical affine geometry. (It is worthy to notice that in fact, there might be
no geodesics in the metric space (X, d) of the linear dilatation structure (X, d, δ).
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For example, there are linear dilatation structures defined over the boundary of
the dyadic tree [7], which is homeomorphic with the middle thirds Cantor set.)

The first result for such a geometry is the following.

Theorem 8.9. Let (X, d, δ) be a strong linear dilatation structure. Any Lipschitz,
invertible, transformation T : (X, d) → (X, d) is affine in the sense of definition
15 if and only if it is geometrically affine in the sense of definition 23.

Proof. The first implication, namely T affine in the sense of definition 15 implies
T affine in the sense of definition 23, is straightforward: by hypothesis on T , for
any collinear triple (xα, yβ , zγ) we have the relation

T δxα δ
y
β δ

z
γ T
−1 = δTxα δTyβ δTzγ

Therefore, if (xα, yβ , zγ) is a collinear triple then the triple ((Tx)α, (Ty)β , (Tz)γ)
is collinear.

In order to show the inverse implication we use the linearity of the dilatation
structure. Let x, y ∈ X and ε, η ∈ Γ. Then

δxε δ
y
ηδ
x
ε−1 = δ

δxε y
η

This identity leads us to the description of δxε y in terms of the ratio function.
Indeed, we have:

δxε y = w(w(x, y, ε, η), εη, ε−1)

If the transformation T is geometrically affine then we easily find that it is affine
in the sense of definition 15:

T (δxε y) = w(w(Tx, Ty, ε, η), εη, ε−1) = δTxε Ty

�

As a conclusion for this section, theorem 8.9 shows that in a linear dilatation
structure we may take dilatations as the basic affine invariants. It is surprising
that in such a geometry there is no obvious notion of a line, due to the fact that
not any permutation of a collinear triple is again a collinear triple.
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79-323.

[20] W. Hazod, Remarks on [semi-]stable probabilities. In: Probability measures on groups VII.

Proceedings, Oberwolfach 1983, p. 182-203. Lecture Notes in Math. 1064, Springer (1984)

[21] J. Heinonen, Nonsmooth calculus, Bull. A.M.S. 44 (2007), 163–232
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