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1 Introduction

This paper is the third in a series [4], [5], dedicated to the fundamentals of sub-
Riemannian geometry and its implications in Lie groups theory. We also bring to the
attention of the reader the paper [7] for the more analytical aspects of the theory.

The point of view of these papers is that what we are dealing with are manifestations
of the emerging non-Euclidean analysis. This become visible especially in the metric
study of Lie groups endowed with left invariant generating distributions.

Metric profiles and their curvature first appeared in [6]. They give new insights
into the behaviour of metric spaces. The subject is in close link with sub-Riemannian
Lie groups because curvatures could be classified by comparison with (metric profiles
of) homogeneous spaces. The homogeneous spaces we are interested in can be seen as
factor spaces of Lie groups with left invariant distributions.



The curvature of a metric space in a point is, by definition, the rectifiability class
of the metric profile associated to the point. There are two problems here that we are
trying to solve.

The first problem comes from the fact that to a metric space with some geometric
structure we can associate several metric profiles. The most interesting are the profile
as a metric space and the dilatation profile, associated with the dilatation structure of
the space.

The dilatation structure is the basic object in the study of differential properties
of metric spaces of a certain type. (For example any Riemannian or sub-Riemannian
manifold, with or without conical singularities, has a dilatation structure. But there are
metric spaces which are not admitting metric tangent spaces, but they admit dilatation
structures). This structure tells us what is the good notion of analysis on that space.
There is an infinite class of different such analysis and the classical one, which we call
Euclidean, is only one of them.

To each metric profile of the space we associate a curvature. We shall have therefore
a metric curvature and a dilatation curvature. The metric curvature is more difficult
to describe and in fact the dilatation curvature contains more complex informations.
The first problem related to curvature is: what curvature we measure?

The second problem of curvature is related to the fact that the definition of curvature
as a rectifiability class is too abstract to work with, unless we have a ”good” set of
representatives for the rectifiability classes. Suppose that we have made such a choice
of the ”good” class of representatives. Then we shall say that the curvature of a space
in a point is the representant of the rectifiability class. The second problem of curvature
is: what is a ”good” class of representatives?

This is obviously a subjective matter; anyway in this paper this subjectivity is
revealed and, once revealed, the proposed choices become less subjective.

The goal of this paper is to show that curvature in the sense of rectifiability class
of the dilatation profile can be classified using coadjoint orbits representations. We
establish here a bridge between:

- curvature notion in spaces which admit metric tangent spaces at any point, and

- self-adjoint representations of algebras naturally associated with the structure of
the tangent space.

In our opinion this is the second link between sub-Riemannian geometry and quan-
tum mechanics. The first link can be uncovered from Buliga [5] section 5 ”Case of the
Heisenberg group”, as explained in the section 11 of the present paper.

An appendix concerning uniform and conical groups is added to the paper. More
information about the subject can be found in Buliga [5], sections 3 and 4.
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2 Distances and metric profiles

The references for the first subsection are Gromov [12], chapter 3, Gromov [10], and
Burago & al. [8] section 7.4. There are several definitions of distances between metric
spaces. The very fertile idea of introducing such distances belongs to Gromov.

2.1 Distances between metric spaces

In order to introduce the Hausdorff distance between metric spaces, recall the Hausdorff
distance between subsets of a metric space.

Definition 2.1 For any set A ⊂ X of a metric space and any ε > 0 set the ε neigh-
bourhood of A to be

Aε =
⋃
x∈A

B(x, ε)

The Hausdorff distance between A,B ⊂ X is defined as

dX
H(A,B) = inf {ε > 0 : A ⊂ Bε , B ⊂ Aε}

By considering all isometric embeddings of two metric spaces X, Y into an arbitrary
metric space Z we obtain the Hausdorff distance between X, Y (Gromov [12] definition
3.4).

Definition 2.2 The Hausdorff distance dH(X,Y ) between metric spaces X Y is the
infimum of the numbers

dZ
H(f(X), g(Y ))

for all isometric embeddings f : X → Z, g : Y → Z in a metric space Z.

If X, Y are compact then dH(X,Y ) < +∞.
The Hausdorff distance between isometric spaces equals 0. The converse is also true

in the class of compact metric spaces (Gromov op. cit. proposition 3.6).
Likewise one can think about a notion of distance between pointed metric spaces.

A pointed metric space is a triple (X,x, d), with x ∈ X. Gromov [10] introduced the
distance between pointed metric spaces (X,x, dX) and (Y, y, dY ) to be the infimum of
all ε > 0 such that there is a distance d on the disjoint sum X ∪ Y , which extends the
distances on X and Y , and moreover

- d(x, y) < ε,

- the ball B(x, 1
ε ) in X is contained in the ε neighbourhood of Y ,

- the ball B(y, 1
ε ) in Y is contained in the ε neighbourhood of X.

Denote by [X,x, dX ] the isometry class of (X,x, dx), that is the class of spaces
(Y, y, dY ) such that it exists an isometry f : X → Y with the property f(x) = y.

The Gromov distance between isometry classes of pointed metric spaces is almost
a distance, in the sense that whenever two of the spaces [X,x, dX ], [Y, y, dY ], [Z, z, dZ ]
have diameter at most equal to 2, then the triangle inequality for this distance is true.
We shall use this distance and the induced convergence for isometry classes of the form
[X,x, dX ], with diam X ≤ 2.
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2.2 Metric profiles

The notion of metric profile was introduced in Buliga [6].
We shall denote by CMS the set of isometry classes of pointed compact metric

spaces. The distance on this set is the Gromov distance between (isometry classes of)
pointed metric spaces and the topology is induced by this distance.

To any locally compact metric space we can associate a metric profile.

Definition 2.3 The metric profile associated to the locally metric space (M,d) is the
assignment (for small enough ε > 0)

(ε > 0, x ∈M) 7→ Pm(ε, x) = [B̄(x, 1), x,
1
ε
d] ∈ CMS

We can define a notion of metric profile regardless to any distance.

Definition 2.4 A metric profile is a curve P : [0, a] → CMS such that:

(a) it is continuous at 0,

(b) for any b ∈ [0, a] and fixed ε ∈ (0, 1] we have

dGH(P(εb),Pm
db

(ε, x)) = O(b)

We used here the notation P(b) = [B̄(x, 1), db] and Pm
db

(ε, x) = [B̄(x, 1), 1
εdb].

The metric profile is nice if

dGH(P(εb),Pm
db

(ε, x)) = O(bε)

The metric profile ε 7→ Pm(ε, x) of a metric space (M,d) for a fixed x ∈ M is a
metric profile in the sense of the definition 2.4 if and only if the space (M,d) admits a
tangent cone. Indeed, a tangent cone [V, v, dv] exists if and only if the following limit

[V, v, dv] = lim
ε→0

Pm(ε, x)

exists. In this case the metric profile Pm(·, x) can be prolonged to ε = 0. The prolon-
gation is a metric profile in the sense of definition 2.4. Indeed, we have still to check
the property (b). But this is trivial, because for any ε, b > 0, sufficiently small, we have

Pm(εb, x) = Pm
db

(ε, x)

where db = (1/b)d and Pm
db

(ε, x) = [B̄(x, 1), 1
εdb].

Note that in the definition of a nice metric profile is not stated that P(0) = Pm
db

(0).
The metric profile of a Riemannian homogeneous space is just a curve in the space

CMS, continuous at 0. Likewise, if we look at a homogeneous regular sub-Riemannian
manifold, the metric profile is not depending on points in the manifold.
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3 Sub-Riemannian manifolds

Classical references to this subject are Belläıche [2] and Gromov [11]. The interested
reader is advised to look also to the references of these papers.

In the literature on sub-Riemannian manifolds not everything written can be trusted.
The source of errors lies in the first notions and constructions, mostly in the fact that
obvious properties connected to a Riemannian manifold are not true (or yet unproven)
for a sub-Riemannian manifold. Of special importance is the difference between a nor-
mal frame and the frame induced by a privileged chart. Also, there are many things in
the sub-Riemannian realm which have no correspondent in the Riemannian case.

To close this introductory comments, let us remark that for the informed reader
should be clear that in the sub-Riemannian realm there are problems even with the
notion of manifold. Everybody agrees to define a sub-Riemannian manifold as in the
definition 3.2. However, a better name for the object in this definition would be ”model
of sub-Riemannian manifold”. We can illustrate this situation by the following com-
parison: the notion of sub-Riemannian manifold given in the definition 3.2 is to the
real notion what the Poincaré disk is to the hyperbolic plane. Only that apparently
nobody found the real notion yet.

LetM be a connected manifold. A distribution (or horizontal bundle) is a subbundle
D of M . To any point x ∈M there is associated the vectorspace Dx ⊂ TxM .

Given the distribution D, a point x ∈ M and a sufficiently small open neighbour-
hood x ∈ U ⊂ M , one can define on U a filtration of bundles as follows. Define first
the class of horizontal vectorfields on U :

X 1(U,D) = {X ∈ Γ∞(TU) : ∀y ∈ U , X(y) ∈ Dy}

Next, define inductively for all positive integers k:

X k+1(U,D) = X k(U,D) ∪ [X 1(U,D),X k(U,D)]

Here [·, ·] denotes vectorfields bracket. We obtain therefore a filtration X k(U,D) ⊂
X k+1(U,D). Evaluate now this filtration at x:

V k(x,U,D) =
{
X(x) : X ∈ X k(U,D)

}
There are m(x), positive integer, and small enough U such that V k(x, U,D) = V k(x,D)
for all k ≥ m and

Dx = V 1(x,D) ⊂ V 2(x,D) ⊂ ... ⊂ V m(x)(x,D)

We equally have

ν1(x) = dimV 1(x,D) < ν2(x) = dimV 2(x,D) < ... < n = dimM

Generally m(x), νk(x) may vary from a point to another.
The number m(x) is called the step of the distribution at x.
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Definition 3.1 The distribution D is regular if m(x), νk(x) are constant on the man-
ifold M .

The distribution is completely non-integrable if for any x ∈ M we have V m(x) =
TxM .

Definition 3.2 A sub-Riemannian (SR) manifold is a triple (M,D, g), where M is
a connected manifold, D is a completely non-integrable distribution on M , and g is a
metric (Euclidean inner-product) on the distribution (or horizontal bundle) D.

A horizontal curve c : [a, b] → M is a curve which is almost everywhere derivable
and for almost any t ∈ [a, b] we have

ċ(t) ∈ Dc(t)

The class of horizontal curves will be denoted by Hor(M,D).
The lenght of a horizontal curve is

l(c) =
∫ b

a

√
g(c(t))(ċ(t), ċ(t)) dt

The length depends on the metric g.
The Carnot-Carathéodory (CC) distance associated to the sub-Riemannian mani-

fold is the distance induced by the length l of horizontal curves:

d(x, y) = inf {l(c) : c ∈ Hor(M,D) , c(a) = x , c(b) = y}

The Chow theorem ensures the existence of a horizontal path linking any two suf-
ficiently closed points, therefore the CC distance it at least locally finite.

We shall work further only with regular sub-Riemannian manifolds, if not otherwise
stated.

3.1 Normal frames and privileged charts

Belläıche introduced the concept of privileged chart around a point x ∈M .
Let (x1, ..., xn) 7→ φ(x1, ..., xn) ∈M be a chart ofM around x (i.e. x has coordinates

(0, ...., 0)). Denote by X1, ..., Xn the frame of vectorfields associated to the coordinate
chart. The chart is called adapted at x if the following happens: X1(x), ..., Xν1(x) form
a basis of V 1(x,D), Xν1+1(x), ..., Xν2(x) span a space in V 2(x,D) which is transversal
to V 1(x,D) and X1(x), ..., Xν2(x) form a basis of V 2(x,D), and so on.

Suppose that the frame X1, ..., Xn corresponds to a chart adapted at x. The degree
of Xi at x is then k if Xi ∈ V k \ V k−1.

Definition 3.3 A chart is privileged around the point x ∈M if it is adapted at x and
for any i = 1, ..., n the function

t 7→ d(x, φ(..., t, ...))

(with t on the position i) is exactly of order deg Xi at t = 0.
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Privileged charts always exist, as proved by Belläıche [2] Theorem 4.15. As an
example consider a Lie group G endowed with a left invariant distribution. The distri-
bution is completely non-integrable if it is generated by the left translation of a vector
subspace D of the algebra g = TeG which bracket generates the whole algebra g. Then
the exponential map is a privileged chart at the identity e ∈ G, but generically not
privileged at x 6= e.

Let X be a vectorfield on M and x ∈M . The degree of X at x is the order of the
function

t ∈ R → R , t 7→ d(x, exp(tX)(x))

and it is denoted by degxX. The vectorfield is called regular in an open set U ⊂ M if
degxX is constant for all x ∈ U .

Consider now a frame of vectorfields X1, ..., Xn defined in U ⊂ M , open set. Let
x ∈ U and define:

Vi(x) = span {Xk(x) : degx Xk = i}

Definition 3.4 A frame X1, ..., Xn, defined in an open set U ⊂ M , is normal if all
vectorfields Xk are regular in U and moreover at any x ∈ U and any i = 1, ..., n one
has:

V i(x) = V1(x) + ...+ Vi(x)

(direct sum).

A normal frame transforms the filtration into a direct sum. Each tangent space
decomposes as a direct sum of vectorspaces Vi. Moreover, each space V i decomposes
in a direct sum of spaces Vk with k ≤ i.

Normal frames exist. Indeed, start with a frame X1, ..., Xr such that for any x
X1(x), ..., Xr(x) form a basis for D(x). Associate now to any word a1....aq with letters
in the alphabet 1, ..., r the multi-bracket

[Xa1 , [..., Xaq ]...]

One can add, in the lexicographic order, elements to the set {X1, ..., Xr}, until a normal
frame is obtained.

To a normal frame X1, ..., Xn and the point x ∈ U one can associate a privileged
chart. Inded, such a chart is defined by:

(a1, ..., an) ∈ Rn ≡ TxM 7→ φx(
∑

aiXi(x)) = exp

(
n∑

i=1

aiXi

)
(x) (3.1.1)

Remark how the privileged chart changes with the base-point x.
The intrinsic dilatations associated to a normal frame, in a point x, are defined via

a choice of a privileged chart based at x. In such a chart φ, for any ε > 0 (sufficiently
small if necessary) the dilatation is defined by

δε(xi) = (εdeg ixi)
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With the use of the privileged charts (3.1.1), for any ε > 0 (sufficiently small if neces-
sary) the dilatations are

δx
ε

(
exp

(
n∑

i=1

aiXi

)
(x)

)
= exp

(
n∑

i=1

aiε
degXiXi

)
(x)

In terms of vectorfields, one can use an intrinsic dilatation associated to the normal
frame. This dilatation transforms Xi into

∆εXi = εdeg XiXi

One can define then, as in Gromov [11], section 1.4, or Vodop’yanov [24], deformed
vectorfields with respect to fixed x by

X̂x
i (ε)(y) = ∆ε

(
(δx

ε )−1 ∗Xi

)
(y)

When ε → 0 the vectorfields X̂x
i (ε) converge uniformly to a vectorfield XN,x

i , on
small enough compact neighbourhoods of x.

The nilpotentization of the distribution with respect to the chosen normal frame,
in the point x, is then the bracket

[X,Y ]xN = lim
ε→0

[X̂x(ε), Ŷ x(ε)] (3.1.2)

We have the equality
[Xi, Xj ]xN (x) = [XN,x

i , XN,x
j ](x)

It is generically false that there are privileged coordinates around an open set in
M . We can state this as a theorem.

Theorem 3.5 Let (M,D, g) be a regular sub-riemannian manifold of topological di-
mension n. There are ∅ 6= U ⊂M an open subset and φ : B ⊂ Rn → U such that φ is
a privileged chart for any x ∈ U if and only if (M,D, g) is a Riemannian manifold.

Proof. If (M,D, g) is Riemannian then it is known that such privileged charts exist.
We have to prove the converse. Suppose there is a map φ : B → U , B open set in Rn,
φ surjective, such that for any x ∈ U φ is privileged. Consider the frame X1, ..., Xn of
vectorfields tangent to coordinate lines induced by φ. Then this is a normal frame in
U . Moreover

[Xi, Xj ] = 0

for any i, j = 1, ..., n therefore the nilpotentization bracket (3.1.2) in any point x ∈ U
is equal to 0. According to Mitchell [18] theorem 1 (in this paper theorem 5.1 section
5) the tangent cone in the metric sense to x is the Euclidean Rn. But this implies that
the manifold (which is supposed regular) is Riemannian. �
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3.2 The nilpotentization at a point

The nilpotentization defines at point x a nilpotent Lie algebra structure. This in turn
gives a nilpotent group operation on the tangent space at x (in the classical sense),
by the use of the Baker-Campbell-Hausdorff formula. Denote this group N(x). By
construction the group N(x) and its Lie algebra are identical as sets (otherwise said the
exponential is the identity). What we have is a vectorspace endowed with a Lie bracket
and a multiplication operation, linked by the Baker-Campbell-Hausdorff formula.

Consider the distribution ND(x) on the group N(x) which is obtained by left trans-
lation in N(x) of the vectorspace Dx ⊂ N(x) (inclusion of a space in the Lie algebra
of the group N(x), seen as the tangent space to the neutral element of the group). We
equally transport the metric g(x) by nilpotent left translations in N(x) and we denote
the metric on the bundle ND(x) by gN (x). We obtain a regular sub-Riemannian man-
ifold (N(x), ND(x), gN (x)). The associated Carnot-Carathéodory distance is denoted
by dx

N .
As a metric space (N(x), dx

N ) is a cone based in the neutral element of N(x). It is
therefore a good candidate for being the metric tangent cone to the space (M,d) at x.

Endowed with the group operation and dilatations, N(x) is a Carnot group.

Definition 3.6 A Carnot (or stratified nilpotent) group is a connected simply con-
nected group N with a distinguished vectorspace V1 such that the Lie algebra of the
group has the direct sum decomposition:

n =
m∑

i=1

Vi , Vi+1 = [V1, Vi]

The number m is the step of the group. The number

Q =
m∑

i=1

i dimVi

is called the homogeneous dimension of the group.

Any Carnot group admits a one-parameter family of dilatations. For any ε > 0, the
associated dilatation is:

x =
m∑

i=1

xi 7→ δεx =
m∑

i=1

εixi

Any such dilatation is a group morphism and a Lie algebra morphism.
We collect some important facts to be known about Carnot groups:

(a) The metric topology and uniformity of N are the same as Euclidean topology
and uniformity respective.

(b) The ball B(0, r) looks roughly like the box
{
x =

∑m
i=1 xi : ‖xi‖ ≤ ri

}
.
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(c) the Hausdorff measure HQ is group invariant and the Hausdorff dimension of a
ball is Q.

(d) there is a one-parameter group of dilatations, where a dilatation is an isomorphism
δε of N which transforms the distance d in εd.

The last item is especially important, because it leads to the introduction of an
intrinsic notion of derivability in a Carnot group.

In Euclidean spaces, given f : Rn → Rm and a fixed point x ∈ Rn, one considers
the difference function:

X ∈ B(0, 1) ⊂ Rn 7→ f(x+ tX)− f(x)
t

∈ Rm

The convergence of the difference function as t → 0 in the uniform convergence gives
rise to the concept of differentiability in it’s classical sense. The same convergence, but
in measure, leads to approximate differentiability. This and another topologies might
be considered (see Vodop’yanov [21], [22]).

In the frame of Carnot groups the difference function can be written using only
dilatations and the group operation. Indeed, for any function between Carnot groups
f : G→ P , for any fixed point x ∈ G and ε > 0 the finite difference function is defined
by the formula:

X ∈ B(1) ⊂ G 7→ δ−1
ε

(
f(x)−1f (xδεX)

)
∈ P

In the expression of the finite difference function enters δ−1
ε and δε, which are dilatations

in P , respectively G.
Pansu’s differentiability is obtained from uniform convergence of the difference func-

tion when ε→ 0.
The derivative of a function f : G→ P is linear in the sense explained further. For

simplicity we shall consider only the case G = P . In this way we don’t have to use a
heavy notation for the dilatations.

Definition 3.7 Let N be a Carnot group. The function F : N → N is linear if

(a) F is a group morphism,

(b) for any ε > 0 F ◦ δε = δε ◦ F .

We shall denote by HL(N) the group of invertible linear maps of N , called the linear
group of N .

The condition (b) means that F , seen as an algebra morphism, preserves the grading
of N .

The definition of Pansu differentiability follows:

Definition 3.8 Let f : N → N and x ∈ N . We say that f is (Pansu) differentiable
in the point x if there is a linear function Df(x) : N → N such that

sup {d(Fε(y), Df(x)y) : y ∈ B(0, 1)}
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converges to 0 when ε→ 0. The functions Fε are the finite difference functions, defined
by

Ft(y) = δ−1
t

(
f(x)−1f(xδty)

)
For differentiability notions adapted to general sub-Riemannian manifolds the reader

can consult Margulis, Mostow [16] [17], Vodop’yanov , Greshnov [23], [24] or Buliga [5].

4 Deformations of sub-Riemannian manifolds

One can use privileged charts or normal frames to define several deformations of a sub-
Riemannian manifold around a point. These deformations can be described as curves
in the metric space CMS of isometry classes of pointed compact metric spaces, with
the Gromov-Hausdorff distance. For the isometry class of the pointed metric space
(X,x, d) we shall use the notation [X,x, d] or [X, d] when the marked point is obvious.
We shall work only with spaces (X,x, d) such that X = B̄(x, 1).

Consider a privileged chart around x ∈M with the associated dilatations δx
ε .

The dilatation flow δx
ε induces the following deformation: let (Dε, gε) be the pair

distribution - metric on the distribution obtained by transport with (δx
ε )−1, namely:

Dδx
ε (y)Dε(y) = D(δx

ε y)

g(δx
ε y)(Dδ

x
ε (y)u,Dδx

ε (y)v) = gε(y)(u, v)

for any u, v ∈ TxM . The deformation associated is

[D, g, ε] = [B̄(p, 1), (D, g, ε)] (4.0.1)

where the notation (D, g, ε) is used for the CC distance in the sub-Riemannian manifold
(M,Dε, gε).

A slightly different deformation induced by the dilatation flow δx
ε is given by

[δx, ε] = [Bd(x, ε), (δx, ε)] (4.0.2)

where the distance (δx, ε) is given by

(δx, ε)(δx
ε y, δ

x
ε z) = d(y, z)

and the ball Bd(x, ε) is taken with respect to the original distance d.
It is not trivial to remark that there is no reason for the equality [D, g, ε] = [δx, ε].
Another deformation is associated to the dilatations ∆ε and pairs normal frame -

Riemannian metric g. This is simply

[∆, ε] = [B̄(x, 1), (∆, ε)] (4.0.3)

where (∆, ε) is the Riemannian distance induced by the Riemannian metric gε given
by:

gε(y)(∆εX(y),∆εY (y)) = g(y)(X(y), Y (y))

for any pair of vectorfields X,Y .
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5 Meaning of Mitchell theorem 1

A key result in sub-Riemannian geometry is Mitchell [18] theorem 1:

Theorem 5.1 For a regular sub-Riemannian space (M,D, g), the tangent cone of
(M,d) at x ∈M exists and it is isometric to (N(x), dx

N ).

Recall that the limit in the Gromov-Hausdorff sense is defined up to isometry. This
means it this case that N(D) is a model for the tangent space at x to (M,dCC). In the
Riemannian case D = TM and N(D) = Rn, as a group with addition.

This theorem tells us nothing about the tangent bundle.
One can identify in the literature several proofs of Mitchell theorem 1. Exactly

what is proven in each available variant of proof? The answer is: each proof basically
shows that various deformations, such as the ones introduced previously, are metric
profiles which can be prolonged to 0. Each of this metric profiles are close in the GH
distance to the original metric profile of the CC distance. More precisely:

Lemma 5.2 Let P′(t) be any of the previously introduced deformations [δ, ε], [∆, ε],
[D, g, ε]. Then

dGH(Pm
ε ,P′(ε)) = O(ε)

The proof of this lemma reduces to a control problem. In the case of the profile
[δ, ε], this is Mitchell [18] lemma 1.2.

Mitchell [18] and Belläıche [2] theorem 5.21, proposition 5.22, proved the following:

Theorem 5.3 The deformation ε 7→ [D, g, ε] can be prolonged by continuity to ε = 0
and the prolongation is a metric profile. We have

[D, g, 0] = [B̄(0, 1), dN ]

The corresponding result of Gromov [11] section 1.4B and Vodop’yanov [24] is:

Theorem 5.4 The deformation ε 7→ [∆, ε] can be prolonged by continuity to ε = 0 and
the prolongation is a metric profile. We have

[∆, 0] = [B̄(0, 1), dN ]

Finally, a similar theorem for the metric profile [δx, ε] is true.
Any of these theorems imply the Mitchell theorem 1, with the use of the approx-

imation lemma 5.2. But in fact these theorems are different statements in terms of
metric profiles.
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6 Tangent bundles and dilatation structures

There are several ways to associate a tangent bundle to a metric measure space (Cheeger
[9] for what seems to be in fact a cotangent bundle) or to a regular sub-Riemannian
manifold (Margulis & Mostow [16], [17], Vodop’yanov, Greshnov [24]). These bundles
differs. For example the Cheeger tangent bundle of a sub-Riemannian manifold can
be identified with the distribution D and Margulis-Mostow bundle is the same as the
usual tangent bundle, but with the fiber isomorphic with N(D), instead of Rn.

For several reasons none of these constructions is completely satisfying in the
case of sub-Riemannian manifolds. This is discussed at length in the paper Buliga,
Vodop’yanov [7]. We adopt the point of view of this paper. The interested reader
could also consult Buliga [5], sections 3 to 5, for more developed constructions of the
tangent bundle for sub-Riemannian Lie groups.

A very important remark is that any notion of tangent bundle comes with an asso-
ciated notion of differentiability.

We begin by describing the Vodop’yanov tangent bundle. After this we explain
what a dilatation structure is and how it induces another (but related) notion of tangent
bundle.

Definition 6.1 The tangent bundle in the sense of Vodop’yanov is an assignment x ∈
M 7→ (O(x), dx

N , δ
x
ε ) where O(x) is n open neighbourhood of x, dx

N is a quasi-distance
on O(x) such that for any y, z ∈ O(x) we have

dx
N (δx

ε y, δ
x
ε z) = εdx

N (y, z) ∀ε ∈ [0, 1] (6.0.1)

and
1
ε
| dCC(δx

ε y, δ
x
ε z)− dx

N (δx
ε y, δ

x
ε z) |→ 0 (6.0.2)

as ε→ 0, uniformly with respect to y, z ∈ K ⊂ O(x), compact.
There is a nilpotent group operation on O(x), denoted by

x·. The neutral element of
O(x) is x.

The differentiability notion introduced by Vodop’yanov is explained further.

Definition 6.2 A function f : M → M ′ is differentiable at x ∈ M in the sense of
Vodop’yanov if there is a group morphism Df(x) : O(x) → O(f(x)) which commutes
with dilatations with the property: for any ε > 0 there is µ > 0 such that for any
y ∈ O(x), if dCC(x, y) ≤ µ then

d
f(x)
N (f(y), Df(x)(y)) ≤ εdx

N (x, y)

A related notion is a dilatation structure. We advertise once again the point of view
that this is the central notion of interest in the study of the differentiability properties
of a sub-Riemannian manifold.
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Definition 6.3 A dilatation structure associated to (X, d) is an assignment x ∈ X 7→
δx
ε : O(x) → O(x), for all ε ∈ (0, 1], where O(x) is an open contractible neighbourhood

of x and all δx
ε are invertible, such that:

(a) for any x ∈ X the map

Pδ(x)(ε) = [Bd(x, ε), (δ, ε)]

is a nice metric profile,

(b) if we denote by Pm(x) the metric profile of the space (X, d) at x then

lim
ε→0

dGH(Pm(x)(ε),Pδ(x)(ε)) = 0

(c) for any x ∈ X and y ∈ O(x) the map(
δδx

ε y
ε

)−1
◦ δx

ε

converges uniformly to a map, as ε tends to 0. The convergence is uniform with
respect to x in a compact set.

(d) for small enough α > 0 we have the uniform limit

δδx
ε u

α → δx
α

which is uniform with respect to x and u ∈ O(x), both in compact sets.

(e) δx
ε contracts O(x) to x, uniformly with respect to x in compact sets.

This definition generalizes the axioms for ”uniform groups” introduced in Buliga [5],
section 3.1. A shortened version of this section can be found in the Appendix.

The point (a) from the definition 6.3 means that δx
a ◦ δx

b is approximately equal to
δx
b ◦ δx

a , because both are almost equal to δx
ab when we measure with the distance d.

The point (b) from the definition is equivalent with the following assertion: for any
x0 and for any ε > 0 there is λ > 0 and there is µ0 > 0 such that for any x, y ∈ B(x0, λ)
and for any µ ∈ (0, µ0] we have

1
µ
| d(δx0

µ x, δx0
µ y)− µd(x, y) | ≤ ε(1 + max {d(x0, x), d(x0, y)}) (6.0.3)

The meaning of the point (c) will be explained a bit later, where we shall give a
motivation for the definition 6.3.

Remark that if (X, d) admits a dilatation structure, it does not imply that it has a
metric tangent cone at any of its points.

We shall be concerned with (X, d) which admits a dilatation structure.
Such metric spaces exist.

Theorem 6.4 Any regular sub-Riemannian manifold admits a dilatation structure.
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Proof. Indeed, such a dilatation structure is induced by any normal frame. This is
a consequence of Mitchell theorem 1, more specifically it comes from lemma 5.2, the
mentioned Mitchell type theorem for the metric profile [δx, ε] = Pδ(x) and proposition
6.3, section 6, Buliga, Vodop’yanov [7]. Alternatively, the theorem is a direct conse-
quence of the existence of a tangent bundle in the sense of Vodop’yanov, Greshnov [24]
and cited proposition 6.3, section 6 [7]. �

In the case of regular sub-Riemannian manifolds we know that more it is true,
namely that indeed the metric profiles can be prolonged to ε = 0. Therefore a metric
tangent space exists in any point. Moreover, the dilatations δx

ε behave as homotethies
for the nilpotent distance dx

N .
Let us give now a motivation for the notion of dilatation structure. The most

misterious seems to be the point (c) of the definition 6.3. We shall call a map(
δδx

ε y
ε

)−1
◦ δx

ε

an approximate infinitesimal left translation. Such maps appear from the following
construction.

We are in a regular sub-Riemannian manifold, endowed with a normal frame and a
tangent bundle in the sense of Vodop’yanov.

Take x ∈M and u, v ∈ O(x) then we know that for any ε > 0 there is µ0 > 0 such
that for any µ ∈ (0, µ0] we have

1
µ
| d(δx

µu, δ
x
µv)− µdx

N (u, v) | ≤ ε

For small enough µ0 we can see the picture from the point of view of δx
µu, that is in

the same hypothesis it is also true that
1
µ
| d(x, δx

µv)− d
δx
µu

N (x, δx
µv) |→ 0

as µ→ 0. This is equivalent with

| 1
µ
d(x, δx

µv)− d
δx
µu

N (
(
δ
δx
µu

µ

)−1
(x),

(
δ
δx
µu

µ

)−1
◦ δx

µ(v) |→ 0

as µ → 0. We recognize here the appearance of the approximate left infinitesimal
translation.

In this particular case these translations converge, as explained in the proof of
theorem 6.4. We can actually use this trick of changing the point of view to prove
that the limits, called left nilpotent translations, are isometries with respect to the
nilpotentized distance.

The meaning of point (c) in definition 6.3 is that approximate infinitesimal trans-
lations converge. This allows to construct a tangent bundle.

Definition 6.5 The virtual tangent bundle associated to a dilatation structure is the
assignment

x ∈ X 7→ V T δ
xX =

{
lim
ε→0

(
δδx

ε y
ε

)−1
◦ δx

ε : y ∈ O(x)
}
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Fix x and denote
u ∗ v = lim

ε→0

(
δδx

ε u
ε

)−1
◦ δx

ε (v)

Then u ∗ v is not an operation, but it leads to an operation, if we think at u ∗ v as the
left translation of v by ”u−1”. Define for every L ∈ V T δ

xX

δε.L = δx
ε ◦ L ◦ δ−1

ε

Theorem 6.6 For any ε > 0 sufficiently small and any L ∈ V T δ
xX we have δε.L ∈

V T δ
x . Moreover V T δ

xX forms a conical uniform group in the sense of definition 3.3
Buliga [5].

The proof is a transcription of the proof of proposition 3.4 op.cit., reproduced in Ap-
pendix as proposition 12.3.

In the case of sub-Riemannian spaces more it is true: consider the dilatation struc-
ture induced by a normal frame. Then V T δ

xM is isomorphic as a group with the metric
tangent space at x cf. Buliga [5] section 3.2.

7 Curvature of a nice metric profile

We shall define further the notion of curvature associated with a given metric profile. It
is nothing but the rectifiability class of the metric profile with respect to the Gromov-
Hausdorff distance. According to tastes and needs, one may use other distances than
the mentioned Gromov-Hausdorff one, thus obtaining other notions of curvature.

Definition 7.1 Two nice metric profiles P1, P2 are equivalent if

d((P1(a),P2(a)) = o(a)

The curvature class of a metric profile P is the equivalence class of P.

This notion of curvature is too general from a geometer point of view. That is
why we shall restrict to smaller classes of curvatures. Notice however that this is a
choice of what should be a ”good” curvature. For example we want familiar spaces to
have ”good” curvature. A minimalist point of view could also be considered. ”Good”
curvatures should be associated to simple objects.

Natural candidates which satisfy both requirements are homogeneous spaces. In-
deed, the metric profile of a homogeneous space does not depend on the base point and
the space is simple in the sense that it is a factor space of two groups.

Nevertheless, this choice is not based on a mathematical argument. At the moment
where the paper is written people just like homogeneous spaces. Other classes of spaces
could be interesting as well, for example factor spaces of Hopf algebras.

Let us explain what classification of curvatures means according to the preceding
discussion. Later in the paper we shall refine the definition of curvature like this: if the
metric profile (or other naturally associated profile) of a metric space (X, d) at a point
x ∈ X is equivalent with the metric profile (or other...) of a particular geometric object
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G (for example a homogeneous space), then we shall say that (X, d) has curvature at
x and the curvature of (X, d) at x is G.

Classification of curvatures means classification of (metric profiles or other profiles
of) geometric objects from the class that we like.

Here we shall classify the curvatures by comparison with deformations of homoge-
neous ensembles, which are generalizations of homogeneous spaces. Until then we shall
present some motivations for the notion of curvature proposed in this paper.

This way of defining the curvature seems to be interesting even in the Riemannian
case. It is partially connected to Cartan method of finding differential invariants, only
that here the constructions are purely metric or intrinsicaly geometric. We (almost)
don’t use differential geometry methods.

8 Homogeneous spaces and motivation for curvature

A homogeneous metric space has the same metric profile associated to any of its points.
That makes homogeneous spaces good candidates for classifying curvatures.

A homogeneous metric space is a metric space (X, d) such that for any point x ∈ X
we have

X = {f(x) : f ∈ Isom(X, d)}

where Isom(X, d) denotes the group of isometries of (X, d). Fix a point p ∈ X and
denote further

Isomp(X, d) = {f ∈ Isom(X, d) : f(x) = x}

the stabiliser of the point p.
The coset class Isom(X, d)/Isomp(X, d) is (locally) homeomorphic with (X, d) by

the map
π : Isom(X, d)/Isomp(X, d) → X

which associates to p ∈ X the coset fIsomp(X, d).
The inner action of Isomp(X, d) on Isom(X, d) gives an action of Isomp(X, d)

on the coset space Isom(X, d)/Isomp(X, d). This inner action is compatible with
the action of Isomp(X, d) on X in the sense: for any h ∈ Isomp(X, d) and for all
f ∈ Isom(X, d) we have

π(hfh−1Isomp(X,D)) = h(π(fIsomp(X, d)))

What is important is the geometry of a homogeneous space in the neighbourhood
of one point. That is why we shall look to Lie algebras, endowed with a metric and a
one parameter group of dilatations (equivalently, with a given gradation).

Let G be a Lie group and G0 a subgroup. We shall imagine that there is a regular
sub-Riemannian manifold (X, d) such that G = Isom(X, d), G0 = Isomp(X, d). We
want to see which are the conditions upon G, G0 in order for this to be possible.

Any right-invariant vectorfield on G descends on a vectorfield on left cosets G/G0.
In particular, if we endow G with a right-invariant distribution, then G/G0 is endowed
with a distribution induced by the descent of any right invariant ”horizontal” frame.
G/G0 is not usually a regular sub-Riemannian manifold. Look for example to the case:
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G = H(1), the 3 dimensional Heisenberg group. Take G0 as the one parameter group
generated by an element of the distribution. Then G/G0 is the Grushin plane, which
is not a regular sub-Riemannian manifold.

Consider on G the right invariant distribution

D” = Lie G0 +D′

If G = Isom(X, d) and G0 = Isomp(X, d) then it should happen that Lie G0 ∩D′ = 0
and D′ descends on the distribution D on G/G0.

Moreover the action of G0 on G/G0 correspond to the action of Isomp(X, d) on
(X, d), which is (the descent of) the inner action. We are not wrong if we suppose that
isometries preserve the distribution at 0, which translates into the condition: for any
h ∈ G0

AdhD
′ ⊂ D′

With the information from the preceding sections it is visible that this condition comes
from the assumption that isometries fixing the point p are derivable. We don’t have
a proof for this assumption. It is a natural condition that we impose. See further for
another aspect of this condition.

We know one more thing about the homogeneous metric space (X, d): its tangent
cone. Consider on G with given distribution D” the dilatations δε and a privileged
right-invariant basis around the neutral element. The knowledge of the tangent cone
implies the following:

(a) we know some relations in the algebra Lie G (described further),

(b) we know that for any h ∈ G0 Adh ∈ HL(G,D”), that is Adh commutes with
dilatations δε.

The previous discussion motivates the introduction of the following object.
Let us consider triples σ = ([·, ·], δ, g) where

(homs - a) [·, ·] is a Lie bracket of a Lie algebra g,

(homs - b) δ is a one parameter group of transformations ε > 0 7→ δε which are simultane-
ously diagonalizable. The eigenspaces of any δε form a direct sum decomposition
of g as a vectorspace,

g = V1 + ...+ Vm

For any k = 1, ...,m and any x ∈ Vk, ε > 0 we have δεx = εkx.

(homs - c) g is an inner product on V1. Moreover, we shall suppose that V1 decomposes in
an orthogonal sum

V1 = D0 +D

such that g = 0 on D0 and g is strictly positive defined on D. We shall denote
by p the dimension of D.
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(homs - d) D0 is a Lie subalgebra of (g, [·, ·]). Moreover, there is an isomorphism of Lie
algebras between D0 and a Lie subalgebra of so(p), so we shall see the elements
ofD0 as antisymmetric matrices acting onD and the Lie bracket between x0 ∈ D0

and x ∈ D is
[x0, x] = x0x

(homs - e) The direct sum decomposition of g is compatible with the bracket in the following
sense: define first the deformed bracket

[u, v]ε = δ−1
ε [δεu, δεv]

for any u, v ∈ g. When ε→ 0 the deformed bracket converges: the limit exists

lim
ε

[u, v]ε = [u, v]N

and g is a direct sum between the abelian Lie algebra (D0, [·, ·]N ) and the Carnot
algebra D + V2 + ...+ Vm with the bracket [·, ·]N and dilatations δε.

(homs - f) finally, a differentiability condition: for any x0 ∈ D0, ε > 0 and y ∈ g we have:

[x0, δεx] + D0 = δε[x0, x] + D0

Definition 8.1 We call homogeneous space any triple σ which satisfies all conditions
(homs - a), ... , (homs - f).

Remark 8.2 This notion of homogeneous space is different from the usual one. We
have not been able to find a special name for these triples. Notice however that in
the realm of regular sub-Riemannian manifolds the previous definition introduces the
natural notion of homogeneous space.

A morphism between triples σ = (g, δ, g) and σ′ = (g′, δ′, g′) is a linear map F :
g → g′ which is a Lie algebra morphism, it transforms g into g′ and it commutes with
dilatations : Fδ = δ′F .

Remark that instead of doing a factorisation we choose to introduce D0 with null
metric on it. This is equivalent to a metric factorisation.

To a triple σ = (g, δ, g) is associated the length measure given by the metric g,
translated at left on a neighbourhood of 0 ∈ g using the Baker-Campbell-Hausdorff
formula. This length measure induces a (pseudo) distance denoted by d. For any ε > 0
define the (pseudo) distance

dε(x, y) = d(δ−1
ε x, δ−1

ε y)

Make the metric factorisation of the domain of convergence of the Baker-Campbell-
Hausdorff formula with respect to d. The resulting metric space is (in a neighbourhood
of 0) a regular sub-Riemannian manifold.
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Declare a > 0 admissible if the open ball centered at 0 and radius 1, defined with
respect to the distance d2a, is contained in (the factor of) the domain of convergence
of the Baker-Campbell-Hausdorff formula. Consider now the number

R = min (1, sup {a > 0 admissible })

Associate then to σ the compact metric space (Xσ, dσ) where Xσ is the closed ball of
radius 1 centered at 0 and dσ = dR. The function evoked previously is

σ 7→ [Xσ, dσ, 0]

To σ is associated also a metric profile, given by

Pσ(a) = [B(0, 1), dσ(a), 0]

which is defined as the deformation [D, g, ε] described at (4.0.1). We call this the
dilatation metric profile of σ.

From the point of view of this paper the rectifiability class of such a deformation is
a good curvature.

We give further a motivation for the fact that we consider such curvatures good.

8.1 Riemannian surfaces

We shall begin by looking at homogeneous spaces which correspond to Riemannian
homogeneous n manifolds. We are interested in triples σ such that:

- the Lie algebra g admits a decomposition

g = D0 +D

with dimension of D equal to n,

- On D we have an Euclidean metric g,

- D0 is a Lie subalgebra of (g, [·, ·]). Moreover, there is an isomorphism of Lie
algebras between D0 and a Lie subalgebra of so(n), so we shall see the elements
ofD0 as antisymmetric matrices acting onD and the Lie bracket between x0 ∈ D0

and x ∈ D is
[x0, x] = x0x

This limits the dimension of D0 to be at most n(n− 1)/2.

- For any ε > 0 we have the (usual) dilatation δεx = εx.

When n = 2 we are looking to Riemannian 2 dimensional homogeneous surfaces.
In this case g is 2 or 3 dimensional.

We start with the 3 dimensional case. Consider a basis X0, X1, X2 for g, such that
X0 generates D0 and X1, X2 forming an orthonormal basis of D. The bracket relations
that we know are:

[X0, X1] = aX2
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[X0, X2] = −aX1

[X1, X2] = bX0 + cX1 + dX2

We suppose that a 6= 0. From Jacobi identity we get c = d = 0. Therefore we have

[X0, X1] = aX2

[X0, X2] = −aX1

[X1, X2] = bX0

We have a one dimensional family of homogeneous Riemannian surfaces, where the
curvature can be measured by | ab |. All these are 2 dimensional spheres of radius
1/ | ab |.

The second case is dim D0 = 0 and g is a 2 dimensional Lie algebra. Take as
previously a basis for D = g. We have only one bracket relation:

[X1, X2] = aX1 + bX2

This corresponds to a 2 dimensional family of homogeneous surfaces with negative
curvature. When we look to deformations [D, g, ε] and their equivalence as metric
profiles, we see that we are left with one dimensional family of negative curved surfaces,
with curvature −

√
a2 + b2.

Therefore in the case of 2 dimensional riemannian manifolds, the curvature in the
sense of this paper is the Gauss curvature.

8.2 About Cartan method of equivalence for sub-Riemannian mani-
folds

For a description of the Cartan method of equivalence for sub-Riemannian spaces
consult Montgomery [19], chapter 7, especially sections 7.2, 7.8 (Riemannian sur-
faces), 7.7 (Distributions: torsion equals curvature), 7.10(Subriemannian contact three-
manifolds). In the last mentioned section the work of Hughen [13] is followed in the
exposition.

We are not going to describe here the Cartan method of equivalence. The mentioned
references should satisfy the interested reader. Instead, we shall comment the method.

The main object of the method is theG-structure which encodes the sub-Riemannian
manifold. Let us describe it.

A coframe (η1, ..., ηn) in T ∗M encodes a regular sub-Riemannian manifold (M,D, g)
if we have

D = ker (ηp+1
1 , ...., ηn) , g =

(
(η1)2 + ...+ (ηn)2

)
|D

Such a coframe is called adapted to the sub-Riemannian manifold (M,D, g).
On can see the family of all adapted coframes to a regular sub-Riemannian manifold

as a bundle over the manifold M , with the structure structure group

G0 =
{(

A B
0 C

)
: A ∈ O(p), B ∈M(p, n− p), C ∈ GL(n− p,R)

}
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Such a bundle B →M is called a G0 structure.
Cartan method of equivalence is a machine for solving the problem of local equiva-

lence of G0-structures. From this point of view, consider two regular sub-Riemannian
manifolds (M,D, g) and (M ′, D′, g′) with distinguished points x ∈ M and x′ ∈ M ′. If
there are open neighbourhoods x ∈ U ⊂ M and x′ ∈ U ′ ⊂ M ′ and a diffeomorphism
φ : U → U ′ which induces a bundle isomorphism of the G0 structures associated to U
and U ′ then we shall say that M and M ′ are locally equivalent around (x, x′).

We might be interested in metric local equivalence between the pointed metric
spaces (M,x, d) and (M ′, x′, d′), which means: there are open neighbourhoods x ∈ U ⊂
M and x′ ∈ U ′ ⊂M ′ and an isometry map φ : U → U ′.

In this paper we are working with an even weaker notion of equivalence, that of
metric profiles associated to deformations of sub-Riemannian manifolds.

The author does not know any rigorous result concerning the relations between these
equivalences. The reader under the temptation to use Rademacher or Stepanov type
results for sub-Riemannian manifolds, like the one in Margulis, Mostow [17], should be
very careful.

The method described here as ”classification” of curvatures is, at the present stage
of development, only remotely connected to the modern applications of the Cartan
method of equivalence. When applied to sub-Riemannian contact 3 manifolds, it seems
to be closer to the work described in the paper Agrachev, El Alaoui, Gauthier, Kupka
[1], where the authors look for local normal form expansions for the exponential map
associated to the metric sub-Riemannian structure.

8.3 Homogeneous contact 3 manifolds

Contact manifolds are particular cases of sub-Riemannian manifolds. The contact
distribution is completely non-integrable. By using natural normalization of the contact
form (see for example Bieliavski, Flbel, Gorodski [3] or Hughen [13]) we can uniquely
associate to a contact structure, endowed with a metric on the contact distribution, a
sub-Riemannian manifold. The nilpotentization of the contact distribution in a contact
manifold of dimension 3 is a Heisenberg group H(1).

The horizontal linear maps on the Heisenberg group are known. Moreover, the
group of isometries of H(1)) which preserve the origin is SU(1) = SO(2).

In order to classify all homogeneous contact 3 manifolds, we have to consider two
cases. The first case is g 4 dimensional, with a basis {X0, X1, X2, X3}, such that X0 is
a basis for D0, {X1, X2} a basis for D, X3 a basis for V2. The vectorspace g has the
direct sum decomposition

g = D0 +D + V2

We shall note V1 = D0 +D. For any x ∈ g we shall use the decomposition

x = x0 + x1 + x2

which comes from the direct sum decomposition of g.
We also have a Lie bracket [·, ·] on g and an Euclidean metric on D, called g.
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The definition 8.1 applied in this particular example gives the following relations.
There is a 6= 0 such that

[X0, X1] = aX2

[X0, X2] = −aX1

The dilatations δε are defined for any ε > 0 and for any x ∈ g by

δεx = εx0 + εx1 + ε2x2

Condition (homs - f) implies that

[X0, X3] = b03X0 + e03X3

The other bracket relations are:

[X1, X2] = b12X0 + c12X1 + d12X2 + e12X3

[X2, X3] = b23X0 + c23X1 + d23X2 + e23X3

[X1, X3] = b13X0 + c13X1 + d13X2 + e13X3

Condition (homs - e) implies e12 6= 0.
We have to check the Jacobi relations for the bracket. After a careful computation

we are left with the following bracket relations:

[X0, X1] = aX2

[X0, X2] = −aX1

[X0, X3] = 0

[X1, X2] = b12X0 + e12X3

[X1, X3] = dX2

[X2, X3] = −dX1

We can modify X0 and X3 such such that a = 1. This is not modifying the dilatations
and the metric g. We can then diagonalise the metric g. This is leaving us with 2
strictly positive parameters λ1, λ2 associated to the metric

g = λ1X
∗
1 ⊗X∗

1 + λ2X
∗
2 ⊗X∗

2

and the parameters b12,d, e12 from the bracket. By rescaling X1, X2, X3 with arbitrary
(but not null) numbers α1, α1, α2, we see that the set of parameters

(λ1, λ2, b12, d, e12) and (α2
1λ1, α

2
1λ2, α

2
1b12, α2d,

α2
1

α2
e12)

are equivalent.
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The parameter b12 will not count when the metric factorisation with respect to the
action of SU(1) is made, therefore we are left with two parameters:

de12
λ1

,
λ2

λ1

or equivalently with a point [de12, λ2, λ1] from a convex set in projective plane, with a
free choice for the sign of de12.

But this is not all. Recall that in the end we are looking to metric profiles associated
to dilatation structure. When any metric profile is defined, a further normalisation takes
place: we have to decide what the parametrisation of the metric profile is, namely to
choose P(1).

This can always be translated, for the metric profile of the metric space Xσ, by a
conformal modification of the metric g (see for this relation (10.0.2)). If we use the
dilatation metric profile then what we do is a renormalisation in the sense of relation
(10.0.1)

This is leaving us with only a one dimensional family of ”good” curvatures in this
case. An explanation of this final normalisations is found in section 10.

The contact homogeneous spaces we have just discussed correspond to spaces with
maximal symmetry, using the terminology of Montgomery [19] chapter 7, section 7.10,
paragraph ”Examples with maximal symmetry”.

The second case is g 3 dimensional, Lie algebra with the bracket [·, ·], and a metric
g. We pick a basis {X1, X2, X3} and a decomposition

g = D + V2

such that {X1, X2} is a basis for D and X3 is a basis for V2. The dilatations δε are
defined for any ε > 0 and for any x ∈ g by

δεx = εx1 + ε2x2

The only constraint on the bracket relations is

[X1, X2]3 6= 0

The classification uses the structure group G0 as in Cartan method. We shall not
reproduce here the details, but only give the answer.

Any homogeneous 3 dimensional Lie algebra is isomorphic with a triple σ which
has the following form.

There is a basis {X1, X2, X3} such that the metric g has the form

g = X∗
1 ⊗X∗

1

the dilatations are given for any ε > 0 by

δεX1 = εX1 , δεX2 = εX2 , δεX3 = ε2X3

and the bracket relations are
[X1, X2] = X3
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[X2, X3] = ρ cos2 φX1 + ρ sinφ cosφX2 + γ cosφX3

[X3, X1] = ρ sinφ cosφX1 + ρ sin2 φX2 + γ sinφX3

where ρ, φ, γ ∈ R are arbitrary numbers.
As in the previous case we have a last normalisation to do, explained in section 10,

relations (10.0.1) and (10.0.2). A straightforward way to understand this normalisation
consists in the use of the deformed bracket from (homs -e), which here takes the form

[X1, X2]ε = X3

[X2, X3]ε = ρε2 cos2 φX1 + ρε2 sinφ cosφX2 + γε cosφX3

[X3, X1]ε = ρε2 sinφ cosφX1 + ρε2 sin2 φX2 + γε sinφX3

Denote by σε the homogeneous space with the bracket defined by [·, ·]ε, the canonical
metric g and dilatations. This space is described by the parameters (ρε2, φ, γε). We
shall finally identify these spaces, which leaves us with only a 2 dimensional parameter
space, again in total agreement with Montgomery, Hughen, Agrachev et. al. op.cit..

Particular examples are: SO(3), SL(2,R), E(1,1), each with naturally chosen gen-
erating 2 dimensional distributions.

A similar classification can be done, in an easier way, using homogeneous ensembles.
These are described in next section.

9 Homogeneous ensembles and deformations

In this section we shall describe first the homogeneous ensembles, then the deformations
of such objects.

The inspiration for the notion of a homogeneous ensemble comes from the construc-
tion of a normal frame in a sub-Riemannian manifold. We recall it here.

We start with a system of vectorfields {X1, ..., Xp} which span the distribution D.
There is also an Euclidean metric g on the distribution D = V 1.

We add, in lexicographic order, brackets of the initial vectorfields, [Xi, Xj ], until
we obtain a basis for V 2. We can equally extend the metric g to V 2 by

g([Xi, Xj ], Xk) = 0

g([Xi, Xj ], [Xi, Xj ]) = g(Xi, Xi)g(Xj , Xj)

if [Xi, Xj ] was added to the normal frame under construction. Moreover, any two
different vectorfields added at same step of the construction are orthogonal with respect
to g.

We repeat the procedure until we complete the normal frame. What we get?
We end with a frame {X1, ..., Xn} which constitutes the set of nodes of a tree with

leaves {X1, ..., Xp} and roots {Xi1 , ..., } (the vectorfields added at the final step of the
construction). To any node Xk which is not a leaf corresponds two branches pointing
to X(1)

k , X(2)
k , such that X(1)

k ∈ {X1, ..., Xp} and

Xk = [X(1)
k , X

(2)
k ]
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meaning that Xk has been obtained as the bracket of X(1)
k , X(2)

k at some step of the
construction.

We also have a degree function associated to the tree in a natural way (distance
from the leaves, plus one).

We can construct a metric g which extends the metric (denoted with same letter) on
the distribution. The extended metric is unquely defined by the following conditions:

- if deg Xi 6= deg Xj or deg Xi = degXj but i 6= j, then g(Xi, Xj) = 0

- if deg Xk ≥ 2 then

g(Xk, Xk) = g(X(1)
k , X

(1)
k )g(X(2)

k , X
(2)
k )

The algebraic counterpart of this construction is described further.

(home - a) We have a vectorspace g of dimension n, endowed with a bilinear form

[·, ·] : g× g → g

which is antisymmetric: for any u, v ∈ g we have

[v, u] = −[u, v]

(home - b) The vectorspace g admits a gradation

g = V0 + V1 + ...+ Vm

such that for any i ∈ {0, 1} and j ∈ {0, ...,m}, if i+ j ≤ m then

V0 + ...+ Vi+j = V0 + ...+ Vj + [Vi, Vj ]

(home - c) Moreover, for any i, j, k ∈ {0, ...,m}, if two of the following 3 relations holds

i+ j ≤ m , j + k ≤ m , k + i ≤ m

then for any u ∈ Vi, v ∈ Vj , w ∈ Vk the Jacobi relation is true:

[[u, v], w] + [[w, u], v] + [[v, w], u] = 0

We can quickly deduce from (home - b) that for any u, v ∈ V0 we have [u, v] ∈ V0.
Moreover V0 is a Lie algebra with respect to the bracket [·, ·], because the Jacobi identity
is satisfied, due to (home -c).

(home - d) Denote by p the dimension of V1. The function u0 ∈ V0 7→ [u0, ·] : V1 → g is the
image of an action of a subalgebra of so(p). This means that there is an injective
algebra morphism Q : V0 7→ so(p) such that for any u0 ∈ V0 and u ∈ V1 we have

[u0, u] = Q(u0)u
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(home - e) Associated to the gradation of g there is a degree map deg : g → {0, ...,m},
defined by: if u ∈ V0 + V1 then deg u = 1; for k ≥ 2 we have deg u = k if and
only if u ∈ V1 + ...+ Vk but u 6∈ V1 + ...+ Vk−1.

This degree map induces a dilatation flow. For any ε > 0 the dilatation δε is a
linear map defined by the values it takes on each Vk, k = 0, ...,m: if x ∈ Vk then
δεx = εdeg xx. Remark that due to the definition of the degree, for any x ∈ V0

we have deg x = 1, hence δεx = εx.

(home - f) We also have a metric g on g which is null on V0 and stricly positive definite
on V1. Thi smetric can be extended to a metric which makes the gradation of g

orthogonal.

Definition 9.1 A homogeneous ensemble is a triple ([·, ·], δ, g) which satisfies all the
conditions (home - a), ... , (home - f).

We shall explain now what is the pointed metric space associated to a homogeneous
ensemble.

To a triple σ = (g, δ, g) we associate a length measure given by the metric g, and
the bracket [·, ·]. Even if this bracket is not a Lie bracket, we can ignore this and define
the distribution at x ∈ g by the formula

Dx = {DLσ
x(0)Y : Y ∈ V0 + V1}

where the operator DLσ
x(0) mimicks the derivative of a left translation at x. This

operator has the expression

DLσ
x(0)Y =

∞∑
k=0

[x, ·]k

(k + 1)!
Y

which is inspired by the Baker-Campbell-Hausdorff formula.
This length measure induces a (pseudo) distance denoted by d. For any ε > 0 define

the (pseudo) distance
dε(x, y) = d(δ−1

ε x, δ−1
ε y)

Make the metric factorisation with respect to d in a domain of convergence of the
operators DLσ. The resulting metric space is (in a neighbourhood of 0) a regular
sub-Riemannian manifold.

Declare a > 0 admissible if the open ball centered at 0 and radius 1, defined with
respect to the distance d2a, is contained in (the factor of) the domain of convergence
just mentioned. Consider now the number

R = min (1, sup {a > 0 admissible })

Associate then to σ the compact metric space (Xσ, dσ) where Xσ is the closed ball of
radius 1 centered at 0 and dσ = dR. The (isometry class of ) pointed metric space
associated to σ is [Xσ, dσ, 0].

The deformation (metric profile) associated to σ is the deformation by dilatations
based at 0, according to formula (4.0.1). We shall denote this metric profile by a 7→
P(σ)(a).
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10 What curvature is

In preparation for a refined definition of curvature we introduce an action of GL(g) on
σ = ([·, ·], δ, g). This is the most natural one, namely the transport. Fo any F ∈ GL(g)
and any homogeneous ensemble σ over g we define

Fσ = (F [F−1·, F−1·], F δF−1, g(F−1·, F−1·))

There is also an action by dilatations, which is defined differently, by

δε ∗ σ = (F [F−1·, F−1·], F δF−1, g)

Finally we have an action of (0,+∞) on homogeneous ensembles, defined by:

ε.σ = ([·, ·], δ, ε2g)

By straightforward computation we have:

Proposition 10.1 For any a > 0 and small enough ε > 0

P(σ)(aε) = P(δ−1
a ∗ σ)(ε) (10.0.1)

Pm(σ)(aε) = Pm(a−1.σ)(ε) (10.0.2)

This shows that the dilatation metric profile a 7→ P(σ)(a) lies in the image of ho-
mogeneous ensembles in CMS. It also makes clear that the final, metric, normalisation,
invoked in subsections 8.1 and 8.3, is about the choice of initial (a = 1) point on the
dilatation metric profile of the homogeneous ensemble.

To the homogeneous ensemble σ we can also associate the metric profile in 0 ∈ g

and we shall denote this by a 7→ Pm(σ)(a). The same remarks as previous hold for the
metric profile and the action of (0,+∞).

We can define several types of curvatures. We shall list here only the metric curva-
ture and the dilatation curvature.

Definition 10.2 Let (X, d) be a metric space and p ∈ X a point such that the metric
profile associated to (X, d) and p can be prolonged at ε = 0 and it is rectifiable at ε = 0.
We shall say that the homogeneous ensemble σ represents the metric curvature of (X, d)
at p if the metric profile of (X, d) at p is equivalent with the metric profile Pm(σ).

Definition 10.3 Let (X, d) be a metric space endowed with a dilatation structure and
p ∈ X a point such that the dilatation metric profile associated to (X, d), the dilatation
structure and p can be prolonged at ε = 0 and it is rectifiable at ε = 0. We shall say
that the homogeneous ensemble σ represents the dilatation curvature of (X, d) at p if
the dilatation metric profile of (X, d) at p is equivalent with the dilatation metric profile
P(σ).
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In the case of Riemannian manifolds, a basic lemma asserts the existence of special
coordinates systems which are adapted around an open open neighbourhood of an
arbitrary point p from the manifold. Moreover, this coordinated can be chosen such that
at p are adapted ”up to order 2” (not defined in this paper but straightforward). This
guarantees that the metric and dilatation curvature coincide in the sense that the same
Riemannian homogeneous ensemble represents the metric and the dilatation curvature.
We doubt very much that this is possible for general sub-Riemannian manifolds.

Remark also that in these definitions of curvature there is contained information
about the tangent space. In the Riemannian case this is superfluous but for sub-
Riemannian manifolds it is not.

For example the Heisenberg group, which is Carnot group, is itself a representant
of its curvature. In a sense it has curvature 0 (the dilatation and the metric profile are
both stationary), but it is different from an Euclidean plane which has also 0 curvature.

In the case of a Riemannian manifold with singularities, the metric profile at a
singularity point is an Euclidean cone. Form the point of view of this paper Euclidean
cones have stationary metric profiles (in some sense curvature 0), but different from
the metric profile of an Euclidean plane.

It is useful to picture the curvature as a vector tangent to the metric or dilatation
profile: the orientation and length of the curvature ”vector” corresponds to second
order infinitesimal informations about the pointed metric space. The base point of the
”vector” contains first order informations, namely the description of the tangent space.

The problem of computation of dilatation curvature of a regular sub-Riemannian
manifold is left for future work. Some things are however clear: such computation
should involve a normal frame and the dilatation structure associated to it. The real
problem involves the fact that the bracket associated with a normal frame has noncon-
stant coefficients.

It is however important to notice that eventual differential geometric notions of
curvature connected to normal frames and privileged coordinates are in fact expressing
the dilatation — not the metric — curvature.

11 Curvature and coadjoint orbits

In this section we show that classification of dilatation curvatures means classification
of some coadjoint orbits representations. This points directlly to the powerful orbit
method and constitute a second link between sub-Riemannian geometry and quantum
mechanics. The first link can be uncovered from Buliga [5] section 5 ”Case of the
Heisenberg group”. The results from the mentioned section can be easily generalized
for a pre-quantum contact manifold and are the subject of a paper in preparation.

To say it in few words: a quantum dynamical system is just a dynamical system
t 7→ φt : X → X in a metric measure space (X, d, µ) endowed with a dilatation structure
δ. The dynamical system has to be:

(A) measure preserving,

(B) smooth (orbits and the transformations φt should be δ derivable),
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(C) the orbits
{φt(x) : t ∈ [a, b]}

have Hausdorff dimension 2. The Hausdorff measure 2 should be absolutely con-
tinuous with respect to t and the density of this measure is by definition the
Hamiltonian.

Look for example to the case of a S1-bundle associated to a pre-quantum contact
manifold. We see see this as a contact sub-Riemannian manifold.

If the pre-quantum contact manifold is a pre-quantization of an integral symplectic
manifold then any dynamical system which satisfies (A), (B), is a lifting of a Hamilto-
nian dynamical system on the symplectic manifold. Moreover, in this case the condi-
tion (C) is satisfied, in the sense that the orbits of the dynamical system have indeed
Hausdorff dimension 2 and the density of the Hausdorff measure 2 with respect to the
(transport from R of the) Lebesgue measure 1 on the curve is a Hamiltonian for the
dynamical system on the symplectic manifold.

In the case of a Riemannian manifold such dynamical systems correspond to random
walks or random dynamical systems.

A measurement process should correspond to trying to make an Euclidean chart
of this dynamical system. If the space is not Euclidean at any scale (as the sub-
Riemannian Heisenberg group, for example) then such a map is impossible to be done
exactly (i.e. in a derivable way).

Planck constant might be the effect of this fact, namely it could measure the distance
from the (metric profile or dilatation profile) and best Euclidean approximations. After
reading this paper one can be sensible to the idea that the Planck constant could
measure a distance between curvatures.

Let us come back to the subject of this paper. We want to associate to a homoge-
neous ensemble a coadjoint orbit representation. Let us imagine that the homogeneous
ensemble corresponds to a normal frame associated to a regular sub-Riemannian man-
ifold. We can change the normal frame without changing the dilatation structure.
Indeed, it is enough to change the basis of the distribution and then build another
normal frame with the help of the new basis of the distribution.

This corresponds in terms of homogeneous ensembles to the action on the homoge-
neous ensemble σ = ([·, ·], δ, g) of a group G(σ) ⊂ GL(g) such that the profile P(σ) is
left unchanged.

Consider the decomposition of g:

g = V0 + V1 + ....+ Vm

and the algebra morphism Q : V0 → so(p) such that for any u0 ∈ V0 and u1 ∈ V1 we
have

[u0, u1] = Q(u0)u1

Finally, consider a basis {X1, ..., Xn} of V1 + ... + Vm, adapted to the gradation (i.e.
there is a partition of the basis in m sets, each forming a basis for one of the Vi).
This basis is chosen such that it satisfies all the conditions explained previously in the
construction of a normal frame, at the beginning of section 9.



11 CURVATURE AND COADJOINT ORBITS 32

The basis {X1, ..., Xn} constitutes the set of nodes of a tree with leaves the basis
{X1, ..., Xp} of V1 and roots {Xi1 , ..., } (the basis of Vm). To any node Xk which is not
a leaf corresponds two branches pointing to X(1)

k , X(2)
k , such that X(1)

k ∈ {X1, ..., Xp}
and

Xk = [X(1)
k , X

(2)
k ]

meaning that Xk has been obtained as the bracket of X(1)
k , X(2)

k at some step of the
construction.

We also have a degree map associated to the tree in a natural way (distance from
the leaves, plus one). The degree map of the tree coincide with the degree map of the
gradation V1 + ...+ Vm. Extend the metric g on V1 + ...Vm by the metric relation

g(Xk, Xk) = g(X(1)
k , X

(1)
k )g(X(2)

k , X
(2)
k )

and by the condition that the gradation is a g orthogonal decomposition.
The metric g has the expression

g =
m∑

k=1

∑
deg Xi= deg Xj=k

gk
ijX

∗
i ⊗X∗

j

We shall add to this metric the minus Killing form on so(p), transported back by the
morphism Q on V0. We get a strictly positive definite metric ḡ.

We are going to define now the group G(σ). An invertible linear transformation
F : g → g belongs to G if and only if:

(a) for any k = 0, ...,m we have

F (V0 + ...+ Vk) = V0 + ...+ Vk

(b) for any u0 ∈ V0 we have F (u0) = u0.

(c) for any u0 ∈ V0 and any u1 ∈ V1 we have

F [u0, u1] = [u0, F (u1)]

that is F commutes with the representation Q. This implies that F (V1) = V1.

(d) the restriction of F on V1 is a g isometry.

In contrast with relations (10.0.1) and (10.0.2) we have

Proposition 11.1 For any F ∈ G(σ) and any sufficiently small ε > 0 we have
P(Fσ)(ε) = P(σ)(ε).

The proof is a straightforward computation.
Let us remark that G(σ) = G(σε) for any ε > 0.
To a dilatation curvature P(σ) we associate in a bijective way the function

ε > 0 7→ O(σε) = {Fσε : F ∈ G(σ)}
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where
σε = δ−1

ε ∗ σ

We shall call this function a scaled orbit and we denote it by O(σ).
The purpose of this section is to prove the following theorem.

Theorem 11.2 The action of G(σ) on the scaled orbit O(σ) is a coadjoint orbit action.

In the following we shall prove the theorem. Fix the Euclidean metric ḡ on g and
denote it further by (·, ·). We shall use a basis {X1, ..., Xn}, as explained previously, to
do computations.

Let us use the notation δ−1
ε ∗ σ = ([·, ·]ε, δ, g). The dilatations commute, therefore

they not change when δε is applied.
To the bracket [·, ·]ε associate the linear map Wε : g → gl(g) by the usual procedure:

for any u, x, y ∈ g we have

(u, [x, y]ε) = (Wε(x)u, y)

In case σ is a homogeneous space the map −Wε is a Lie algebra morphism, as a
consequence of the Jacobi identity. In the general case the function −Wε does have
only limited morphism properties, due to (home - c).

It is comfortable to consider ε as a variable and Wε(x) as a polynomial in ε. This is
indeed a polynomial, because due to conditions (home - b) and (home -f) we can prove
that the limit exists

lim
ε→0

[u, v]ε = [u, v]N (11.0.1)

This is same relation as the one in (homs - e). See also relation (10.0.1). We state this
as a proposition.

Proposition 11.3 The function which maps u ∈ g to W (x) ∈ gl(g)[ε] is well defined.

The function W encodes all the information about the dilatation curvature induced by
σ.

This function can be seen as a linear space

B(σ) ⊂ (gl(g[ε])× g)∗

in the dual of the natural semidirect product of gl(g[ε]) with g, defined by

B(σ) =
{(

Wε(u) 0
u 0

)
: u ∈ g

}
We call B(σ) the bunch associated to σ.
It is easy to see that the action of G(σ) on O(σ) transforms in the coadjoint action

of

G(σ) ≡
{
F̃ =

(
F T 0
0 1

)
: F ∈ G(σ)

}
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namely we have the relation
Ad∗

F̃
B(µ) = B(Fµ)

for any µ ∈ O(σ) and any F ∈ G(σ). The proof of the theorem is finished.
The whole bunch of σ is by definition

WB(σ) =
⋃

µ∈O(σ)

B(σ)

It is a collection of (scaled) coadjoint orbits and therefore it has good chances to be a
Poisson G(σ)-manifold.

To any coadjoint orbit corresponds a natural representation. The orbit method
of Kirillov is a guide towards classification of unitary representations using coadjoint
orbits. See for this Kirillov [14] section 15, using as a guide Kirillov [15] sections 1 and
2. For the induced representation notion see Kirillov [14], section 13. There is a huge
literature dedicated to the orbit method. We want here just to make the connection
between curvature of sub-Riemannian spaces and some coadjoint orbit representations,
with the hope what the link will pay back in the future, by translating techniques and
objects related to the orbit method to the domain of sub-Riemanian geometry.

Let us see how a scaled orbit induces a representation by the prequantization tech-
nique.

The moment map associated to the action of G(σ) on the whole bunch WB(σ) is
given by the inclusion of the whole bunch in (gl(g[ε])× g)∗. We identify this dual with
the Lie algebra by he natural metric that we have, namely the usual one induced by
trace on gl(g) and the metric (·, ·) on g. We shall denote (A,B) = tr(ABT ) for any
A,B ∈ gl(g).

Let (Wε, u) ∈ WB(σ). The moment map

J : WB(σ) → (Lie G(σ))∗ [ε]

has the following value at (Wε, u):

∀f ∈ Lie G(σ) 〈J (Wε, u) , f〉 = (Wε, f)

The prequantization associates to any f ∈ Lie G(σ) a self-adjoint operator Q(f) on
C∞(WB(σ)) in the following way: for any h ∈ C∞(WB(σ)) we have

Q(f)h =
i

2π
d

dt | t=0

(h ◦ exp(t f)) + 〈J, f〉h

Let us take as the representation space the following:

S(σ) =
{
h|WB(σ)

: h ∈ C∞ (gl(g)[ε]× g)
}

or a closure in a Hilbert space norm.
Tthen the operator Q(f) takes the form:

Q(f)h =
i

2π

{
(
∂h

∂W
, [Wε, f ]) + (

∂h

∂u
, f u)

}
+ (Wε, f) h (11.0.2)
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Actually we may take instead of gl(g)[ε] only a finite dimensional subspace of polyno-
mials up to a certain degree (for example 2m− 1).

This is the representation which is associated to the dilatation profile induced by
the homogeneous ensemble σ.

If the homogeneous ensemble is a cone (the dilatations commute with the bracket)
then in the representation we do not have dependence on ε.

Let us go back to the group G(σ). In fact, by relation (11.0.1) we have

G(σ) = G(σN ) , σN = ([·, ·]N , δ, g)

The cone σN is associated with the metric tangent space to the space Xσ, at point 0.
Let us therefore consider a regular sub-Riemannian manifold with the same (up

to isometry!) metric tangent space in any of its points, which corresponds to σN .
Suppose that, when endowed with a dilatation structure, the manifold admits dilatation
curvature in any point. Then the dilatation curvatures are classified by self-adjoint
representations of Lie G(σN ). This can be stated as a theorem:

Theorem 11.4 The possible dilatation curvatures of a regular sub-Riemannian mani-
fold M at a point x are classified by self-adjoint representations of the group G(σN (x)),
where σN (x) is the Carnot group which represents the metric tangent space of M at x.

In the following we mean by ”unitary dual” of a group the class of self-adjoint repre-
sentations of the Lie algebra of the group, factorized by equivalence of representations.
We have therefore the following characterization of dilatation curvatures.

Consider the class K(σN ) of all homogeneous ensembles σ with a given nilpotenti-
zation σN , with the action of dilatations by

(0,+∞)×K(σN ) → K(σN ) , (ε, σ) 7→ σε

Theorem 11.5 The function which associates to any σ ∈ K(σN ) the self-adjoint rep-
resentation given by (11.0.2) with ε = 1, transforms integral curves of the action by
dilatations into polynomial curves in the unitary dual of G(σN ).

12 Appendix: Uniform and conical groups

We start with the following setting: G is a topological group endowed with an unifor-
mity such that the operation is uniformly continuous. More specifically, we introduce
first the double of G, as the group G(2) = G×G with operation

(x, u)(y, v) = (xy, y−1uyv)

The operation on the group G, seen as the function

op : G(2) → G , op(x, y) = xy

is a group morphism. Also the inclusions:

i′ : G→ G(2) , i′(x) = (x, e)
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i” : G→ G(2) , i”(x) = (x, x−1)

are group morphisms.

Definition 12.1 1. G is an uniform group if we have two uniformity structures, on
G and G2, such that op, i′, i” are uniformly continuous.

2. A local action of a uniform group G on a uniform pointed space (X,x0) is a
function φ ∈W ∈ V(e) 7→ φ̂ : Uφ ∈ V(x0) → Vφ ∈ V(x0) such that:

(a) the map (φ, x) 7→ φ̂(x) is uniformly continuous from G × X (with product
uniformity) to X,

(b) for any φ, ψ ∈ G there is D ∈ V(x0) such that for any x ∈ D ˆφψ−1(x) and
φ̂(ψ̂−1(x)) make sense and ˆφψ−1(x) = φ̂(ψ̂−1(x)).

3. Finally, a local group is an uniform space G with an operation defined in a neigh-
bourhood of (e, e) ⊂ G×G which satisfies the uniform group axioms locally.

Remark that a local group acts locally at left (and also by conjugation) on itself.
This definition deserves an explanation.
An uniform group, according to the definition (12.1), is a group G such that left

translations are uniformly continuous functions and the left action of G on itself is
uniformly continuous too. In order to precisely formulate this we need two uniformities:
one on G and another on G×G.

These uniformities should be compatible, which is achieved by saying that i′, i”
are uniformly continuous. The uniformity of the group operation is achieved by saying
that the op morphism is uniformly continuous.

The particular choice of the operation on G ×G is not essential at this point, but
it is justified by the case of a Lie group endowed with the CC distance induced by a
left invariant distribution. We shall construct a natural CC distance on G×G, which
is left invariant with respect to the chosen operation on G×G. These distances induce
uniformities which transform G into an uniform group according to definition (12.1).

In proposition (12.7) we shall prove that the operation function op is derivable, even
if right translations are not ”smooth”, i.e. commutative smooth according to definition
(12.5). This will motivate the choice of the operation on G × G. It also gives a hint
about what a sub-Riemannian Lie group should be.

We prepare now the path to this result. The ”infinitesimal version” of an uniform
group is a conical local uniform group.

Definition 12.2 A conical local uniform group N is a local group with a local action
of (0,+∞) by morphisms δε such that lim

ε→0
δεx = e for any x in a neighbourhood of

the neutral element e.

We shall make the following hypotheses on the local uniform group G: there is a
local action of (0,+∞) (denoted by δ), on (G, e) such that

H0. the limit limε→0 δεx = e exists and is uniform with respect to x.
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H1. the limit
β(x, y) = lim

ε→0
δ−1
ε ((δεx)(δεy))

is well defined in a neighbourhood of e and the limit is uniform.

H2. the following relation holds

lim
ε→0

δ−1
ε

(
(δεx)−1

)
= x−1

where the limit from the left hand side exists in a neighbourhood of e and is
uniform with respect to x.

These axioms are the prototype of a dilatation structure. Further comes a proposi-
tion which corresponds to theorem 6.6.

Proposition 12.3 Under the hypotheses H0, H1, H2 (G, β) is a conical local uniform
group.

Proof. All the uniformity assumptions permit to change at will the order of taking
limits. We shall not insist on this further and we shall concentrate on the algebraic
aspects.

We have to prove the associativity, existence of neutral element, existence of inverse
and the property of being conical. The proof is straightforward. For the associativity
β(x, β(y, z)) = β(β(x, y), z) we compute:

β(x, β(y, z)) = lim
ε→0,η→0

δ−1
ε

{
(δεx)δε/η ((δηy)(δηz))

}
We take ε = η and we get

β(x, β(y, z)) = lim
ε→0

{(δεx)(δεy)(δεz)}

In the same way:

β(β(x, y), z) = lim
ε→0,η→0

δ−1
ε

{
(δε/ηx) ((δηx)(δηy)) (δεz)

}
and again taking ε = η we obtain

β(β(x, y), z) = lim
ε→0

{(δεx)(δεy)(δεz)}

The neutral element is e, from H0 (first part): β(x, e) = β(e, x) = x. The inverse of
x is x−1, by a similar argument:

β(x, x−1) = lim
ε→0,η→0

δ−1
ε

{
(δεx)

(
δε/η(δηx)

−1
)}

and taking ε = η we obtain

β(x, x−1) = lim
ε→0

δ−1
ε

(
(δεx)(δεx)−1

)
= lim

ε→0
δ−1
ε (e) = e
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Finally, β has the property:

β(δηx, δηy) = δηβ(x, y)

which comes from the definition of β and commutativity of multiplication in (0,+∞).
This proves that (G, β) is conical. �

We arrive at a natural realization of the tangent space to the neutral element. Let
us denote by [f, g] = f ◦ g ◦ f−1 ◦ g−1 the commutator of two transformations. For
the group we shall denote by LG

x y = xy the left translation and by LN
x y = β(x, y).

The preceding proposition tells us that (G, β) acts locally by left translations on G.
We shall call the left translations with respect to the group operation β ”infinitesimal”.
Those infinitesimal translations admit the very important representation:

lim
λ→0

[LG
(δλx)−1 , δ

−1
λ ] = LN

x (12.0.1)

Definition 12.4 The group V TeG formed by all transformations LN
x is called the vir-

tual tangent space at e to G.

The virtual tangent space V TxG at x ∈ G to G is obtained by translating the group
operation and the dilatations from e to x. This means: define a new operation on G
by

y
x· z = yx−1z

The group G with this operation is isomorphic to G with old operation and the left
translation LG

x y = xy is the isomorphism. The neutral element is x. Introduce also
the dilatations based at x by

δx
ε y = xδε(x−1y)

Then Gx = (G,
x·) with the group of dilatations δx

ε satisfy the axioms Ho, H1, H2.
Define then the virtual tangent space V TxG to be: V TxG = V TxG

x. A short
computation shows that

V TxG =
{
LN,x

y = LxL
N
x−1yLx : y ∈ Ux ∈ V(X)

}
where

LN,x
y = lim

λ→0
δ−1,x
λ [δx

λ, L
G
(δλx)x,−1 ]δx

λ

We shall introduce the notion of commutative smoothness, which contains a deriva-
tive resembling with Pansu derivative. This definition is a little bit stronger than the
one given by Vodopyanov & Greshnov [23], because their definition is good for a general
CC space, when uniformities are taken according to the distances in CC spaces G(2)

and G.

Definition 12.5 A function f : G1 → G2 is commutative smooth at x ∈ G1, where
G1, G2 are two groups satisfying H0, H1, H2, if the application

u ∈ G1 7→ (f(x), Df(x)u) ∈ G(2)
2



12 APPENDIX: UNIFORM AND CONICAL GROUPS 39

exists, where
Df(x)u = lim

ε→0
δ−1
ε

(
f(x)−1f(xδεu)

)
and the convergence is uniform with respect to u in compact sets.

For example the left translations Lx are commutative smooth and the derivative
equals identity. If we want to see how the derivative moves the virtual tangent spaces
we have to give a definition.

Inspired by (12.0.1), we shall introduce the virtual tangent. We proceed as follows:
to f : G→ G and x ∈ G let associate the function:

f̂x : G×G→ G , f̂x(y, z) = f̂x
y (z) = (f(x))−1 f(xy)z

To this function is associated a flow of left translations

λ > 0 7→ f̂x
δλy : G→ G

Definition 12.6 The function f : G → G is virtually derivable at x ∈ G if there is a
virtual tangent V Df(x) such that

lim
λ→0

[(
f̂x

δλy

)−1
, δ−1

λ

]
= V Df(x)y (12.0.2)

and the limit is uniform with respect to y in a compact set.

Remark that in principle the right translations are not commutative smooth. In
Buliga [5], section 4, it is shown that right translations are smooth in the ”mild” sense.

Now that we have a model for the tangent space to e at G, we can show that the
operation is commutative smooth.

Proposition 12.7 Let G satisfy H0, H1, H2 and δ(2)
ε : G(2) → G(2) be defined by

δ(2)ε (x, u) = (δεx, δεy)

Then G(2) satisfies H0, H1, H2, the operation (op function) is commutative smooth and
we have the relation:

D op (x, u)(y, v) = β(y, v)

Proof. It is sufficient to use the morphism property of the operation. Indeed, the
right hand side of the relation to be proven is

RHS = lim
ε→0

δ−1
ε

(
op(x, u)−1op(x, u)op

(
δ(2)ε (y, v)

))
=

= lim
ε→0

δ−1
ε

(
op(δ(2)ε (y, v))

)
= β(y, v)

The rest is trivial. �
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This proposition justifies the choice of the operation on G(2) = G × G and it is a
quite surprising result.

We finish this appendix with a question for the reader who consider the material too
elementar: consider instead of a (compact) Lie group an uniform group with a dilatation
structure and instead of the Lie algebra of the group consider a homogeneous space or
ensemble. What modifications to the notion of Hopf algebra should be made in order
to recover the duality between the universal enveloping algebra of the Lie algebra of a
compact Lie group and the commutative Hopf algebra of the group?
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[2] A. Belläıche, The tangent space in sub-Riemannian geometry, in: Sub-Riemannian
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