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1 Introduction

The point of view that dilations can be taken as fundamental objects which induce a differ-
ential calculus is relatively well known. The idea is simple: in a vector space V define the
dilation based at x and of coefficient ε > 0 as the function which associates to y the value

δx
ε y = x+ ε(y − x) .

Then for a function f : V → W between vector spaces V and W we have:(
δ

f(x)
ε−1 fδ

x
ε

)
(u) = f(x) +

1
ε

[f(x+ ε(u− x))− f(x)] ,

thus the directional derivative of f at x, along u− x appears as:

f(x) + Df(x)(u− x) = lim
ε→0

(
δ

f(x)
ε−1 fδ

x
ε

)
(u) .

Until recently there was not much interest into the generalization of such a differential
calculus, based on other dilations than the usual ones, probably because nobody knew any
fundamentally different example.

This changed gradually due to different lines of research, like the study of hypoelliptic
operators Hörmander [42], harmonic analysis on homogeneous groups Folland, Stein [28],
probability theory on groups Hazod [40], Siebert [54], studies in geometric analysis in met-
ric spaces in relation with sub-riemannian geometry Belläıche [5], groups with polynomial
growth Gromov [33], or Margulis type rigidity results Pansu [53].

Another line of research concerns the differential calculus over general base fields and
rings, Bertram, Glöckner and Neeb [6]. As the authors explain, it is possible to construct
such a differential calculus without using the specific properties of the base field (or ring). In
their approach it is not made a distinction between real and ultrametric differential calculus
(and even not between finite dimensional and infinite dimensional differential calculus).
They point out that differential calculus (integral calculus not included) seems to be a part
of analysis which is completely general, based only on elementary results in linear algebra
and topology.

The differential calculus proposed by Bertram, Glöckner and Neeb is a generalization of
“classical” calculus in topological vector spaces over general base fields, and even over rings.
The operation of vector addition is therefore abelian, modifications being made in relation
with the multiplication by scalars.

A different idea, emergent in the studies concerning geometric analysis in metric spaces,
is to establish a differential calculus in homogeneous groups, in particular in Carnot groups.
These are noncommutative versions of topological vector spaces, in the sense that the oper-
ation of addition (of “vectors”) is replaced by a noncommutative group operation and there
is a replacement of multiplication by scalars in a general base field with a multiplicative
action of (0,+∞) by group automorphisms.

In fact this is only a part of the nonsmooth calculus encountered in geometric analysis
on metric spaces. For a survey see the paper by Heinonen [41]. The objects of interest in
nonsmooth calculus as described by Heinonen are spaces of homogeneous type, or metric
measured spaces where a generalization of Poincaré inequality is true. In such spaces the
differential calculus goes a long way: Sobolev spaces, differentiation theorems, Hardy spaces.
It is noticeable that in such a general situation we don’t have enough structure to define
differentials, but only various constructions corresponding to the norm of a differential of a
function. Nevertheless see the remarkable result of Cheeger [23], who proves that to a metric
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measure space satisfying a Poincaré inequality we can associate an L∞ cotangent bundle with
finite dimensional fibers. Other important works which might also be relevant in relation
to this paper are David, Semmes [25], where spaces with arbitrary small neighbouhoods
containing similar images of the whole space are studied, or David, Semmes [26], where
they study rectifiability properties of subsets of Rn with arbitrary small neighbourhoods
containing “big pieces of bi-Lipschitz images” of the whole subset.

A particular case of a space of homogeneous type where more can be said is a normed
homogeneous group, definition 5.3. According to [28] p. 5, a homogeneous group is a
connected and simply connected Lie group whose Lie algebra is endowed with a family of
dilations {δε : ε ∈ (0,+∞)}, which are algebra automorphisms, simultaneously diagonaliz-
able. As in this case the exponential of the group is a bijective mapping, we may transform
dilations of the algebra into dilations of the group, therefore homogeneous groups are conical
groups. Also, they can be described as nilpotent Lie groups positively graded.

Carnot groups are homogeneous groups which are stratified, meaning that the first non-
trivial element of the graduation generates the whole group (or algebra). The interest into
such groups come from various sources, related mainly to the study of hypo-elliptic operators
Hörmander [42], and to extensions of harmonic analysis Folland, Stein [28].

Pansu introduced the first really new example of such a differential calculus based on
other than usual dilations: the ones which are associated to a Carnot group. He proved
in [53] the potential of what is now called Pansu derivative, by providing an alternative
proof of a Margulis rigidity type result, as a corollary of the Rademacher theorem for Lip-
schitz functions on Carnot groups. Rademacher theorem, stating that a Lipschitz function
is derivable almost everywhere, is a mathematical crossroad, because there meet measure
theory, differential calculus and metric geometry. In [53] Pansu proves a generalization of
this theorem for his new derivative.

The challenge to extend Pansu results to general regular sub-riemannian manifolds, taken
by Margulis, Mostow [48] [49], Vodopyanov [56] and others, is difficult because on such
general metric space there is no natural underlying algebraic structure, as in the case of
Carnot groups, where we have the group operation as a non commutative replacement of
the operation of addition in vector spaces.

On a regular sub-riemannian manifold we have to construct simultaneously several ob-
jects: tangent spaces to a point in the sub-riemannian space, an operation of addition of
“vectors” in the tangent space, and a derivative of the type considered by Pansu. Dedi-
cated to the first two objects is a string of papers, either directly related to the subject, as
Belläıche [5], or growing on techniques which appeared in the paper dedicated to groups of
polynomial growth of Gromov [33], continuing in the big paper Gromov [39].

In these papers dedicated to sub-riemannian geometry the lack of a underlying algebraic
structure was supplanted by using techniques of differential geometry. At a closer look, this
means that in order to construct the fundamentals of a non standard differential calculus, the
authors used the classical one. This seems to me comparable to efforts to study hyperbolic
geometry on models, like the Poincaré disk, instead of intrinsically explore the said geometry.

Dilation structures on metric spaces, introduced in [11], describe the approximate self-
similarity properties of a metric space. A dilation structure is a notion related, but more
general, to groups and differential structures.

The basic objects of a dilation structure are dilations (or contractions). The axioms of
a dilation structure set the rules of interaction between different dilations.

The point of view of dilation structures is that dilations are really fundamental objects,
not only for defining a notion of derivative, but as well for all algebraic structures that we
may need.
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This viewpoint is justified by the following results obtained in [11], explained in a con-
densed and improved presentation, in the first part of this paper. A metric space (X, d)
which admits a strong dilation structure (definition 6.1) has a metric tangent space at any
point x ∈ X (theorem 13.1), and any such metric tangent space has an algebraic structure
of a conical group (theorem 13.5).

Conical groups are generalizations of homogeneous Lie groups, but also of p-adic nilpo-
tent groups, or of general contractible groups. A conical group is a locally compact group
endowed with a family of dilations {δε : ε ∈ Γ}. Here Γ is a locally compact abelian group
with an associated morphism ν : Γ → (0,+∞) which distinguishes an end of Γ, namely the
filter generated by the pre-images ν−1(0, r), r > 0. This end, is denoted by 0 and ε ∈ Γ → 0
means ν(ε) → 0 in (0,+∞). Any contractible group is a conical group and to any conical
group we can associate a family of contractible groups.

The structure of contractible groups is known in some detail, due to Siebert [54], Wang
[65], Glöckner and Willis [30], Glöckner [29] and references therein.

By a classical result of Siebert [54] proposition 5.4, we can characterize the algebraic
structure of the metric tangent spaces associated to dilation structures of a certain kind: they
are homogeneous groups (corollary 13.8). The corollary 13.8 thus represents a generalization
of difficult results in sub-riemannian geometry concerning the structure of the metric tangent
space at a point of a regular sub-riemannian manifold. This line of research is pursued further
in the paper [15].

Morphisms of dilation structures generalize the notion of affine transformation. A dila-
tion structure on a metric space induce a family of dilation structures on the same space,
at different scales. We explain that canonical morphisms between these induced dilation
structures lead us to a kind of emergent affinity on smaller and smaller scale.

Finally we characterize contractible groups in terms of dilation structures. To a normed
contractible group we can naturally associate a linear dilation structure (proposition 15.11).
Conversely, by theorem 15.12 any linear and strong dilation structure comes from the dilation
structure of a normed contractible group.

We are thus led to the introduction of a noncommutative affine geometry, in the spirit
of Bertram “affine algebra”, which is commutative according to our point of view. In such
a geometry incidence relations are no longer relevant, being replaced by algebraic axioms
concerning dilations. We define a version of the ratio of three collinear points (replaced by
a “ratio function” which associates to a pair of points and two positive numbers the third
point) and we prove that it is the basic invariant of this geometry. Moreover, it turns out
that this is the geometry of normed affine group spaces, a notion which is to conical groups
as a normed affine space is to a normed topological vector space (theorem 5.5).
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2 Metric spaces, distances, norms

Definition 2.1 A metric space (X, d) is a set X endowed with a distance function d :
X ×X → [0,+∞). In the metric space (X, d), the distance between two points x, y ∈ X is
d(x, y) ≥ 0. The distance d satisfies the following axioms:

(i) d(x, y) = 0 if and only if x = y,

(ii) (symmetry) for any x, y ∈ X d(x, y) = d(y, x),

(iii) (triangle inequality) for any x, y, z ∈ X d(x, z) ≤ d(x, y) + d(y, z).

The ball of radius r > 0 and center x ∈ X is the set

B(x, r) = {y ∈ X : d(x, y) < r} .

Sometimes we shall use the notation Bd(x, r) for the ball of center x and radius r with respect
to the distance d, in order to emphasize the dependence on the distance d. Any metric space
(X, d) is endowed with the topology generated by balls. The notations B̄(x, r) and B̄d(x, r)
are used for the closed ball centered at x, with radius r.

A pointed metric space (X,x, d) is a metric space (X, d) with a chosen point x ∈ X.

The notion of a metric space is not very old: it has been introduced by Fréchet in the
paper [Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo 22 (1906),
1-74].

2.1 Metric spaces, normed groups and normed groupoids

An obvious example of a metric space is Rn endowed with an euclidean distance, that is
with a distance function induced by an euclidean norm:

d(x, y) = ‖x− y‖ .

In fact any normed vector space can be seen as a metric space. In order to define a distance
from a norm, in a normed vector space, we only need the norm function and the abelian
group structure of the vector space. (Later in this paper, he multiplication by scalars will
provide us with the first example of a metric space with dilations). This leads us to the
introduction of normed groups. Let us give, in increasing generality, the definition of a
normed group, then the definition of a normed groupoid.

Definition 2.2 A normed group (G, ρ) is a pair formed by:

- a group G, with the operation (x, y) ∈ G×G 7→ xy, inverse denoted by x ∈ G 7→ x−1

and neutral element denoted by e,

- a norm function ρ : G→ [0,+∞), which satisfies the following axioms:

(i) ρ(x) = 0 if and only if x = e,
(ii) (symmetry) for any x ∈ G ρ(x−1) = ρ(x),
(iii) (sub-additivity) for any x, y ∈ G ρ(xy) ≤ ρ(x) + ρ(y).

Proposition 2.3 Any normed group (G, ρ) can be seen as a metric space, with any of the
distances

dL(x, y) = ρ(x−1y) , dR(x, y) = ρ(xy−1) .

The function dL is left-invariant, i.e. for any x, y, z ∈ G we have dL(zx, zy) = dL(x, y).
Similarly dR is right-invariant, that is for any x, y, z ∈ G we have dR(xz, yz) = dR(x, y).
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proof It suffices to give the proof for the distance dL. Indeed, the first axiom of a distance is
a consequence of the first axiom of a norm, the symmetry axiom for distances is a consequence
of the symmetry axiom of the norm and the triangle inequality comes from the group identity

x−1z =
(
x−1y

) (
y−1z

)
(which itself is a consequence of the associativity of the group operation and of the existence
of inverse) and from the sub-additivity of the norm. The left-invariance of dL comes from
the group identity (zx)−1 (zy) = x−1y. �

Groupoids are generalization of groups. A groupoid can be seen as a small category
such that any arrow is invertible. Alternatively, if we look at the set of arrows of such a
category, it is a set with a partially defined binary operation and a unary operation (the
inverse function), which satisfy several properties. A norm is then a function defined on the
set of arrows of a groupoid, with properties similar with the ones of a norm over a group.
This is the definition which we give further.

Definition 2.4 A normed groupoid (G, ρ) is a pair formed by:

- a groupoid G, which is a set with two operations inv : G→ G, m : G(2) ⊂ G×G→ G,
which satisfy a number of properties. With the notations inv(a) = a−1, m(a, b) = ab,
these properties are: for any a, b, c ∈ G

(i) if (a, b) ∈ G(2) and (b, c) ∈ G(2) then (a, bc) ∈ G(2) and (ab, c) ∈ G(2) and we
have a(bc) = (ab)c,

(ii) (a, a−1) ∈ G(2) and (a−1, a) ∈ G(2),

(iii) if (a, b) ∈ G(2) then abb−1 = a and a−1ab = b.

The set X = Ob(G) is formed by all products a−1a, a ∈ G. For any a ∈ G we let
α(a) = a−1a and ω(a) = aa−1.

- a norm function d : G→ [0,+∞) which satisfies the following axioms:

(i) d(g) = 0 if and only if g ∈ Ob(G),

(ii) (symmetry) for any g ∈ G, d(g−1) = d(g),

(iii) (sub-additivity) for any (g, h) ∈ G(2), d(gh) ≤ d(g) + d(h),

If Ob(G) is a singleton then G is just a group and the previous definition corresponds
exactly to the definition 2.2 of a normed group. As in the case of normed groups, normed
groupoids induce metric spaces too.

Proposition 2.5 Let (G, d) be a normed groupoid and x ∈ Ob(G). Then the space (α−1(x), dx)
is a metric space, with the distance dx defined by: for any g, h ∈ G with α(g) = α(h) = x
we have dx(g, h) = d(gh−1).

Therefore a normed groupoid can be seen as a disjoint union of metric spaces

G =
⋃

x∈Ob(G)

α−1(x) , (2.1.1)

with the property that right translations in the groupoid are isometries, that is: for any u ∈ G
the transformation

Ru : α−1 (ω(u)) → α−1 (α(u)) , Ru(g) = gu
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has the property for any g, h ∈ α−1 (ω(u))

dω(u)(g, h) = dα(u)(Ru(g), Ru(h)) .

proof We begin by noticing that if α(g) = α(h) then (g, h−1) ∈ G(2), therefore the expres-
sion gh−1 makes sense. The rest of the proof of the first part of the proposition is identical
with the proof of the previous proposition.

For the proof of the second part of the proposition remark first that Ru is well defined
and that

Ru(g) (Ru(h))−1 = gh−1 .

Then we have:
dα(u)(Ru(g), Ru(h)) = d

(
Ru(g) (Ru(h))−1

)
=

= d(gh−1) = dω(u)(g, h) .

�
Therefore normed groupoids provide examples of (disjoint unions of) metric spaces. Are

there metric spaces more general than these? No, in fact we have the following.

Proposition 2.6 Any metric space can be constructed from a normed groupoid, as in propo-
sition 2.5. Precisely, let (X, d) be a metric space and consider the trivial groupoid G = X×X
with multiplication

(x, y)(y, z) = (x, z)

and inverse (x, y)−1 = (y, x). Then (G, d) is a normed groupoid and moreover any compo-
nent of the decomposition (2.1.1) of G is isometric with (X, d).

Conversely, if G = X×X is the trivial groupoid associated to the set X and d is a norm
on G then (X, d) is a metric space.

proof We begin by noticing that α(x, y) = (y, y), ω(x, y) = (x, x), therefore Ob(G) =
{(x, x) : x ∈ X} can be identified with X by the bijection (x, x) 7→ x. Moreover, for any
x ∈ X we have

α−1((x, x)) = X × {x} .

Because d : X × X → [0,+∞) and G = X × X it follows that d : G → [0,+∞). We
have to check the properties of a norm over a groupoid. But these are straightforward.
The statement (i) (d(x, y) = 0 if and only if (x, y) ∈ Ob(G)) is equivalent with d(x, y) = 0
if and only if x = y. The symmetry condition (ii) is just the symmetry of the distance:
d(x, y) = d(y, x). Finally the sub-additivity of d seen as defined on the groupoid G is
equivalent with the triangle inequality:

d((x, y)(y, z)) = d(x, z) ≤ d(x, y) + d(y, z) .

In conclusion (G, d) is a normed groupoid if and only if (X, d) is a metric space.
For any x ∈ X the distance d(x,x) on the space α−1((x, x)) has the expression:

d(x,x)((u, x), (v, x)) = d((u, x)(v, x)−1) = d((u, x)(x, v)) = d(u, v)

therefore the metric space (α−1((x, x)), d(x,x)) is isometric with (X, d) by the isometry
(u, x) 7→ u, for any u ∈ X. �
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In conclusion normed groups give particular examples of metric spaces and metric spaces
are particular examples of normed groupoids. For this reason normed groups make good
examples of metric spaces. It is also interesting to extend the theory of metric spaces to
normed groupoids (other than trivial normed groupoids). This is done in [16].
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3 Maps of metric spaces

Imagine that the metric space (X, d) represents a territory. We want to make maps of (X, d)
in the metric space (Y,D) (a piece of paper, or a scaled model).

In fact, in order to understand the territory (X, d), we need many maps, at many scales.
For any point x ∈ X and any scale ε > 0 we shall make a map of a neighbourhood of x,
ideally. In practice, a good knowledge of a territory amounts to have, for each of several
scales ε1 > ε2 > ... > εn an atlas of maps of overlapping parts of X (which together form a
cover of the territory X). All the maps from all the atlasses have to be compatible one with
another.

The ideal model of such a body of knowledge is embodied into the notion of a manifold.
To have X as a manifold over the model space Y means exactly this.

Examples from metric geometry (like sub-riemannian spaces) show that the manifold
idea could be too rigid in some situations. We shall replace it with the idea of a dilation
structure.

We shall see that a dilation structure (the right generalization of a smooth space, like a
manifold), represents an idealization of the more realistic situation of having at our disposal
many maps, at many scales, of the territory, with the property that the accuracy, precision
and resolution of such maps, and of relative maps deduced from them, are controlled by the
scale (as the scale goes to zero, to infinitesimal).

There are two facts which I need to stress. First is that such a generalization is necessary.
Indeed, by looking at the large gallery of metric spaces which we now know, the metric spaces
with a manifold structure form a tiny and very very particular class. Second is that we tend
to take for granted the body of knowledge represented by a manifold structure (or by a
dilation structure). Think as an example at the manifold structure of the Earth. It is an
idealization of the collection of all cartographic maps of parts of the Earth. This is a huge
data basis and it required a huge amount of time and energy in order to be constructed.
To know, understand the territory is a huge task, largely neglected. We ”have” a manifold,
”let X be a manifold”. And even if we do not doubt that the physical space (whatever that
means) is a boring R3, it is nevertheless another task to determine with the best accuracy
possible a certain point in that physical space, based on the knowledge of the coordinates.
For example GPS costs money and time to build and use. Or, it is rather easy to collide
protons, but to understand and keep the territory fixed (more or less) with respect to the
map, that is where most of the effort goes.

A model of such a map of (X, d) in (Y,D) is a relation ρ ⊂ X×Y , a subset of a cartesian
productX×Y of two sets. A particular type of relation is the graph of a function f : X → Y ,
defined as the relation

ρ = {(x, f(x)) : x ∈ X}

but there are many relations which cannot be described as graphs of functions.

11



X

Y

ρ

dom ρ

im ρ

Imagine that pairs (u, u′) ∈ ρ are pairs

(point in the space X, pixel in the ”map space” Y)

with the meaning that the point u in X is represented as the pixel u′ in Y .
I don’t suppose that there is a one-to-one correspondence between points in X and pixels

in Y , for various reasons, for example: due to repeated measurements there is no unique
way to associate pixel to a point, or a point to a pixel. The relation ρ represents the cloud
of pairs point-pixel which are compatible with all measurements.

I shall use this model of a map for simplicity reasons. A better, more realistic model
could be one using probability measures, but this model is sufficient for the needs of this
paper.

For a given map ρ the point x ∈ X in the space X is associated the set of points
{y ∈ Y : (x, y) ∈ ρ} in the ”map space” Y . Similarly, to the ”pixel” y ∈ Y in the ”map
space” Y is associated the set of points {x ∈ X : (x, y) ∈ ρ} in the space X.

X

Y

ρ

u v

D(u’,v’)

d(u,v)

u’

v’

A good map is one which does not distort distances too much. Specifically, considering
any two points u, v ∈ X and any two pixels u′, v′ ∈ Y which represent these points, i.e.
(u, u′), (v, v′) ∈ ρ, the distortion of distances between these points is measured by the number

12



| d(u, v)−D(u′, v′) |

3.1 Accuracy, precision, resolution, Gromov-Hausdorff distance

Notations concerning relations. Even if relations are more general than (graphs of)
functions, there is no harm to use, if needed, a functional notation. For any relation ρ ⊂
X × Y we shall write ρ(x) = y or ρ−1(y) = x if (x, y) ∈ ρ. Therefore we may have ρ(x) = y
and ρ(x) = y′ with y 6= y′, if (x, y) ∈ f and (x, y′) ∈ f . In some drawings, relations will be
figured by a large arrow, as shown further.

(u,u’) ρ

X

ρ

Y

u u’

The domain of the relation ρ is the set dom ρ ⊂ X such that for any x ∈ dom ρ
there is y ∈ Y with ρ(x) = y. The image of ρ is the set of im ρ ⊂ Y such that for any
y ∈ im ρ there is x ∈ X with ρ(x) = y. By convention, when we write that a statement
R(f(x), f(y), ...) is true, we mean that R(x′, y′, ...) is true for any choice of x′, y′, ..., such
that (x, x′), (y, y′), ... ∈ f .

The inverse of a relation ρ ⊂ X × Y is the relation

ρ−1 ⊂ Y ×X , ρ−1 = {(u′, u) : (u, u′) ∈ ρ}

and if ρ′ ⊂ X × Y , ρ” ⊂ Y × Z are two relations, their composition is defined as

ρ = ρ” ◦ ρ′ ⊂ X × Z

ρ = {(u, u”) ∈ X × Z : ∃u′ ∈ Y (u, u′) ∈ ρ′ (u′, u”) ∈ ρ”}

I shall use the following convenient notation: by O(ε) we mean a positive function such
that lim

ε→0
O(ε) = 0.

In metrology, by definition, accuracy is [50] 2.13 (3.5) ”closeness of agreement between
a measured quantity value and a true quantity value of a measurand”. (Measurement)
precision is [50] 2.15 ”closeness of agreement between indications or measured quantity
values obtained by replicate measurements on the same or similar objects under specified
conditions”. Resolution is [50] 2.15 ”smallest change in a quantity being measured that
causes a perceptible change in the corresponding indication”.

For our model of a map, if (u, u′) ∈ ρ then u′ represent the measurement of u. Moreover,
because we see a map as a relation, the definition of the resolution can be restated as the
supremum of distances between points inX which are represented by the same pixel. Indeed,
if the distance between two points in X is bigger than this supremum then they cannot be
represented by the same pixel.

Definition 3.1 Let ρ ⊂ X × Y be a relation which represents a map of dom ρ ⊂ (X, d)
into im ρ ⊂ (Y,D). To this map are associated three quantities: accuracy, precision and
resolution.
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The accuracy of ρ is defined by:

acc(ρ) = sup {| D(y1, y2)− d(x1, x2) | : (x1, y1) ∈ ρ , (x2, y2) ∈ ρ} (3.1.1)

The resolution of ρ at y ∈ im ρ is

res(ρ)(y) = sup {d(x1, x2) : (x1, y) ∈ ρ , (x2, y) ∈ ρ} (3.1.2)

and the resolution of ρ is given by:

res(ρ) = sup {res(ρ)(y) : y ∈ im ρ} (3.1.3)

The precision of ρ at x ∈ dom ρ is

prec(ρ)(x) = sup {D(y1, y2) : (x, y1) ∈ ρ , (x, y2) ∈ ρ} (3.1.4)

and the precision of ρ is given by:

prec(ρ) = sup {prec(ρ)(x) : x ∈ dom ρ} (3.1.5)

After measuring (or using other means to deduce) the distances d(x′, x”) between all pairs
of points in X (we may have several values for the distance d(x′, x”)), we try to represent the
collection of these distances in (Y,D). When we make a map ρ we are not really measuring
the distances between all points in X, then representing them as accurately as possible in
Y .

What we do is that we consider a relation ρ, with domain M = dom(ρ) which is ε-dense
in (X, d), then we perform a ” cartographic generalization”1 of the relation ρ to a relation
ρ̄, a map of (X, d) in (Y,D), for example as in the following definition.

Definition 3.2 A subset M ⊂ X of a metric space (X, d) is ε-dense in X if for any u ∈ X
there is x ∈M such that d(x, u) ≤ ε.

Let ρ ⊂ X ×Y be a relation such that dom ρ is ε-dense in (X, d) and im ρ is µ-dense in
(Y,D). We define then ρ̄ ⊂ X×Y by: (x, y) ∈ ρ̄ if there is (x′, y′) ∈ ρ such that d(x, x′) ≤ ε
and D(y, y′) ≤ µ.

If ρ is a relation as described in definition 3.2 then accuracy acc(ρ), ε and µ control the
precision prec(ρ) and resolution res(ρ). Moreover, the accuracy, precision and resolution of
ρ̄ are controlled by those of ρ and ε, µ, as well. This is explained in the next proposition.

Proposition 3.3 Let ρ and ρ̄ be as described in definition 3.2. Then:

(a) res(ρ) ≤ acc(ρ),

(b) prec(ρ) ≤ acc(ρ),

(c) res(ρ) + 2ε ≤ res(ρ̄) ≤ acc(ρ) + 2(ε+ µ),

(d) prec(ρ) + 2µ ≤ prec(ρ̄) ≤ acc(ρ) + 2(ε+ µ),

(e) | acc(ρ̄)− acc(ρ) |≤ 2(ε+ µ).

1http://en.wikipedia.org/wiki/Cartographic_generalization, ”Cartographic generalization is the
method whereby information is selected and represented on a map in a way that adapts to the scale of
the display medium of the map, not necessarily preserving all intricate geographical or other cartographic
details.
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Proof. Remark that (a), (b) are immediate consequences of definition 3.1 and that (c)
and (d) must have identical proofs, just by switching ε with µ and X with Y respectively.
I shall prove therefore (c) and (e).

For proving (c), consider y ∈ Y . By definition of ρ̄ we write

{x ∈ X : (x, y) ∈ ρ̄} =
⋃

(x′,y′)∈ρ,y′∈B̄(y,µ)

B̄(x′, ε)

Therefore we get

res(ρ̄)(y) ≥ 2ε+ sup
{
res(ρ)(y′) : y′ ∈ im(ρ) ∩ B̄(y, µ)

}
By taking the supremum over all y ∈ Y we obtain the inequality

res(ρ) + 2ε ≤ res(ρ̄)

For the other inequality, let us consider (x1, y), (x2, y) ∈ ρ̄ and (x′1, y
′
1), (x

′
2, y

′
2) ∈ ρ such

that d(x1, x
′
1) ≤ ε, d(x2, x

′
2) ≤ ε,D(y′1, y) ≤ µ,D(y′2, y) ≤ µ. Then:

d(x1, x2) ≤ 2ε+ d(x′1, x
′
2) ≤ 2ε+ acc(ρ) + d(y′1, y

′
2) ≤ 2(ε+ µ) + acc(ρ)

Take now a supremum and arrive to the desired inequality.
For the proof of (e) let us consider for i = 1, 2 (xi, yi) ∈ ρ̄, (x′i, y

′
i) ∈ ρ such that

d(xi, x
′
i) ≤ ε,D(yi, y

′
i) ≤ µ. It is then enough to take absolute values and transform the

following equality

d(x1, x2)−D(y1, y2) = d(x1, x2)− d(x′1, x
′
2) + d(x′1, x

′
2)−D(y′1, y

′
2)+

+D(y′1, y
′
2)−D(y1, y2)

into well chosen, but straightforward, inequalities. �

The following definition of the Gromov-Hausdorff distance for metric spaces is natural,
owing to the fact that the accuracy (as defined in definition 3.1) controls the precision and
resolution.

Definition 3.4 Let (X, d), (Y,D), be a pair of metric spaces and µ > 0. We shall say that
µ is admissible if there is a relation ρ ⊂ X × Y such that dom ρ = X, im ρ = Y , and
acc(ρ) ≤ µ. The Gromov-Hausdorff distance between (X, d) and (Y,D) is the infimum of
admissible numbers µ.

As introduced in definition 3.4, the Gromov-Hausdorff (GH) distance is not a true dis-
tance, because the GH distance between two isometric metric spaces is equal to zero. In
fact the GH distance induces a distance on isometry classes of compact metric spaces.

The GH distance thus represents a lower bound on the accuracy of making maps of (X, d)
into (Y,D). Surprising as it might seem, there are many examples of pairs of metric spaces
with the property that the GH distance between any pair of closed balls from these spaces,
considered with the distances properly rescaled, is greater than a strictly positive number,
independent of the choice of the balls. Simply put: there are pairs of spaces X, Y such that
is impossible to make maps of parts of X into Y with arbitrarily small accuracy.

Any measurement is equivalent with making a map, say of X (the territory of the phe-
nomenon) into Y (the map space of the laboratory). The possibility that there might a
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physical difference (manifested as a strictly positive GH distance) between these two spaces,
even if they both might be topologically the same (and with trivial topology, say of a Rn),
is ignored in physics, apparently. On one side, there is no experimental way to confirm that
a territory is the same at any scale (see the section dedicated to the notion of scale), but
much of physical explanations are based on differential calculus, which has as the most basic
assumption that locally and infinitesimally the territory is the same. On the other side the
imposibility of making maps of the phase space of a quantum object into the macroscopic
map space of the laboratory might be a manifestation of the fact that there is a differ-
ence (positive GH distance between maps of the territory realised with the help of physical
phenomena) between ”small” and ”macroscopic” scale.

3.2 Scale

Let ε > 0. A map of (X, d) into (Y,D), at scale ε is a map of (X,
1
ε
d) into (Y,D). Indeed,

if this map would have accuracy equal to 0 then a value of a distance between points in X
equal to L would correspond to a value of the distance between the corresponding points on
the map in (Y,D) equal to εL.

In cartography, maps of the same territory done at smaller and smaller scales (smaller and
smaller ε) must have the property that, at the same resolution, the accuracy and precision
(as defined in definition 3.1) have to become smaller and smaller.

In mathematics, this could serve as the definition of the metric tangent space to a point
in (X, d), as seen in (Y,D).

Definition 3.5 We say that (Y,D, y) (y ∈ Y ) represents the (pointed unit ball in the)
metric tangent space at x ∈ X of (X, d) if there exist a pair formed by:

- a ”zoom sequence”, that is a sequence

ε ∈ (0, 1] 7→ ρx
ε ⊂ (B̄(x, ε),

1
ε
d)× (Y,D)

such that dom ρx
ε = B̄(x, ε), im ρx

ε = Y , (x, y) ∈ ρx
ε for any ε ∈ (0, 1] and

- a ”zoom modulus” F : (0, 1) → [0,+∞) such that lim
ε→0

F (ε) = 0,

such that for all ε ∈ (0, 1) we have acc(ρx
ε ) ≤ F (ε).

Using the notation proposed previously, we can write F (ε) = O(ε), if there is no need to
precisely specify a zoom modulus function.

Let us write again the definition of resolution, accuracy, precision, in the presence of
scale. The accuracy of ρx

ε is defined by:

acc(ρx
ε ) = sup

{
| D(y1, y2)−

1
ε
d(x1, x2) | : (x1, y1), (x2, y2) ∈ ρx

ε

}
(3.2.6)

The resolution of ρx
ε at z ∈ Y is

res(ρx
ε )(z) =

1
ε

sup {d(x1, x2) : (x1, z) ∈ ρx
ε , (x2, z) ∈ ρx

ε} (3.2.7)

and the resolution of ρx
ε is given by:

res(ρx
ε ) = sup {res(ρx

ε )(y) : y ∈ Y } (3.2.8)
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The precision of ρx
ε at u ∈ B̄(x, ε) is

prec(ρx
ε )(u) = sup {D(y1, y2) : (u, y1) ∈ ρx

ε , (u, y2) ∈ ρx
ε} (3.2.9)

and the precision of ρx
ε is given by:

prec(ρx
ε ) = sup

{
prec(ρx

ε )(u) : u ∈ B̄(x, ε)
}

(3.2.10)

If (Y,D, y) represents the (pointed unit ball in the) metric tangent space at x ∈ X of
(X, d) and ρx

ε is the sequence of maps at smaller and smaller scale, then we have:

sup
{
| D(y1, y2)−

1
ε
d(x1, x2) | : (x1, y1), (x2, y2) ∈ ρx

ε

}
= O(ε) (3.2.11)

sup
{
D(y1, y2) : (u, y1) ∈ ρx

ε , (u, y2) ∈ ρx
ε , u ∈ B̄(x, ε)

}
= O(ε) (3.2.12)

sup {d(x1, x2) : (x1, z) ∈ ρx
ε , (x2, z) ∈ ρx

ε , z ∈ Y } = εO(ε) (3.2.13)

Of course, relation (3.2.11) implies the other two, but it is interesting to notice the
mechanism of rescaling.

3.3 Scale stability. Viewpoint stability

u
v

u"
v"

u’ v’

dε
1

ρx
ε

1
εµd

ρx
εµ

1
µ

ρx
ε,µ

x
ε

εµ

µ
1

1
y y

D

D

D

D

I shall suppose further that there is a metric tangent space at x ∈ X and I shall work with
a zoom sequence of maps described in definition 3.5.

Let ε, µ ∈ (0, 1) be two scales. Suppose we have the maps of the territory X, around
x ∈ X, at scales ε and εµ,

ρx
ε ⊂ B̄(x, ε)× B̄(y, 1)

ρx
εµ ⊂ B̄(x, εµ)× B̄(y, 1)
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made into the tangent space at x, (B̄(y, 1), D). The ball B̄(x, εµ) ⊂ X has then two maps.
These maps are at different scales: the first is done at scale ε, the second is done at scale
εµ.

What are the differences between these two maps? We could find out by defining a new
map

ρx
ε,µ =

{
(u′, u”) ∈ B̄(y, µ)× B̄(y, 1) : (3.3.14)

∃u ∈ B̄(x, εµ) (u, u′) ∈ ρx
ε , (u, u”) ∈ ρx

εµ

}
and measuring its accuracy, with respect to the distances

1
µ
D (on the domain) and D (on

the image).
Let us consider (u, u′), (v, v′) ∈ ρx

ε and (u, u”), (v, v”) ∈ ρx
εµ such that (u′, u”), (v′, v”) ∈

ρx
ε,µ. Then:

| D(u”, v”)− 1
µ
D(u′, v′) | ≤ | 1

µ
D(u′, v′)− 1

εµ
d(u, v) | + | 1

εµ
d(u, v)−D(u”, v”) |

We have therefore an estimate for the accuracy of the map ρx
ε,µ, coming from estimate

(3.2.11) applied for ρx
ε and ρx

εµ:

acc(ρx
ε,µ) ≤ 1

µ
O(ε) +O(εµ) (3.3.15)

This explains the cascading of errors phenomenon, namely, for fixed µ, as ε goes to 0 the
accuracy of the map ρx

ε,µ becomes smaller and smaller, meaning that the maps of the ball
B̄(x, εµ) ⊂ X at the scales ε, εµ (properly rescaled) are more and more alike. On the
contrary, for fixed ε, as µ goes to 0, the bound on the accuracy becomes bigger and bigger,
meaning that by using only the map at scale ε, magnifications of a smaller scale region of
this map may be less accurate than the map of this smaller region done at the smaller scale.

I shall add a supplementary hypothesis to the one concerning the existence of the metric
tangent space. It is somehow natural to suppose that as ε converges to 0 the map ρx

ε,µ

converges to a map ρ̄x
µ. This is described further.

ρx
ε,µ

ρx
εµ

dε
1

1
µ D

ρx
ε

u

u"

u’

1
εµdx

ε

εµ

µ
1

1
y y

D

D

ρx
µ

D

u’ε
u"ε
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Definition 3.6 Let the zoom sequence ρx
ε be as in definition 3.5 and for given µ ∈ (0, 1),

the map ρx
ε,µ be defined as in (3.3.14). We say that the zoom sequence ρx

ε is scale stable at
scale µ if there is a relation ρ̄x

µ ⊂ B̄(y, µ)× B̄(y, 1) such that the Haussorff distance between
ρx

ε,µ and ρ̄x
µ, in the metric space B̄(y, µ)× B̄(y, 1) with the distance

Dµ ((u′, u”), (v′, v”)) =
1
µ
D(u′, v′) +D(u”, v”)

can be estimated as:
DHausdorff

µ

(
ρx

ε,µ, ρ̄
x
µ

)
≤ Fµ(ε)

with Fµ(ε) = Oµ(ε). Such a function Fµ(·) is called a scale stability modulus of the zoom
sequence ρx

ε .

This means that for any (u′, u”) ∈ ρ̄x
µ there is a sequence (u′ε, u”ε) ∈ ρx

ε,µ such that

lim
ε→0

u′ε = u′ lim
ε→0

u”ε = u”

Proposition 3.7 If there is a scale stable zoom sequence ρx
ε as in definitions 3.5 and 3.6

then the space (Y,D) is self-similar in a neighbourhood of point y ∈ Y , namely for any
(u′, u”), (v′, v”) ∈ ρ̄x

µ we have:

D(u”, v”) =
1
µ
D(u′, v′)

In particular ρ̄x
µ is the graph of a function (the precision and resolution are respectively equal

to 0).

Proof. Indeed, for any ε ∈ (0, 1) let us consider (u′ε, u”ε), (v′ε, v”ε) ∈ ρx
ε,µ such that

1
µ
D(u′, u′ε) +D(u”, u”ε) ≤ Oµ(ε)

1
µ
D(v′, v′ε) +D(v”, v”ε) ≤ Oµ(ε)

Then we get the following inequality, using also the cascading of errors inequality (3.3.15),

| D(u”, v”)− 1
µ
D(u′, v′) | ≤ 2Oµ(ε) +

1
µ
O(ε) +O(εµ)

We pass with ε to 0 in order to obtain the conclusion. �

Instead of changing the scale (i.e. understanding the scale stability of the zoom sequence),
we could explore what happens when we change the point of view.
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This time we have a zoom sequence, a scale ε ∈ (0, 1) and two points: x ∈ X and
u′ ∈ B̄(y, 1). To the point u′ from the map space Y corresponds a point x1 ∈ B̄(x, ε) such
that

(x1, u
′) ∈ ρx

ε

The points x, x1 are neighbours, in the sense that d(x, x1) < ε. The points of X which
are in the intersection

B̄(x, ε) ∩ B̄(x1, ε)

are represented by both maps, ρx
ε and ρx1

ε . These maps are different; the relative map
between them is defined as:

∆x
ε (u′, ·) =

{
(v′, v”) ∈ B̄(y, 1) : ∃v ∈ B̄(x, ε) ∩ B̄(x1, ε) (3.3.16)

(v, v′) ∈ ρx
ε , (v, v”) ∈ ρx1

ε }

and it is called ”difference at scale ε, from x to x1, as seen from u′”.
The viewpoint stability of the zoom sequence is expressed as the scale stability: the zoom

sequence is stable if the difference at scale ε converges in the sense of Hausdorff distance, as
ε goes to 0.

Definition 3.8 Let the zoom sequence ρx
ε be as in definition 3.5 and for any u′ ∈ B̄(y, 1),

the map ∆x
ε (u′, ·) be defined as in (3.3.16). The zoom sequence ρx

ε is viewpoint stable if there
is a relation ∆x(u′, ·) ⊂ B̄(y, 1)× B̄(y, 1) such that the Haussorff distance can be estimated
as:

DHausdorff
µ (∆x

ε (u′, ·),∆x(u′, ·)) ≤ Fdiff (ε)

with Fdiff (ε) = O(ε). Such a function Fdiff (·) is called a viewpoint stability modulus of the
zoom sequence ρx

ε .

There is a proposition analoguous with proposition 3.7, stating that the difference relation
∆x(u′, ·) is the graph of an isometry of (Y,D).
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3.4 Foveal maps

The following proposition shows that if we have a scale stable zoom sequence of maps ρx
ε

as in definitions 3.5 and 3.6 then we can improve every member of the sequence such that
all maps from the new zoom sequence have better accuracy near the ”center” of the map
x ∈ X, which justifies the name ”foveal maps”.

Definition 3.9 Let ρx
ε be a scale stable zoom sequence. We define for any ε ∈ (0, 1) the

µ-foveal map φx
ε made of all pairs (u, u′) ∈ B̄(x, ε)× B̄(y, 1) such that

- if u ∈ B̄(x, εµ) then (u, ρ̄x
µ(u′)) ∈ ρx

εµ,

- or else (u, u′) ∈ ρx
ε .

Proposition 3.10 Let ρx
ε be a scale stable zoom sequence with associated zoom modulus F (·)

and scale stability modulus Fµ(·). The sequence of µ-foveal maps φx
ε is then a scale stable

zoom sequence with zoom modulus F (·) + µFµ(·). Moreover, the accuracy of the restricted
foveal map φx

ε ∩
(
B̄(x, εµ)× B̄(y, µ)

)
is bounded by µF (εµ), therefore the right hand side

term in the cascading of errors inequality (3.3.15), applied for the restricted foveal map, can
be improved to 2F (εµ).

Proof. Let u ∈ B̄(x, εµ). Then there are u′, u′ε ∈ B̄(y, µ) and u”, u”ε ∈ B̄(y, 1) such that
(u, u′) ∈ φx

ε , (u, u”) ∈ ρx
εµ), (u′, u”) ∈ ρ̄x

µ, (u′ε, u”ε) ∈ ρx
ε,µ and

1
µ
D(u′, u′ε) +D(u”, u”ε) ≤ Fµ(ε)

Let u, v ∈ B̄(x, εµ) and u′, v′ ∈ B̄(y, µ) such that (u, u′), (v, v′) ∈ φx
ε . According to

the definition of φx
ε , it follows that there are uniquely defined u”, v” ∈ B̄(y, 1) such that

(u, u”), (v, v”) ∈ ρx
εµ and (u′, u”), (v′, v”) ∈ ρ̄x

µ. We then have:

| 1
ε
d(u, v)−D(u′, v′) |=

= | 1
ε
d(u, v)− µD(u”, v”) |=

= µ | 1
εµ
d(u, v)−D(u”, v”) | ≤ µF (εµ)

Thus we proved that the accuracy of the restricted foveal map

φx
ε ∩

(
B̄(x, εµ)× B̄(y, µ)

)
is bounded by µF (εµ):

| 1
ε
d(u, v)−D(u′, v′) | ≤ µF (εµ) (3.4.17)

If u, v ∈ B̄(x, ε) \ B̄(x, µ) and (u, u′), (v, v′) ∈ φx
ε then (u, u′), (v, v′) ∈ ρx

ε , therefore

| 1
ε
d(u, v)−D(u′, v′) | ≤ F (ε)

Suppose now that (u, u′), (v, v′) ∈ φx
ε and u ∈ B̄(x, εµ) but v ∈ B̄(x, ε) \ B̄(x, µ). We have

then:
| 1
ε
d(u, v)−D(u′, v′) | ≤
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≤ | 1
ε
d(u, v)−D(u′ε, v

′) | +D(u′, u′ε) ≤ F (ε) + µFµ(ε)

We proved that the sequence of µ-foveal maps φx
ε is a zoom sequence with zoom modulus

F (·) + µFµ(·).
In order to prove that the sequence is scale stable, we have to compute φx

ε,µ, graphically
shown in the next figure.
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We see that (u′, u”) ∈ φx
ε,µ implies that (u′, u”) ∈ ρx

ε,µ or (u′, u”) ∈ ρx
εµ,µ. From here we

deduce that the sequence of foveal maps is scale stable and that

ε 7→ max {Fµ(ε), µFµ(εµ)}

is a scale stability modulus for the foveal sequence.
The improvement of the right hand side for the cascading of errors inequality (3.3.15),

applied for the restricted foveal map is then straightforward if we use (3.4.17). �

3.5 Metric profiles. Metric tangent space

We shall denote by CMS the set of isometry classes of pointed compact metric spaces. The
distance on this set is the Gromov distance between (isometry classes of) pointed metric
spaces and the topology is induced by this distance.

To any locally compact metric space we can associate a metric profile [17, 18].

Definition 3.11 The metric profile associated to the locally metric space (M,d) is the as-
signment (for small enough ε > 0)

(ε > 0, x ∈M) 7→ Pm(ε, x) =
[
B̄(x, 1),

1
ε
d, x

]
∈ CMS

We can define a notion of metric profile regardless to any distance.
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Definition 3.12 A metric profile is a curve P : [0, a] → CMS such that

(a) it is continuous at 0,
(b) for any b ∈ [0, a] and ε ∈ (0, 1] we have

dGH(P(εb),Pm
db

(ε, xb)) = O(ε)

The function O(ε) may change with b. We used the notations

P(b) = [B̄(x, 1), db, xb] and Pm
db

(ε, x) =
[
B̄(x, 1),

1
ε
db, xb

]
The metric profile is nice if

dGH

(
P(εb),Pm

db
(ε, x)

)
= O(bε)

Imagine that 1/b represents the magnification on the scale of a microscope. We use the
microscope to study a specimen. For each b > 0 the information that we get is the table of
distances of the pointed metric space (B̄(x, 1), db, xb).

How can we know, just from the information given by the microscope, that the string
of ”images” that we have corresponds to a real specimen? The answer is that a reasonable
check is the relation from point (b) of the definition of metric profiles 3.12.

Really, this point says that starting from any magnification 1/b, if we further select the

ball B̄(x, ε) in the snapshot (B̄(x, 1), db, xb), then the metric space (B̄(x, 1),
1
ε
db, xb) looks

approximately the same as the snapshot (B̄(x, 1), dbε, xb). That is: further magnification by
ε of the snapshot (taken with magnification) b is roughly the same as the snapshot bε. This
is of course true in a neighbourhood of the base point xb.

The point (a) from the Definition 3.12 has no other justification than Proposition 3.16
in next subsection.

We rewrite definition 3.4 with more details, in order to clearly understand what is a
metric profile. For any b ∈ (0, a] and for any µ > 0 there is ε(µ, b) ∈ (0, 1) such that for any
ε ∈ (0, ε(µ, b)) there exists a relation ρ = ρε,b ⊂ B̄db

(xb, ε)× B̄dbε
(xbε, 1) such that

1. dom ρε,b is µ-dense in B̄db
(xb, ε),

2. im ρε,b is µ-dense in B̄dbε
(xbε, 1),

3. (xb, xbε) ∈ ρε,b,
4. for all x, y ∈ dom ρε,b we have∣∣∣∣1εdb(x, y)− dbε (ρε,b(x), ρε,b(y))

∣∣∣∣ ≤ µ (3.5.18)

In the microscope interpretation, if (x, u) ∈ ρε,b means that x and u represent the same
”real” point in the specimen.

Therefore a metric profile gives two types of information:

• a distance estimate like (3.5.18) from point 4,
• an ”approximate shape” estimate, like in the points 1–3, where we see that two sets,

namely the balls B̄db
(xb, ε) and B̄dbε

(xbε, 1), are approximately isometric.

The simplest metric profile is one with (B̄(xb, 1), db, xb) = (X, db, x). In this case we see
that ρε,b is approximately an ε dilation with base point x.

This observation leads us to a particular class of (pointed) metric spaces, namely the
metric cones.
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Definition 3.13 A metric cone (X, d, x) is a locally compact metric space (X, d), with a
marked point x ∈ X such that for any a, b ∈ (0, 1] we have

Pm(a, x) = Pm(b, x)

Metric cones have dilations. By this we mean the following

Definition 3.14 Let (X, d, x) be a metric cone. For any ε ∈ (0, 1] a dilation is a function
δx
ε : B̄(x, 1) → B̄(x, ε) such that

• δx
ε (x) = x,

• for any u, v ∈ X we have

d (δx
ε (u), δx

ε (v)) = ε d(u, v)

The existence of dilations for metric cones comes from the definition 3.13. Indeed,
dilations are just isometries from (B̄(x, 1), d, x) to (B̄, 1

ad, x).
Metric cones are good candidates for being tangent spaces in the metric sense.

Definition 3.15 A (locally compact) metric space (M,d) admits a (metric) tangent space
in x ∈ M if the associated metric profile ε 7→ Pm(ε, x) (as in definition 3.11) admits a
prolongation by continuity in ε = 0, i.e if the following limit exists:

[TxM,dx, x] = lim
ε→0

Pm(ε, x) (3.5.19)

The connection between metric cones, tangent spaces and metric profiles in the abstract
sense is made by the following proposition.

Proposition 3.16 The associated metric profile ε 7→ Pm(ε, x) of a metric space (M,d) for
a fixed x ∈ M is a metric profile in the sense of the definition 3.12 if and only if the space
(M,d) admits a tangent space in x. In such a case the tangent space is a metric cone.

proof A tangent space [V, dv, v] exists if and only if we have the limit from the relation
(3.5.19). In this case there exists a prolongation by continuity to ε = 0 of the metric profile
Pm(·, x). The prolongation is a metric profile in the sense of definition 3.12. Indeed, we
have still to check the property (b). But this is trivial, because for any ε, b > 0, sufficiently
small, we have

Pm(εb, x) = Pm
db

(ε, x)

where db = (1/b)d and Pm
db

(ε, x) = [B̄(x, 1), 1
εdb, x].

Finally, let us prove that the tangent space is a metric cone. For any a ∈ (0, 1] we have[
B̄(x, 1),

1
a
dx, x

]
= lim

ε→0
Pm(aε, x)

Therefore [
B̄(x, 1),

1
a
dx, x

]
= [TxM,dx, x]

�
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4 Length in metric spaces

For a detailed introduction into the subject see for example [2], chapter 1.

Definition 4.1 The (upper) dilation of a map f : X → Y between metric spaces, in a
point u ∈ Y is

Lip(f)(u) = lim sup
ε→0

sup
{
dY (f(v), f(w))

dX(v, w)
: v 6= w , v, w ∈ B(u, ε)

}
In the particular case of a derivable function f : R → Rn the upper dilation is Lip(f)(t) =
‖ḟ(t)‖.

A function f : (X, d) → (Y, d′) is Lipschitz if there is a positive constant C such that for
any x, y ∈ X we have d′(f(x), f(y)) ≤ C d(x, y). The number Lip(f) is the smallest such
positive constant. Then for any x ∈ X we have the obvious relation Lip(f)(x) ≤ Lip(f).

A curve is a continuous function c : [a, b] → X. The image of a curve is called path.
Length measures paths. Therefore length does not depends on the reparameterization of
the path and it is additive with respect to concatenation of paths.

Definition 4.2 In a metric space (X, d) there are several ways to define the length:

(a) The length of a curve with L1 upper dilation c : [a, b] → X is

L(f) =
∫ b

a

Lip(c)(t) dt

(b) The variation of a curve c : [a, b] → X is the quantity V ar(c) =

= sup

{
n∑

i=0

d(c(ti), c(ti+1)) : a = t0 < t1 < ... < tn < tn+1 = b

}

(c) The length of the path A = c([a, b]) is the one-dimensional Hausdorff measure of
the path.:

l(A) = lim
δ→0

inf

{∑
i∈I

diam Ei : diam Ei < δ , A ⊂
⋃
i∈I

Ei

}

The definitions are not equivalent. To see this consider the following easy example:
f : [−1, 1] → R2, f(t) = (t, sign(t)). We have V ar(f) = 4 and L(f([−1, 1]) = 2. Another
example: the Cantor staircase function is continuous, but not Lipschitz. It has variation
equal to 1 and length of the graph equal to 2. For Lipschitz curves the first two definitions
agree. For simple Lipschitz curves all definitions agree.

Theorem 4.3 For each Lipschitz curve f : [a, b] → X, we have L(f) = V ar(f).

25



Proof. We prove the thesis by double inequality. f is continuous therefore f([a, b]) is a
compact metric space. Let {xn : n ∈ N} be a dense sequence in f([a, b]). All the functions

t 7→ φn(t) = d(f(t), xn)

are Lipschitz and Lip(φn) ≤ Lip(f), because of the general property:

Lip(f ◦ g) ≤ Lip(f) Lip(g)

if f, g are Lipschitz. In the same way we see that :

dil(f)(t) = sup {dil(φn)(t) : n ∈ N}

We have then, for t < s in [a, b]:

d(f(t), f(s)) = sup {| d(f(t), xn)− d(f(s), xn) | : n ∈ N} ≤

≤
∫ t

s

dil(f)(τ) dτ

From the definition of the variation we get

V ar(f) ≤ L(f)

For the converse inequality let ε > 0 and n ≥ 2 natural number such that h = (b−a)/n < ε.
Set ti = a+ ih. Then

1
h

∫ b−ε

a

d(f(t+ h), f(t)) dt ≤ 1
h

n−2∑
i=0

d(f(τ + ti+1), f(τ + ti)) dτ ≤

≤ 1
h

∫ h

0

V ar(f) dτ = V ar(f)

Fatou lemma and definition of dilation lead us to the inequality∫ b−ε

a

dil(f)(t) dt ≤ V ar(f)

This finishes the proof because ε is arbitrary. �

Theorem 4.4 For each Lipschitz curve c : [a, b] → X, we have L(c) = V ar(c) ≥
H1(c([a, b])).

If c is moreover injective then H1(c([a, b])) = V ar(f).

An important tool used in the proof of the previous theorem is the geometrically obvious,
but not straightforward to prove in this generality, Reparametrisation Theorem.

Theorem 4.5 Any Lipschitz curve admits a reparametrisation c : [a, b] → A such that
Lip(c)(t) = 1 for almost any t ∈ [a, b].

Lemma 4.6 If f : [a, b] → X is continuous then

H1(f([a, b]) ≤ d(f(a), f(b))
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Proof. Let us consider the Lipschitz function

φ : X → R , φ(x) = d(x, f(a))

It has the property Lip(φ) ≤ 1 therefore by the definition of Hausdorff measure we have

H1(φ ◦ f([a, b])) ≤ H1(f([a, b])

On the left hand side of the inequality we have the Hausdorff measure on R, which coincides
with the usual (outer) Lebesgue measure. Moreover φ ◦ f([a, b]) = [0, α], therefore we
obtain

H1(φ ◦ f([a, b])) = sup {d(f(t), f(a)) : t ∈ [a, b]} ≥ d(f(a), f(b))

�
The proof of theorem 4.5 follows.

Proof. It is not restrictive to suppose that A = f([a, b]) can be parametrised by f :
[a, b] → A such that dil(f)(t) = 1 for all t ∈ [a, b]. Due to theorem 4.4 and again the
reparametrisation theorem, we can choose [a, b] = [0, V ar(f)].

For an arbitrary δ > 0 we choose n ∈ N such that h = V ar(f)/n < δ and we divide the
interval [0, V ar(f)] in intervals Ji = [ih, (i + 1)h]. The function f has Lipschitz constant
equal to 1 therefore (see definition of Hausdorff measure and notations therein)

H1
δ(A) ≤

n∑
i=0

diam (Ji) = V ar(f)

δ is arbitrary therefore H1(A) ≤ V ar(f). This is a general inequality which does not use
the injectivity hypothesis.

We prove the converse inequality from injectivity hypothesis. Let us divide the interval
[a, b] by a ≤ t0 < ... < tn ≤ b. From lemma 4.6 and sub-additivity of Hausdorff measure we
have:

n−1∑
i=0

d(f(ti), f(ti+1)) ≤
n−1∑
i=0

H1(f([ti), ti+1])) ≤ H1(A)

The partition of the interval was arbitrary, therefore V ar(f) ≤ H1(A). �

Definition 4.7 We shall denote by ld the length functional induced by the distance
d, defined only on the family of Lipschitz curves. If the metric space (X, d) is connected by
Lipschitz curves, then the length induces a new distance dl, given by:

dl(x, y) = inf {ld(c([a, b])) : c : [a, b] → X Lipschitz ,

c(a) = x , c(b) = y}

A length metric space is a metric space (X, d), connected by Lipschitz curves, such
that d = dl.

In terms of distances there is an easy criterion to decide if a metric space is path metric
(Theorem 1.8., page 6-7, Gromov [38]).

Theorem 4.8 A complete metric space is path metric if and only if (a) or (b) from above
is true:
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(a) for any x, y ∈ X and for any ε > 0 there is z ∈ X such that

max {d(x, z), d(z, y)} ≤ 1
2
d(x, y) + ε

(b) for any x, y ∈ X and for any r1, r2 > 0, if r1 + r2 ≤ d(x, y) then

d(B(x, r1), B(y, r2)) ≤ d(x, y)− r1 − r2

Proof. We shall prove only that (a) implies that X is path metric. (b) implies (a) is
straightforward, path metric space implies (b) likewise.

Set δ = d(x, y) and take a sequence εk > 0, with finite sum. We shall recursively define
a function z = zε from the dyadic numbers in [0, 1] to X. zε(1/2) = z1/2 is a point such
that

max
{
d(x, z1/2), d(z1/2, y)

}
≤ 1

2
δ(1 + ε1)

Suppose now that all points zε(p/2n) = zp/2n were defined, for p = 1, ..., 2n − 1. Then
z2p+1/2n+1 is a point such that

max
{
d(zp/2n , z2p+1/2n+1), d(z2p+1/2n+1 , zp+1/2n)

}
≤ δ

2n

n+1∏
k=1

(1 + εk)

Because (X, d) is a complete metric space it follows that zε can be prolonged to a Lipschitz
curve cε, defined on the whole interval [0, 1], such that c(0) = x, c(1) = y and

d(x, y) ≤ l(cε ≤ d(x, y)
∏
k≥1

(1 + εk)

But the product
∏

k≥1(1 + εk) can be made arbitrarily close to 1, which proves the thesis.
�

From theorem 4.4 we deduce that Lipschitz curves in complete length metric spaces
are absolutely continuous. Indeed, here is the definition of an absolutely continuous curve
(definition 1.1.1, chapter 1, [2]).

Definition 4.9 Let (X, d) be a complete metric space. A curve c : (a, b) → X is absolutely
continuous if there exists m ∈ L1((a, b)) such that for any a < s ≤ t < b we have

d(c(s), c(t)) ≤
∫ t

s

m(r) dr.

Such a function m is called a upper gradient of the curve c.

According to theorem 4.4, for a Lipschitz curve c : [a, b] → X in a complete length
metric space such a function m ∈ L1((a, b)) is the upper dilation Lip(c). More can be said
about the expression of the upper dilation. We need first to introduce the notion of metric
derivative of a Lipschitz curve.

Definition 4.10 A curve c : (a, b) → X is metrically derivable in t ∈ (a, b) if the limit

md(c)(t) = lim
s→t

d(c(s), c(t))
| s− t |

exists and it is finite. In this case md(c)(t) is called the metric derivative of c in t.
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For the proof of the following theorem see [2], theorem 1.1.2, chapter 1.

Theorem 4.11 Let (X, d) be a complete metric space and c : (a, b) → X be an absolutely
continuous curve. Then c is metrically derivable for L1-a.e. t ∈ (a, b). Moreover the function
md(c) belongs to L1((a, b)) and it is minimal in the following sense: md(c)(t) ≤ m(t) for
L1-a.e. t ∈ (a, b), for each upper gradient m of the curve c.

Definition 4.12 A (local) geodesic is a curve c : [a, b] → X with the property that for any
t ∈ (a, b) there is a small ε > 0 such that c : [t− ε, t+ ε] → X is length minimising. A global
geodesic is a length minimising curve.

Therefore in a path metric space a local geodesic has the property that in the neighbour-
hood of any of it’s points the relation

d(c(t), c(t′)) = lc(t, t′)

holds. Any global geodesic is also local geodesic.
Can one join any two points with a geodesic? The abstract Hopf-Rinow theorem (Gromov

[38], page 9) states that:

Theorem 4.13 If (X, d) is a connected locally compact path metric space then each pair of
points can be joined by a global geodesic.

Proof. It is sufficient to give the proof for compact path metric spaces. Given the points
x, y, there is a sequence of curves fh joining those points such that l(fh) ≤ d(x, y)+1/h. The
sequence, if parametrised by arclength, is equicontinuous; by Arzela-Ascoli theorem one can
extract a subsequence (denoted also fh) which converges uniformly to f . By construction
the length function is lower semicontinuous hence:

l(f) ≤ lim inf
h→∞

l(fh) ≤ d(x, y)

Therefore f is a length minimising curve joining x and y. �
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5 Affine structure in terms of dilations

5.1 Affine algebra

Bertram [7] Theorem 1.1 (here theorem 5.1) and paragraph 5.2, proposes the following
algebraic description of affine geometry and of affine metric geometry over a field K of
characteristic different from 2, which is not based on incidence notions, but on algebraic
relations concerning “product maps”. He then pursues to the development of generalized
projective geometries and their relations to Jordan algebras. For our purposes, we changed
the name of “product maps” (see the theorem below) from “π” to “δ”, more precisely:

πr(x, y) = δx
r y

Further, in theorem 5.1 and definition 5.2 is explained this point of view.

Theorem 5.1 The category of affine spaces over a field K of characteristic different from 2
is equivalent with the category of sets V equipped with a family δr, r ∈ K, of “product maps”

δr : V× V → V , (x, y) 7→ δx
r y

satisfying the following properties (Af1) - (Af4):

(Af1) The map r 7→ δx
r is a homomorphism of the unit group K× into the group of bijections

of V fixing x, that is
δx
1y = y , δx

r δ
x
s y = δx

rsy , δ
x
rx = x

(Af2) For all r ∈ K and x ∈ V the map δx
r is an endomorphism of δs, s ∈ K:

δx
r δ

y
s z = δ

δx
r y

s δx
r z

(Af3) The “barycentric condition”: δx
r y = δy

1−r x

(Af4) The group generated by the δx
r δ

y
r−1 (r ∈ K×, x, y ∈ V) is abelian, that is for all

r, s ∈ K×, x, y, u, v ∈ V

δx
r δ

y
r−1 δ

u
s δ

v
s−1 = δu

s δ
v
s−1 δx

r δ
y
r−1

More precisely, in every affine space over K, the maps

δx
r y = (1− r)x+ ry (5.1.1)

with r ∈ K, satisfy (Af1) - (Af4). Conversely, if product maps with the properties (Af1) -
(Af4) are given and x ∈ V is an arbitrary point then

u +x v := δx
2 δ

u
1
2
v , r u := δx

ru

defines on V the structure of a vector space over K with zero vector x, and this construction
is inverse to the preceding one. Affine maps g : V → V′ in the usual sense are precisely the
homomorphisms of product maps, that is maps g : V → V′ such that g πr(x, y) = π′r(gx, gy)
for all x, y ∈ V, r ∈ K.

We shall use the name “real normed affine space” in the following sense.
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Definition 5.2 A real normed affine space is an affine space V over R together with a
distance function d : V× V → K such that:

(Af5) for all x ∈ V ‖ · ‖x := d(x, ·) : V → K is a norm on the vector space (V, x) with zero
vector x.

(Af6) the distance d is translation invariant: for any x, y, u, v ∈ V we have:

d(x+u v, y +u v) = d(x, y)

We remark that the field of product maps δx
r (together with the distance function d for

the metric case) is the central object in the construction of affine geometry over a general
field.

5.2 Focus on dilations

There is another, but related, way of generalizing the affine geometry, which is the one
of dilation structures [11]. In this approach product maps of Bertram are replaced by
“dilations”.

For this we have to replace the field K by a commutative group Γ (instead of the mul-
tiplicative group K×) endowed with a “valuation map” ν : Γ → (0,+∞), which is a group
morphism. We write ε → 0, ε ∈ Γ, for ν(ε) → 0 in (0,+∞). We keep axioms like (Af1),
(Af2) (from Theorem 5.1), but we modify (Af5) (from Definition 5.2). There will be one
more axiom concerning the relations between the distance and dilations. This is explained
in theorem 5.5.

The conditions appearing in theorem 5.5 are a particular case of the system of axioms
of dilation structures, introduced in [11]. Dilation structures are also a generalization of
homogeneous groups, definition 5.3, in fact we arrived to dilation structures after an effort to
find a common algebraic and analytical ground for homogeneous groups and sub-riemannian
manifolds.

The axioms of a dilation structure are partly algebraic and partly of an analytical nature
(by using uniform limits). Metric spaces endowed with dilation structures have beautiful
properties. The most important is that for any point in such a space there is a tangent space
(in the metric sense) realized as a “normed conical group”. Any normed conical group has an
associated dilation structure which is “linear” in the sense that it satisfies (Af2). However,
conical groups form a family much larger than affine spaces (in the usual sense, over R or
C). Building blocks of conical groups are homogeneous groups (graded Lie groups) or p-adic
versions of them. By renouncing to (Af3) and (Af4) we thus allow noncommutativity of the
“vector addition” operation.

Let us explain how we can recover the usual affine geometry from the viewpoint of dilation
structures. For simplicity we take here Γ = (0,+∞) and V is a real, finite dimensional vector
space.

Here is the definition of a normed homogeneous group. See section 8.2 for more details
on the particular case of stratified homogeneous groups.

Definition 5.3 A normed homogeneous group is a connected and simply connected Lie
group whose Lie algebra is endowed with a family of dilations {δε : ε ∈ (0,+∞)}, which are
algebra automorphisms, simultaneously diagonalizable, together with a homogeneous norm.

Since the Lie group exponential is a bijection we shall identify the Lie algebra with the
Lie group, thus a normed homogeneous group is a group operation on a finite dimensional
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vector space V. The operation will be denoted multiplicatively, with 0 as neutral element, as
in Folland, Stein [28]. We thus have a linear action δ : (0,+∞) → Lin(V,V) on V, and a
homogeneous norm ‖ · ‖ : V → [0,+∞), such that:

(a) for any ε ∈ (0,+∞) the transformation δε is an automorphism of the group operation:
for any x, y ∈ V we have δε(x · y) = δεx · δεy

(b) the family {δε : ε ∈ (0,+∞)} is simultaneously diagonalizable: there is a finite direct
sum decomposition of the vector space V

V = V1 + ...+ Vm

such that for any ε ∈ (0,+∞) we have:

x =
m∑

i=1

xi ∈ Vm 7→ δεx =
m∑

i=1

εixi .

(c) the homogeneous norm has the properties:

(c1) ‖x‖ = 0 if and only if x = 0,

(c2) ‖x · y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ V,

(c3) for any x ∈ V and ε > 0 we have ‖δεx‖ = ε ‖x‖

Definition 5.4 To a normed homogeneous group (V, δ, ·, ‖ · ‖) we associate a normed affine
group space (V,+·, δ

·
· , d). Here we use the sign “+” for an operation which was denoted

multiplicatively, for compatibility with the previous approach of Bertram , see theorem 5.1.
The normed affine group space (V,+·, δ

·
· , d) is described by the following points:

- for any u ∈ V the function +u : V×V → V, x+u v = x · u−1 · v is the left translation
of the group operation · with the zero element u. In particular we have x+0 y = x · y.

- for any x, y ∈ V and ε ∈ (0,+∞) we define

δx
ε y = x · δε(x−1 · y)

and remark that the definition is invariant with the choice of the base point for the
operation in the sense: for any u ∈ V we have:

δx
ε y = x+u δ

u
ε ( invu(x) +u y)

where invu(x) is the inverse of x with respect to the operation +u, (by computation
we get invu(x) = u · x−1 · u),

- the distance d is defined as: for any x, y ∈ V we have d(x, y) = ‖x−1 ·y‖. As previously,
remark that the definition does not depend on the choice of the base point for the
operation, that is: for any u ∈ V we have

d(x, y) = ‖invu(x) +u y‖u , ‖x‖u := ‖u−1 · x‖

Equally, this is a consequence of the invariance of the norm with respect to left trans-
lations (by any group operation +u, u ∈ V).
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Theorem 5.5 The category of normed affine group spaces is equivalent with the category
of locally compact metric spaces (X, d) equipped with a family δε, ε ∈ (0,+∞), of dilations

δε : X ×X → X , (x, y) 7→ δx
ε y

satisfying the following properties:

(Af1’) The map ε 7→ δεx is a homomorphism of the multiplicative group (0,+∞) into the
group of continuous, with continuous inverse functions of X fixing x, that is

δx
1y = y , δx

r δ
x
s y = δx

rsy , δ
x
rx = x

(A2) the function δ : (0,+∞) × X × X → X defined by δ(ε, x, y) = δx
ε y is continuous.

Moreover, it can be continuously extended to [0,+∞) × X × X by δ(0, x, y) = x and
the limit

lim
ε→0

δx
ε y = x

is uniform with respect to x, y in compact set.

(A3’) for any x ∈ X and for any u, v ∈ X, ε ∈ (0,+∞) we have

1
ε
d (δx

εu, δ
x
ε v) = d(u, v)

(A4) for any x, u, v ∈ X, ε ∈ (0,+∞) let us define

∆x
ε (u, v) = δ

δx
ε u

ε−1 δ
x
ε v.

Then we have the limit
lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

(Af2’) For all ε ∈ (0,+∞) and x ∈ X the map δx
ε is an endomorphism of δs, s ∈ (0,+∞):

δx
r δ

y
s z = δ

δx
r y

s δx
r z

More precisely, in every normed affine group space , the maps δx
ε and distance d satisfy

(Af1’), (A2), (A3’), (A4), (Af2’). Conversely, if dilations δx
ε and distance d are given,

such that they satisfy the collection (Af1’), (A2), (A3’), (A4), (Af2’), for an arbitrary point
x ∈ V the following expression

Σx(u, v) := lim
ε→0

δx
ε−1 δ

δx
ε u

ε v

together with δx
ε and distance d defines on V the structure of a normed affine group space, and

this construction is inverse to the preceding one. The arrows of this category are bilipschitz
invertible homomorphisms of dilations, that is maps g : V → V̂ such that g δx

ε y = δ̂gx
r gy for

all x, y ∈ V, ε ∈ (0,+∞).
Moreover, the category of real normed affine spaces is a subcategory of the previous

one, namely the category of locally compact metric spaces (X, d) equipped with a family δε,
ε ∈ (0,+∞), of dilations satisfying (Af1’), (A2), (A3’), (A4), (Af2’) and

(Af3) the “barycentric condition”: for all ε ∈ (0, 1) δx
ε y = δy

1−ε x

The arrows of this category are exactly the affine, invertible maps.
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Proof. Here we shall prove the easy implication, namely why the conditions (Af1’), (A2),
(A3’), (A4), (Af2’) and (Af3) are satisfied in a real normed affine space.

For the real normed affine space space V let us fix for simplicity a point 0 ∈ V and work
with the vector space V with zero vector 0. Since a real normed affine space is a particular
example of a homogeneous group, definition 5.3 and observations inside apply. The dilation
based at x ∈ V, of coefficient ε > 0, is the function

δx
ε : V → V , δx

ε y = x+ ε(−x+ y) .

For fixed x the dilations based at x form a one parameter group which contracts any bounded
neighbourhood of x to a point, uniformly with respect to x. Thus (Af1’), (A2) are satisfied.
(A3’) is also obvious.

The meaning of (A4) is that using dilations we can recover the operation of addition and
multiplication by scalars. We shall explain this in detail since this will help the understanding
of the axioms of dilation structures, described in section 6.

For x, u, v ∈ V and ε > 0 we define the following compositions of dilations:

∆x
ε (u, v) = δ

δx
ε u

ε−1 δ
x
ε v , (5.2.2)

Σx
ε (u, v) = δx

ε−1δ
δx

ε u
ε (v) , invx

ε (u) = δ
δx

ε u

ε−1x .

The meaning of this functions becomes clear if we compute:

∆x
ε (u, v) = x+ ε(−x+ u) + (−u+ v) ,

Σx
ε (u, v) = u+ ε(−u+ x) + (−x+ v) ,

invx
ε (u) == x+ ε(−x+ u) + (−u+ x) .

As ε→ 0 we have the limits:

lim
ε→0

∆x
ε (u, v) = ∆x(u, v) = x+ (−u+ v) ,

lim
ε→0

Σx
ε (u, v) = Σx(u, v) = u+ (−x+ v) ,

lim
ε→0

invx
ε (u) = invx(u) = x− u+ x ,

uniform with respect to x, u, v in bounded sets. The function Σx(·, ·) is a group operation,
namely the addition operation translated such that the neutral element is x:

Σx(u, v) = u+x v .

The function invx(·) is the inverse function with respect to the operation +x

invx(u) +x u = u +x invx(u) = x

and ∆x(·, ·) is the difference function

∆x(u, v) = invx(u) +x v

Notice that for fixed x, ε the function Σx
ε (·, ·) is not a group operation, first of all because

it is not associative. Nevertheless, this function satisfies a “shifted” associativity property,
namely

Σx
ε (Σx

ε (u, v), w) = Σx
ε (u,Σδx

ε u
ε (v, w)) .
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Also, the inverse function invx
ε is not involutive, but shifted involutive:

inv
δx

ε u
ε (invx

εu) = u .

Affine continuous transformations A : V → V admit the following description in terms
of dilations. (We could dispense of continuity hypothesis in this situation, but we want to
illustrate a general point of view, described further in the paper).

Proposition 5.6 A continuous transformation A : V → V is affine if and only if for any
ε ∈ (0, 1), x, y ∈ V we have

Aδx
ε y = δAx

ε Ay . (5.2.3)

The proof is a straightforward consequence of representation formulæ (5.2.2) for the
addition, difference and inverse operations in terms of dilations.

In particular any dilation is an affine transformation, hence for any x, y ∈ V and ε, µ > 0
we have

δy
µ δ

x
ε = δ

δy
µx

ε δy
µ . (5.2.4)

Thus we recover (Af2’) (see also condition (Af2)). The barycentric condition (Af3) is a
consequence of the commutativity of the addition of vectors. The easy part of the theorem
5.5 is therefore proven.

The second, difficult part of the theorem is to prove that axioms (Af1’), (A2), (A3’),
(A4), (Af2’) describe normed affine group spaces. This is a direct consequence of several
general results from this paper: theorem 8.4 and proposition 15.11 show that normed affine
group spaces satisfy the axioms, corollary 13.8, theorem 15.12, proposition 16.9 and theorem
16.14 show that conversely a space where the axioms are satisfied is a normed affine group
space, moreover that in the presence of the barycentric condition (Af3) we get real normed
affine spaces. �

Some compositions of dilations are dilations. This is precisely stated in the next theorem,
which is equivalent with the Menelaos theorem in euclidean geometry.

Theorem 5.7 For any x, y ∈ V and ε, µ > 0 such that εµ 6= 1 there exists an unique w ∈ V
such that

δy
µ δ

x
ε = δw

εµ .

For the proof see Artin [3]. A straightforward consequence of this theorem is the following
result.

Corollary 5.8 The inverse semigroup generated by dilations of the space V is made of all
dilations and all translations in V.

Proof. Indeed, by theorem 5.7 a composition of two dilations with coefficients ε, µ with
εµ 6= 1 is a dilation. By direct computation, if εµ = 1 then we obtain translations. This is
in fact compatible with (5.2.2), but is a stronger statement, due to the fact that dilations
are affine in the sense of relation (5.2.4).

Any composition between a translation and a dilation is again a dilation. The proof is
done. �
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The corollary 5.8 allows us to describe the ratio of three collinear points in a way which
will be generalized to normed affine group spaces. Indeed, in a real normed affine space
V, for any x, y ∈ V and α, β ∈ (0,+∞) such that αβ 6= 1, there is an unique z ∈ V and
γ = 1/αβ such that

δx
α δ

y
β δ

z
γ = id

We easily find that x, y, z are collinear

z =
1− α

1− αβ
x +

α(1− β)
1− αβ

y (5.2.5)

the ratio of these three points, named r(xα, yβ , zγ) is:

r(xα, yβ , zγ) =
α

1− αβ

Conversely, let x, y, z ∈ V which are collinear, such that z is in between x and y. Then we
can easily find (non unique) α, β, γ ∈ (0,+∞) such that αβγ = 1 and δx

α δ
y
β δ

z
γ = id.

It is then almost straightforward to prove the well known fact that any affine transfor-
mation is also geometrically affine, in the sense that it transforms triples of collinear points
into triples of collinear points (use commutation with dilations) and it preserves the ratio of
collinear points. (The converse is also true).
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6 Dilation structures

A dilation structure (X, d, δ) over a metric space (X, d) is an assignment to any point x ∈ X
of a group of ”dilations” {δx

ε : ε ∈ Γ}, together with some compatibility conditions between
the distance and the dilations and between dilations based in different points.

A basic difficulty in stating the axioms of a dilation structure is related to the domain
of definition and the image of a dilation. In this subsection we shall neglect the problems
raised by domains and codomains of dilations.

The axioms state that some combinations between dilations and the distance converge
uniformly, with respect to some finite families of points in an arbitrary compact subset of
the metric space (X, d), as ν(ε) converges to 0.

We present here an introduction into the subject of dilation structures. For more details
see Buliga [11].

6.1 Notations

Let Γ be a topological separated commutative group endowed with a continuous group
morphism ν : Γ → (0,+∞) with inf ν(Γ) = 0. Here (0,+∞) is taken as a group with
multiplication. The neutral element of Γ is denoted by 1. We use the multiplicative notation
for the operation in Γ.

The morphism ν defines an invariant topological filter on Γ (equivalently, an end). In-
deed, this is the filter generated by the open sets ν−1(0, a), a > 0. From now on we shall name
this topological filter (end) by ”0” and we shall write ε ∈ Γ → 0 for ν(ε) ∈ (0,+∞) → 0.

The set Γ1 = ν−1(0, 1] is a semigroup. We note Γ̄1 = Γ1 ∪ {0} On the set Γ̄ = Γ ∪ {0}
we extend the operation on Γ by adding the rules 00 = 0 and ε0 = 0 for any ε ∈ Γ. This is
in agreement with the invariance of the end 0 with respect to translations in Γ.

The space (X, d) is a complete, locally compact metric space. For any r > 0 and any
x ∈ X we denote by B(x, r) the open ball of center x and radius r in the metric space X.

On the metric space (X, d) we work with the topology (and uniformity) induced by the
distance. For any x ∈ X we denote by V(x) the topological filter of open neighbourhoods
of x.

The dilation structures, which will be introduced soon, are invariant to the operation of
multiplication of the distance by a positive constant. They should also be seen, as examples
show, as local objects, therefore we may safely suppose, without restricting the generality,
that all closed balls of radius at most 5 are compact.

6.2 Axioms of dilation structures

We shall list the axioms of a dilation structure (X, d, δ), in a simplified form, without
concerning about domains and codomains of functions. In the next subsection we shall add
the supplementary conditions concerning domains and codomains of dilations.

A1. For any point x ∈ X there is an action δx : Γ → End(X, d, x), where End(X, d, x) is
the collection of all continuous, with continuous inverse transformations φ : (X, d) →
(X, d) such that φ(x) = x.

This axiom (the same as (A1) from theorem 5.1 or theorem 5.5) tells us that δx
εx = x

for any x ∈ X, ε ∈ Γ, also δx
1y = y for any x, y ∈ X, and δx

ε δ
x
µy = δx

εµy for any x, y ∈ X and
ε, µ ∈ Γ.
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A2. The function δ : Γ×X ×X → X defined by δ(ε, x, y) = δx
ε y is continuous. Moreover,

it can be continuously extended to Γ̄×X ×X by δ(0, x, y) = x and the limit

lim
ε→0

δx
ε y = x

is uniform with respect to x, y in compact set.

We may alternatively put that the previous limit is uniform with respect to d(x, y).

A3. There is A > 1 such that for any x there exists a function (u, v) 7→ dx(u, v), defined
for any u, v in the closed ball (in distance d) B̄(x,A), such that

lim
ε→0

sup
{
| 1
ε
d(δx

εu, δ
x
ε v) − dx(u, v) | : u, v ∈ B̄d(x,A)

}
= 0

uniformly with respect to x in compact set.

It is easy to see that:

(a) The function dx is continuous as an uniform limit of continuous functions on a compact
set,

(b) dx is symmetric dx(u, v) = dx(v, u) for any u, v ∈ B̄(x,A),

(c) dx satisfies the triangle inequality, but it can be a degenerated distance function: there
might exist v, w such that dx(v, w) = 0.

We make the following notation which generalizes the notation from (5.2.2):

∆x
ε (u, v) = δ

δx
ε u

ε−1 δ
x
ε v.

The next axiom can now be stated:

A4. We have the limit
lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

Definition 6.1 A triple (X, d, δ) which satisfies A1, A2, A3, but dx is degenerate for some
x ∈ X, is called degenerate dilation structure.

If the triple (X, d, δ) satisfies A1, A2, A3 and dx is non-degenerate for any x ∈ X, then
we call it a dilation structure.

If a dilation structure satisfies A4 then we call it strong dilation structure.

6.3 Axiom 0: domains and codomains of dilations

The problem of domains and codomains of dilation cannot be neglected. In the section
dedicated to examples of dilation structures we present the particular case of an ultrametric
space which is also a ball of radius one. As dilations approximately contract distances, it
follows that the codomain of a dilation δx

ε with ν(ε) < 1 can not be the whole space. There
are other examples showing that we can not always take the domain of a dilation to be the
whole space. That is because the topology of small balls can be different from the topology
of big ones (like in the case of a sphere).
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For all these reasons we need to impose some minimal conditions on the domains and
codomains of dilations. These conditions will be explained in the following. They will be
considered as part of a new axiom, called Axiom 0.

For any x ∈ X there is an open neighbourhood U(x) of x such that for any ε ∈ Γ1 the
dilations are functions

δx
ε : U(x) → Vε(x) .

The sets Vε(x) are open neighbourhoods of x.
There is a number 1 < A such that for any x ∈ X we have B̄d(x,A) ⊂ U(x). There is

a number B > A such that for any ε ∈ Γ with ν(ε) ∈ (1,+∞) the associated dilation is a
function

δx
ε : Wε(x) → Bd(x,B) .

We have the following string of inclusions, for any ε ∈ Γ1, and any x ∈ X:

Bd(x, ν(ε)) ⊂ δx
εBd(x,A) ⊂ Vε(x) ⊂Wε−1(x) ⊂ δx

εBd(x,B) .

In relation with the axiom A4 we need the following condition on the co-domains Vε(x):
for any compact set K ⊂ X there are R = R(K) > 0 and ε0 = ε(K) ∈ (0, 1) such that for
all u, v ∈ B̄d(x,R) and all ε ∈ Γ, ν(ε) ∈ (0, ε0), we have

δx
ε v ∈Wε−1(δx

εu) .

These conditions are important for describing dilation structures on the boundary of the
dyadic tree, for example. In the first formulation of the axioms given in [11] some of these
assumptions are part of the Axiom 0, others can be found in the initial formulation of the
Axioms 1, 2, 3.
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7 Colorings of tangle diagrams

The idempotent right quasigroups are related to algebraic structures appearing in knot
theory. J.C. Conway and G.C. Wraith, in their unpublished correspondence from 1959,
used the name ”wrack” for a self-distributive right quasigroup generated by a link diagram.
Later, Fenn and Rourke [37] proposed the name ”rack” instead. Quandles are particular
case of racks, namely self-distributive idempotent right quasigroups. They were introduced
by Joyce [45], as a distillation of the Reidemeister moves.

The axioms of a (rack ; quandle ; irq) correspond respectively to the (2,3 ; 1,2,3 ; 1,2)
Reidemeister moves. That is why we shall use decorated braids diagrams in order to explain
what emergent algebras are.

The basic idea of racks and quandles is that these are algebraic operations related to the
coloring of tangles diagrams.

7.1 Oriented tangle diagrams and trivalent graphs

Visually, a oriented tangle diagram is the result of a regular projection on a plane of a
properly embedded in the 3-dimensional space, oriented, one dimensional manifold, together
with additional over- and under-information at crossings (adapted from the ”Tangle, relative
link” article from Encyclopaedia of mathematics. Supplement. Vol. III. Edited by M.
Hazewinkel. Kluwer Academic Publishers, Dordrecht, 2001, page 395).

Because the tangle diagram is oriented, there are two types of crossings, indicated in the
next figure.

The tangle which projects to the tangle diagram is to be seen as a ”parameterization” of
the tangle diagram. In this sense, by using the image of the tangle diagram with over- and
under-crossings, it is easy to define an ”arc” of the diagram as the projection of a (part of
a) 1-dimensional embedded manifold from the tangle. Arcs can be open or closed. An arc
decomposes into connected parts (again by using the first image of a tangle diagram) which
are called segments.

An input segment is a segment which enters (with respect to its orientation) into a
crossing but it does not exit from a crossing. Likewise, an output segment is one which exits
from a crossing but there is no crossing where this segment enters.

Oriented tangle diagrams are considered only up to continuous deformations of the plane.
Further I shall use, if necessary, the name ”first image of a tangle diagram”, if the

oriented tangle diagram is represented with this convention. There is a ”second image”,
which I explain next. In a sense, the true image of a tangle diagram is the second one,
mainly because in this paper the fundamental object is the oriented tangle diagram, NOT
the tangle which projects on the plane to the oriented tangle diagram.

For the second image I use a chord diagram, or a Gauss diagram type of indication of
crossings. See [36] [46] for more on the mathematical aspects of chord diagrams.
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We may see a crossing like a gate, or black box with two inputs and two outputs. We open
the black box and inside we find a combination of two simpler gates, among the following
three available: the FAN-OUT, the ◦ and the • gate.

FAN−OUT GATE GATE GATE

By using these gates we may transform the oriented tangle diagram into a oriented
planar graph with 3-valent 2-valent or 1-valent nodes, that is into a circuit made only with
these gates, connected by wires which could cross (crossings of wires in this graph has no
meaning). The graph is planar in the sense that each trivalent node, which represents one
of these 3 gates, inherits an orientation coming from the plane. A trivalent node is either
undecorated, if it belongs to a FAN-OUT gate, or decorated by a ◦ or a •, if it belongs to a
◦ gate or a • gate respectively.

This graph is obtained by the following procedure. 1-valent nodes represent input or
output tangle segments. 2-valent nodes are used for closing an arc. These 2-valent nodes
can be replaced by 3-valent nodes (corresponding to FAN-OUT gates), with the price of
introducing also a 1-valent node. Crossings are replaced by combinations of trivalent nodes,
as explained in the next figure.

1

2 4

3

1

2

3

4

4

1

2

3

1
3

2 4

In the second image of a tangle diagram, all segments are wires connecting the nodes of
the graph, but some wires are not segments, namely the ones which connect a FAN-OUT
with the corresponding ◦ gate or • gate (i.e. with the gate which constitutes together with
the respective FAN-OUT a coding for a over- or under-crossing). The wires which are not
segments are called ”chords”.

Arcs appear as connected unions of segments with compatible orientations (such that
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we can choose a segment of the arc and then walk along the whole arc, by following the
local directions indicated by each segment). By walking along an arc, we can recognize the
crossings: undecorated nodes correspond to over-crossings and decorated nodes to under-
crossings.

over−

under−

As a circuit made by gates (in the second image), a tangle diagram appears as an ordered
list of its crossings gates, each crossing gate being given as a pair of FAN-OUT and one of
the other two gates. 1-valent nodes appear as input nodes (in a separate INPUT list), or
as output nodes (in the OUTPUT list). The wiring is given as a matrix M of connectivity,
namely the element Mij corresponding to the pair of nodes (i, j) (from the trivalent and
1-valent graph, independently on the pairing of nodes given by the crossings) is equal to 1 if
there is a wire oriented from i to to j, otherwise is equal to 0. The definition is unambiguous
because from i to j can be at most one oriented wire.

7.2 Colorings with idempotent right quasigroups

Let X be a set of colors which will be used to decorate the segments in a (oriented) tangle
diagram. There are two binary operations on S related to the coloring, as shown in the next
figure.

x

u

x u

x

u

x u

Notice that only matters the orientation of the arc which passes over.
We have therefore a set X endowed with two operations ◦ and •. We want these oper-

ations to satisfy some conditions which ensure that the decoration of the segments of the
tangle diagram rest unchanged after performing a Reidemeister move I or II on the tangle
diagram. This is explained further. We show only the part of a (larger) diagram which
changes during a Reidemeister move, with the convention that what is not shown will not
change after the Reidemeister move is done.

The first condition, related to the Reidemeister move I, is depicted in the next figure.
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x

x

x x

x x

R IR I

It means that we can decorate ”tadpoles” such that we may remove them (by using the
Reidemeister move I) afterwards. In algebraic terms, this condition means that we want the
operations ◦ and • to be idempotent:

x ◦ x = x • x = x

for all x ∈ X.
The second condition is related to the Reidemeister II move. It means that we can

decorate the segments of a pair of arcs as shown in the following picture, in such a way that
we can perform the Reidemeister II move and eliminate a pair of ”opposite” crossings.

This condition translates in algebraic terms into saying that (X, ◦, •) is a right quasi-
group. Namely we want that

x ◦ (x • y) = x • (x ◦ y) = y

for all x, y ∈ X. This is the same as asking that for any a and b in X, the equation a ◦x = b
has a solution, which is unique, then denote the solution by x = a • b. All in all, a set
(X, ◦, •) which has the properties related to the first two Reidemeister moves is called an
idempotent right quasigroup, or irq for short.

x

x

u

x u

u

R II R II

x

x

u

u

x

x

u

u

u x

u x

x u
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Definition 7.1 A right quasigroup is a set X with a binary operation ◦ such that for each
a, b ∈ X there exists a unique x ∈ X such that a ◦ x = b. We write the solution of this
equation x = a • b.

An idempotent right quasigroup (irq) is a right quasigroup (X, ◦) such that for any x ∈ X
x ◦ x = x. Equivalently, it can be seen as a set X endowed with two operations ◦ and •,
which satisfy the following axioms: for any x, y ∈ X

(R1) x ◦ x = x • x = x

(R2) x ◦ (x • y) = x • (x ◦ y) = y

The Reidemeister III move concerns the sliding of an arc (indifferent of orientation) under
a crossing. In the next figure it is shown only one possible sliding movement.

x u

x u

x

u

v x

(x u ) (x v) x

u

v x

x (u v)

R III

Such a sliding move is possible, without modifying the coloring, if and only if the oper-
ation ◦ is left distributive with respect to the operation •. (For the other possible choices
of crossings, the ”sliding” movement corresponding to the Reidemeister III move is possible
if and only if • is distributive with respect to ◦ and also the operations ◦ and • are self
distributive).

With this self-distributivity property, (X, ◦, •) is called a quandle. A well known quandle
(therefore also an irq) is the Alexander quandle: consider X = Z[ε, ε−1] with the operations

x ◦ y = x+ ε (−x+ y) , x • y = x+ ε−1 (−x+ y)

The operations in the Alexander quandle are therefore dilations in euclidean spaces.

Important remark. Further I shall NOT see oriented tangle diagrams as objects associ-
ated to a tangle in three-dimensional space. That is because I am going to renounce to the
Reidemeister III move. This interpretation, of being projections of tangles in space, is only
for keeping a visually based vocabulary, like ”over”, ”under”, ”sliding an arc under another”
and so on.

7.3 Emergent algebras and tangles with decorated crossings

I shall adapt the tangle diagram coloring, presented in the previous section, for better
understanding of the formalism of dilation structures. In fact we shall arrive to a more
algebraic concept, more basic in some sense that the one of dilation structures, named
”emergent algebra”.
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The first step towards this goal is to consider richer decorations as previously. We could
decorate not only the connected components of tangle diagrams but also the crossings. I
use for crossing decorations the scale parameter. Formally the scale parameter belongs to
a commutative group Γ. In this paper is comfortable to think that Γ = (0,+∞) with the
operation of multiplication or real numbers.

Here is the rule of decoration of tangle diagrams, by using a dilation structure:

x

u

x u=uδx
ε

ε
ε

x

ε

x = δx
ε−1εv v

u

v

v

In terms of idempotent right quasigroups, instead of one (X, ◦, •), we have a family
(X, ◦ε, •ε), for all ε ∈ Γ. In terms of dilation structures, the operations are:

x ◦ε u = δx
εu , x •ε u = δx

ε−1u

This implies that virtual crossings are allowed. A virtual crossing is just a crossing where
nothing happens, a crossing with decoration ε = 1.

x u
1

=u = x u
1

x

u

1

x

x

x

u

uu

Equivalent with the first two axioms of dilation structures, is that for all ε ∈ Γ the triples
(X, ◦ε, •ε) are idempotent right quasigroups (irqs), moreover we want that for any x ∈ X
the mapping

ε ∈ Γ 7→ x ◦ε (·)

to be an action of Γ on X. This reflects into the following rules for combinations of decorated
crossings.
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ε µ λ
ε µ λ 

The equality sign means that we can replace one tangle diagram by the other.
In particular, we get an interpretation for the crossing decorated by a scale parameter.

Look first to this equality of tangle diagrams.

ε3

ε ε ε
1 1

If we fix the ε, take for example ε = 1/2, then any crossing decorated by a power of this
ε is equivalent with a chain of crossings decorated with ε, with virtual crossings inserted in
between.

The usual interpretation of virtual crossings is that these are crossings which are not
really there. Alternatively, but only to get an intuitive image, we may imagine that a
crossing decorated with εn is equivalent with the projection of a helix arc with n turns
around an imaginary cylinder.

ε ε ε
1 1

Thus, for example if we take ε = 1/2 as a ”basis”, then a crossing decorated with the
scale parameter µ could be imagined as the projection of a helix arc with − log2 µ turns.

The sequence of irqs is the same as the algebraic object called a Γ-irq. The definition is
given further (remember that for the needs of this paper Γ = (0,+∞)).
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Definition 7.2 Let Γ be a commutative group. A Γ-idempotent right quasigroup is a set X
with a function ε ∈ Γ 7→ ◦ε such that for any ε ∈ Γ the pair (X, ◦ε) is a irq and moreover
for any ε, µ ∈ Γ and any x, y ∈ X we have

x ◦ε (x ◦µ y) = x ◦εµ y

Rules concerning wires. (W1) We may join two wires decorated by the same element
of the Γ-irq and with the same orientation.

x

x

x

(W2) We may change the orientation in a wire which passes over others, but we must
invert (power ”-1”) the decoration of each crossing.

ε

λ λ

ε

−1

−1

7.4 Decorated binary trees

Here I use the second image of a oriented tangle diagram in order to understand the rules
of decoration and movements described in the previous section.

In this interpretation an oriented tangle diagram is an oriented planar graph with 3-valent
and 1-valent nodes (input or exit nodes), connected by wires which could cross (crossings of
wires in this graph has no meaning).

In fact we consider trivalent oriented planar graphs (together with 1-valent nodes repre-
senting inputs and outputs), with wires (and input, output nodes) decorated by elements of
a Γ-irq ε ∈ Γ 7→ (X, ◦ε, •ε). The nodes are either undecorated (corresponding to FAN-OUT
gates) or decorated by pairs (◦, ε) or (•, ε), with ε ∈ Γ. The rules of decoration are the
following.
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x x u

xx x

ε

εu = δε
x

u

GATEFAN−OUT

x u

x ε

ε

u = δε −1
x

u

GATE

The trivalent graph is obtained from the tangle diagram by the procedure of replacing
crossings with pairs of gates consisting of one FAN-OUT and one of the ◦ or • gates,
explained in the next figure.

x ε = δx
ε u

x ε = δx
ε u

x εu = δε −1

x
u

x εu = δε −1

x
u

ε

ε

x

xu

u

x

u x

ε
u

x

x

ε
x

xu

In terms of trivalent graphs, the condition (R1) from definition 7.1 applied for the irq
(X, ◦ε, •ε) is graphically translated into the following identity (passing from one term of the
identity to another is a ”Reidemeister I move”).

ε ε

x

x

x

x x

x

There are two more groups of identities (or moves), which describe the mechanisms
of coloring trivalent graphs Γ-irqs. The first group consists in ”triangle moves”. This
corresponds to Reidemeister move II and to the condition from the end of definition 7.2.
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x x x

x u

uuu

ε

λ ε λλ
−1

ε

λ

ε−1

The second groups is equivalent with the re-wiring move (W1) and the relation x ◦1 u =
x •1 u = u.

x x xu u u

1 1

7.5 Linearity, self-similarity, Reidemeister III move

Let f : Y → X be an invertible function. We can use the tangle formalism for picturing
the function f . To f is associated a special curved segment, figured by a double line. The
crossings passing under this double line are colored following the rules explained in this
figure.

u

v

f
f(u)=v

u =
−1

f (v )

f

Suppose that X and Y are endowed with a Γ-irq structure (in particular, we may suppose
that they are endowed with dilation structures). Consider the following sliding movement.

ε

f(u )

f(u )
εf(v)

u

v

f(u )

ε
f

u

v

f
f (u

ε
v)
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The crossing decorated with ε from the left hand side diagram is in X (as well as the
rules of decoration with the Γ-irq of X). Similarly, the crossing decorated with ε from the
right hand side diagram is in Y . Therefore these two diagrams are equal (or we may pass
from one to another by a sliding movement) if and only if f transforms an operation into
another, equivalently if f is a morphism of Γ-irqs.

This sliding movement becomes the Reidemeister III move in the case of X = Y and f
equal to a dilation of X, f = δx

µ.

Definition 7.3 A function f : X → Y is linear if and only if it is a morphism of Γ-irqs (of
X and Y respectively). Moreover, if X and Y are endowed with dilation structures then f
is linear if it is a morphism, written in terms of dilations notation as: for any u, v ∈ X and
any ε ∈ Γ

f(δu
ε v) = δf(u)

ε f(v)

which is also a Lipschitz map from X to Y as metric spaces.
A dilation structure (X, d, δ) is (x, µ) self-similar (for a x ∈ X and µ ∈ Γ, different from

1, the neutral element of Γ = (0,+∞)) if the dilation f = δx
µ is linear from (X, d, δ) to itself

and moreover for any u, v ∈ X we have

d(δx
µu, δ

x
µv) = µd(u, v)

A dilation structure is linear if it is self-similar with respect to any x ∈ X and µ ∈ Γ.

Thus the Reidemeister III move is compatible with the tangle coloring by a dilation
structure if and only if the dilation structure is linear.

Conical groups are groups endowed with a one-parameter family of dilation morphisms.
From the viewpoint of Γ-irqs, they are equivalent with linear dilation structures (theorem
6.1 [20], see also the Appendix).

A real vector space is a particular case of Carnot group. It is a commutative (hence
nilpotent) group with the addition of vectors operation and it has a one-parameter family
of dilations defined by the multiplication of vectors by positive scalars.

Carnot groups which are not commutative provide therefore a generalization of a vector
space. Noncommutative Carnot groups are aplenty, in particular the simplest noncommuta-
tive Carnot groups are the Heisenberg groups, that is the simply connected Lie groups with
the Lie algebra defined by the Heisenberg noncommutativity relations.

For me Carnot groups, or conical groups, are just linear objects. (By extension, man-
ifolds, which are assemblies of open subsets of vector spaces, are locally linear objects as
well. Moreover, they are ”commutative”, because the model of the tangent space at a point
is a commutative Carnot group.)

It is also easy to explain graphically the transport of a dilation structure, or of a Γ-irq
from X to Y , by using f−1.

f

f(u )

f(u)
εf(v)

f(u )u

v

εf( )v

u

ε
f(v) )(f

−1
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The transport operation amounts to adding a double circle decorated by f , which over-
crosses the whole diagram (in this case a diagram containing only one crossing). If we use
the map-territory distinction, then inside the circle we are in Y , outside we are in X.

It is obvious that f is linear if and only if the transported dilation structure on X (by
f−1) coincides with the dilation structure on X. Shortly said, encirclings by linear functions
can be removed from the diagram.

f

ε
ε

f is linear

In this tangle decoration formalism we have no reason to suppose that the dilations
structures which we use are linear. This would be an unnecessary limitation of the dilation
structure (or emergent algebra) formalism. That is why the Reidemeister III move is not an
acceptable move in this formalism.

The last axiom (A4) of dilation structures can be translated into an algebraic statement
which will imply a weak form of the Reidemeister III move, namely that this move can be
done IN THE LIMIT.

7.6 Acceptable tangle diagrams

Consider a tangle diagram with decorated crossings, but with undecorated segments.
A notation for such a diagram is T [ε, µ, η, ...], where ε, µ, η, ... are decorations of the

3-valent nodes (in the second image) or decorations of the crossings (in the first image of a
tangle diagram).

A tangle diagram T [ε, µ, η, ...] is ”acceptable” if there exists at least a decoration of the
input segments such that all the segments of the diagram can be decorated according to the
rules specified previously, maybe non-uniquely.

A set of parameters of an acceptable tangle diagram is any coloring of a part of the
segments of the diagram such that any coloring of the input segments which are already not
colored by parameters, can be completed in a way which is unique for the output segments
(which are not already colored by parameters).

Given an acceptable tangle diagram which admits a set of parameters, we shall see it as
a function from the colorings of the input to the colorings of the output, with parameters
from the set of parameters and with ”scale parameters” the decorations of the crossings.

Given one acceptable tangle diagram which admits a set of parameters, given a set of
parameters for it, we can choose one or more crossings and their decorations (scale parame-
ters) as ”scale variables”. This is equivalent to considering a sequence of acceptable tangle
diagrams, indexed by a multi-index of scale variables (i.e. taking values in some cartesian
power of Γ). Each member of the sequence has the same tangle diagram, with the same
set of parameters, with the same decorations of crossings which are not variables; the only
difference is in the decoration of the crossings chosen as variables.

Associated to such a sequence is the sequence of input-output functions of these diagrams.
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We shall consider uniform convergence of these functions with respect to compact sets of
inputs.

All this is needed to formulate the emergent algebra correspondent of axiom A4 of dilation
structures.

7.7 Going to the limit: emergent algebras

Basically, I see a decorated tangle diagram as an expression dependent on the decorations
of the crossings. More precisely, I shall reserve the letter ε for an element of Γ which will be
conceived as going to zero. This is the same kind of reasoning as for the zoom sequences in
the section dedicated to maps.

Why is such a thing interesting? Let me give some examples.

Finite differences. We use the convention of adding to the tangle diagram supplementary
arcs decorated by homeomorphisms. Let f : X → Y such a homeomorphism. I want to be
able to differentiate the homeomorphism f , in the sense of dilation structures.

For this I need a notion of finite differences. These appear as the following diagram.

f (u )
ε ε

f

u

v δε−1

f (u )
f ( δε

u
v )

Indeed, suppose for simplicity that X and Y are finite dimensional normed vector spaces,
with distance given by the norm and dilations

δu
ε u = u+ ε(−u+ v)

Then we have:
δ

f(u)
ε−1 f (δu

ε v) = f(u) +
1
ε

(f(u+ ε(−u+ v))− f(u))

Pansu [53] generalized this definition of finite differences from real vector spaces to Carnot
groups, which are nilpotent graduated simply connected Lie groups, a particular example of
conical groups.

It is true that the diagram which encodes finite differences is not, technically speaking,
of the type explain previously, because it has a segment (the one decorated by f), which is
different from the other segments. But it is easy to see that all the mathematical formalism
can be modified easily in order to accommodate such edges decorated with homeomorphism.

The notion of differentiability of f is obtained by asking that the sequence of input-output
functions associated to the ”finite difference” diagram, with parameter ”x” and variable ”ε”,
converges uniformly on compact sets.

Difference gates. For any ε ∈ Γ, the ε-difference gate, is described by the next figure.
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ε

,

xu

x δε
x
u

v ∆ ε
x ( u v)

ε−1ε

Here ∆x
ε (u, v) is a construct made from operations ◦ε, •ε. It corresponds to the differ-

ence coming from changing the viewpoint, in the map-territory frame. In terms of dilation
structures, is the approximate difference which appears in axiom A4. In terms of notations
of a Γ-irq, from the figure we can compute ∆x

ε (u, v) as

∆x
ε (u, v) = (x ◦ε u) •ε (x ◦ε v)

The geometric meaning of ∆x
ε (u, v) is that it is indeed a kind of approximate difference

between the vectors ~xu and ~xv, by means of a generalization of the parallelogram law of
vector addition. This is shown in the following figure, where straight lines have been replaced
by slightly curved ones in order to suggest that this construction has meaning in settings
far more general than euclidean spaces, like in Carnot-Caratheodory or sub-riemannian
geometry, as shown in [11], or generalized (noncommutative) affine geometry [12], for length
metric spaces with dilations [19] or even for normed groupoids [16].

ux

v

δε
x

v

δε
x

u

∆ ε
x (u ,v)

The ε-sum gate is described in the next figure.
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x

x

u

ε

ε ε−1
Σ

x
ε (u,v)

δε
x

u

Similar comments can be made, concerning the sum gate. It is the approximate sum
appearing in the axiom A4 of dilation structures.

Finally, there is another important tangle diagram, called ε-inverse gate. It is, at closer
look, a particular case of a difference gate (take x = u in the difference diagram).

ε ε

x

u

−1

δε

x
u

invε
x

u

The relevant outputs of the previously introduced gates, namely the approximate differ-
ence, sum and inverse functions, are described in the next definition, in terms of decorated
binary trees (trivalent graphs). I am going to ignore the trees constructed from FAN-OUT
gates, replacing them by patterns of decorations (of leaves of the binary trees). In the
following all tree nodes are decorated with the same label ε and edges are oriented upwards.

Definition 7.4 We define the difference, sum and inverse trees given by:

x u x v

e
x (u,v)

x

x u

v

e
x
(u,v)

x u

x

inve
x u

The following proposition contains the main relations between the difference, sum and
inverse gates. They can all be proved by this tangle diagram formalism. In [11] I explained
these relations as appearing from the equivalent formalism using binary decorated trees.
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Proposition 7.5 Let (X, ◦ε)ε∈Γ be a Γ-irq. Then we have the relations:

(a) ∆x
ε (u,Σx

ε (u, v)) = v (difference is the inverse of sum)

(b) Σx
ε (u,∆xε(u, v)) = v (sum is the inverse of difference)

(c) ∆x
ε (u, v) = Σx◦εu

ε (invx
εu, v) (difference approximately equals the sum of the inverse)

(d) invx◦u
ε invx

ε u = u (inverse operation is approximatively an involution)

(e) Σx
ε (u,Σx◦εu

ε (v, w)) = Σx
ε (Σx

ε (u, v), w) (approximate associativity of the sum)

(f) invx
ε u = ∆x

ε (u, x)

(g) Σx
ε (x, u) = u (neutral element at right).

We shall use the tree formalism to prove some of these relations. For complete proofs
see [11].

For example, in order to prove (b) we do the following calculus:

x

x u

x u x v

x

x v

v

The relation (c) is obtained from:

x u v

x u x

x u

R2

x u x v

Relation (e) (which is a kind of associativity relation) is obtained from:
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x

x

x

x

u

u

u

v

w

R2 x

x u

v

w

x

x

x

x u

v

w

R2

Finally, for proving relation (g) we use also the rule (R1).

x

x x

u

x

x u

u

R1 R2

Emergent algebras. See [21] for all details.

Definition 7.6 A Γ-uniform irq, or emergent algebra (X, ◦, •) is a separable uniform space
X which is also a Γ-irq, with continuous operations, such that:

(C) the operation ◦ is compactly contractive: for each compact set K ⊂ X and open set
U ⊂ X, with x ∈ U , there is an open set A(K,U) ⊂ Γ with µ(A) = 1 for any
µ ∈ Abs(Γ) and for any u ∈ K and ε ∈ A(K,U), we have x ◦ε u ∈ U ;

(D) the following limits exist for any µ ∈ Abs(Γ)

lim
ε→µ

∆x
ε (u, v) = ∆x(u, v) , lim

ε→µ
Σx

ε (u, v) = Σx(u, v)

and are uniform with respect to x, u, v in a compact set.

Dilation structures are also emergent algebras. In fact, emergent algebras are general-
izations of dilation structures, where the distance is no longer needed.

The main property of a uniform irq is the following. It is a consequence of relations from
proposition 7.5.

Theorem 7.7 Let (X, ◦, •) be a uniform irq. Then for any x ∈ X the operation (u, v) 7→
Σx(u, v) gives X the structure of a conical group with the dilation u 7→ x ◦ε u.

Proof. Pass to the limit in the relations from proposition 7.5. We can do this exactly
because of the uniformity assumptions. We therefore have a series of algebraic relations
which can be used to get the conclusion. �
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8 Groups with dilations

For a dilation structure the metric tangent spaces have a group structure which is compatible
with dilations. This structure, of a normed group with dilations, is interesting by itself. The
notion has been introduced in [10], [11]; we describe it further.

We shall work further with local groups. We start with the following setting: G is a
topological group endowed with an uniformity such that the operation is uniformly contin-
uous. The description that follows is slightly non canonical, but is nevertheless motivated
by the case of a Lie group endowed with a Carnot-Caratheodory distance induced by a left
invariant distribution.

We introduce first the double of G, as the group G(2) = G×G with operation

(x, u)(y, v) = (xy, y−1uyv) .

The operation on the group G, seen as the function

op : G(2) → G , op(x, y) = xy ,

is a group morphism. Also the inclusions:

i′ : G→ G(2) , i′(x) = (x, e)

i” : G→ G(2) , i”(x) = (x, x−1)

are group morphisms.

Definition 8.1 1. G is an uniform group if we have two uniformity structures, on G
and G2, such that op, i′, i” are uniformly continuous.

2. A local action of a uniform group G on a uniform pointed space (X,x0) is a function
φ ∈W ∈ V(e) 7→ φ̂ : Uφ ∈ V(x0) → Vφ ∈ V(x0) such that:

(a) the map (φ, x) 7→ φ̂(x) is uniformly continuous from G×X (with product unifor-
mity) to X,

(b) for any φ, ψ ∈ G there is D ∈ V(x0) such that for any x ∈ D ˆφψ−1(x) and
φ̂(ψ̂−1(x)) make sense and ˆφψ−1(x) = φ̂(ψ̂−1(x)).

3. Finally, a local group is an uniform space G with an operation defined in a neighbour-
hood of (e, e) ⊂ G×G which satisfies the uniform group axioms locally.

Remark that a local group acts locally at left (and also by conjugation) on itself.
This definition deserves an explanation. An uniform group, according to the definition

(8.1), is a group G such that left translations are uniformly continuous functions and the
left action of G on itself is uniformly continuous too. In order to precisely formulate this we
need two uniformities: one on G and another on G×G.

These uniformities should be compatible, which is achieved by saying that i′, i” are
uniformly continuous. The uniformity of the group operation is achieved by saying that the
op morphism is uniformly continuous.

Definition 8.2 A group with dilations (G, δ) is a local group G with a local action of Γ
(denoted by δ), on G such that
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H0. the limit lim
ε→0

δεx = e exists and is uniform with respect to x in a compact neighbourhood
of the identity e.

H1. the limit
β(x, y) = lim

ε→0
δ−1
ε ((δεx)(δεy))

is well defined in a compact neighbourhood of e and the limit is uniform.

H2. the following relation holds

lim
ε→0

δ−1
ε

(
(δεx)−1

)
= x−1

where the limit from the left hand side exists in a neighbourhood of e and is uniform
with respect to x.

Definition 8.3 A normed group with dilations (G, δ, ‖ · ‖) is a group with dilations (G, δ)
endowed with a continuous norm function ‖ · ‖ : G→ R which satisfies (locally, in a neigh-
bourhood of the neutral element e) the properties:

(a) for any x we have ‖x‖ ≥ 0; if ‖x‖ = 0 then x = e,

(b) for any x, y we have ‖xy‖ ≤ ‖x‖+ ‖y‖,

(c) for any x we have ‖x−1‖ = ‖x‖,

(d) the limit lim
ε→0

1
ν(ε)

‖δεx‖ = ‖x‖N exists, is uniform with respect to x in compact set,

(e) if ‖x‖N = 0 then x = e.

In a normed group with dilations we have a natural left invariant distance given by

d(x, y) = ‖x−1y‖ . (8.0.1)

Any normed group with dilations has an associated dilation structure on it. In a group with
dilations (G, δ) we define dilations based in any point x ∈ G by

δx
εu = xδε(x−1u). (8.0.2)

The following result is theorem 15 [11].

Theorem 8.4 Let (G, δ, ‖ · ‖) be a locally compact normed local group with dilations. Then
(G, d, δ) is a dilation structure, where δ are the dilations defined by (8.0.2) and the distance
d is induced by the norm as in (8.0.1).
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Proof. The axiom A0 is straightforward from definition 8.1, definition 8.2, axiom H0,
and because the dilation structure is left invariant, in the sense that the transport by left
translations in G preserves the dilations δ. We also trivially have axioms A1 and A2 satisfied.

For the axiom A3 remark that

d(δx
εu, δ

x
ε v) = d(xδε(x−1u), xδε(x−1u)) = d(δε(x−1u), δε(x−1v)).

Denote U = x−1u, V = x−1v and for ε > 0 let

βε(u, v) = δ−1
ε ((δεu)(δεv)) .

We have then:
1
ε
d(δx

εu, δ
x
ε v) =

1
ε
‖δεβε

(
δ−1
ε

(
(δεV )−1

)
, U
)
‖ .

Define the function
dx(u, v) = ‖β(V −1, U)‖N .

From definition 8.2 axioms H1, H2, and from definition 8.3 (d), we obtain that axiom A3 is
satisfied.

For the axiom A4 we have to compute:

∆x(u, v) = δ
δx

ε u

ε−1 δ
x
ε v = (δx

εu) (δε)
−1
(
(δx

εu)
−1 (δx

ε v)
)

=

= (xδεU)βε

(
δ−1
ε

(
(δεV )−1

)
, U
)
→ xβ

(
V −1, U

)
as ε→ 0. Therefore axiom A4 is satisfied. �

8.1 Conical groups

Definition 8.5 A normed conical group N is a normed group with dilations such that for
any ε ∈ Γ the dilation δε is a group morphism and such that for any ε > 0 ‖δεx‖ = ν(ε)‖x‖.

A conical group is the infinitesimal version of a group with dilations ([11] proposition 2).

Proposition 8.6 Under the hypotheses H0, H1, H2 (G, β, δ, ‖·‖N ) is a local normed conical
group, with operation β, dilations δ and homogeneous norm ‖ · ‖N .

Proof. All the uniformity assumptions allow us to change at will the order of taking limits.
We shall not insist on this further and we shall concentrate on the algebraic aspects.

We have to prove the associativity, existence of neutral element, existence of inverse and
the property of being conical.

For the associativity β(x, β(y, z)) = β(β(x, y), z) we compute:

β(x, β(y, z)) = lim
ε→0,η→0

δ−1
ε

{
(δεx)δε/η ((δηy)(δηz))

}
.

We take ε = η and we get

β(x, β(y, z)) = lim
ε→0

{(δεx)(δεy)(δεz)} .

In the same way:

β(β(x, y), z) = lim
ε→0,η→0

δ−1
ε

{
(δε/ηx) ((δηx)(δηy)) (δεz)

}
.
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and again taking ε = η we obtain

β(β(x, y), z) = lim
ε→0

{(δεx)(δεy)(δεz)} = β(x, β(y, z)) .

The neutral element is e, from H0 (first part): β(x, e) = β(e, x) = x. The inverse of x is
x−1, by a similar argument:

β(x, x−1) = lim
ε→0,η→0

δ−1
ε

{
(δεx)

(
δε/η(δηx)−1

)}
,

and taking ε = η we obtain

β(x, x−1) = lim
ε→0

δ−1
ε

(
(δεx)(δεx)−1

)
= lim

ε→0
δ−1
ε (e) = e .

Finally, β has the property:
β(δηx, δηy) = δηβ(x, y) ,

which comes from the definition of β and commutativity of multiplication in (0,+∞). This
proves that (G, β, δ) is conical. �

8.2 Carnot groups

Carnot groups appear in sub-riemannian geometry as models of tangent spaces, [5], [33], [53].
In particular such groups can be endowed with a structure of sub-riemannian manifold.

Definition 8.7 A Carnot (or stratified homogeneous) group is a pair (N,V1) consisting of a
real connected simply connected group N with a distinguished subspace V1 of the Lie algebra
Lie(N), such that the following direct sum decomposition occurs:

n =
m∑

i=1

Vi , Vi+1 = [V1, Vi]

The number m is the step of the group. The number Q =
m∑

i=1

i dimVi is called the

homogeneous dimension of the group.

Because the group is nilpotent and simply connected, the exponential mapping is a
diffeomorphism. We shall identify the group with the algebra, if is not locally otherwise
stated.

The structure that we obtain is a set N endowed with a Lie bracket and a group mul-
tiplication operation, related by the Baker-Campbell-Hausdorff formula. Remark that the
group operation is polynomial.

Any Carnot group admits a one-parameter family of dilations. For any ε > 0, the
associated dilation is:

x =
m∑

i=1

xi 7→ δεx =
m∑

i=1

εixi

Any such dilation is a group morphism and a Lie algebra morphism.
In a Carnot group N let us choose an euclidean norm ‖ · ‖ on V1. We shall endow

the group N with a structure of a sub-riemannian manifold. For this take the distribution
obtained from left translates of the space V1. The metric on that distribution is obtained
by left translation of the inner product restricted to V1.

Because V1 generates (the algebra) N then any element x ∈ N can be written as a
product of elements from V1, in a controlled way, described in the following useful lemma
(slight reformulation of Lemma 1.40, Folland, Stein [28]).
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Lemma 8.8 Let N be a Carnot group and X1, ..., Xp an orthonormal basis for V1. Then
there is a a natural number M and a function g : {1, ...,M} → {1, ..., p} such that any
element x ∈ N can be written as:

x =
M∏
i=1

exp(tiXg(i)) (8.2.3)

Moreover, if x is sufficiently close (in Euclidean norm) to 0 then each ti can be chosen such
that | ti |≤ C‖x‖1/m

As a consequence we get:

Corollary 8.9 The Carnot-Carathéodory distance

d(x, y) = inf
{∫ 1

0

‖c−1ċ‖ dt : c(0) = x, c(1) = y,

c−1(t)ċ(t) ∈ V1 for a.e. t ∈ [0, 1]
}

is finite for any two x, y ∈ N . The distance is obviously left invariant, thus it induces a
norm on N .

The Carnot-Carathéodory distance induces a homogeneous norm on the Carnot group
N by the formula: ‖x‖ = d(0, x). From the invariance of the distance with respect to left
translations we get: for any x, y ∈ N

‖x−1y‖ = d(x, y)

For any x ∈ N and ε > 0 we define the dilation δx
ε y = xδε(x−1y). Then (N, d, δ) is a

dilation structure, according to theorem 8.4.

8.3 Contractible groups

Definition 8.10 A contractible group is a pair (G,α), where G is a topological group with
neutral element denoted by e, and α ∈ Aut(G) is an automorphism of G such that:

- α is continuous, with continuous inverse,

- for any x ∈ G we have the limit lim
n→∞

αn(x) = e.

For a contractible group (G,α), the automorphism α is compactly contractive (Lemma
1.4 (iv) [54]), that is: for each compact set K ⊂ G and open set U ⊂ G, with e ∈ U , there
is N(K,U) ∈ N such that for any x ∈ K and n ∈ N, n ≥ N(K,U), we have αn(x) ∈ U .

If G is locally compact then α compactly contractive is equivalent with: each identity
neighbourhood of G contains an α-invariant neighbourhood. Further on we shall assume
without mentioning that all groups are locally compact.

Any conical group can be seen as a contractible group. Indeed, it suffices to associate to
a conical group (G, δ) the contractible group (G, δε), for a fixed ε ∈ Γ with ν(ε) < 1.

Conversely, to any contractible group (G,α) we may associate the conical group (G, δ),

with Γ =
{

1
2n

: n ∈ N
}

and for any n ∈ N and x ∈ G

δ 1
2n
x = αn(x) .
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(Finally, a local conical group has only locally the structure of a contractible group.)
The structure of contractible groups is known in some detail, due to Siebert [54], Wang

[65], Glöckner and Willis [30], Glöckner [29] and references therein.
For this paper the following results are of interest. We begin with the definition of a

contracting automorphism group [54], definition 5.1.

Definition 8.11 Let G be a locally compact group. An automorphism group on G is a
family T = (τt)t>0 in Aut(G), such that τt τs = τts for all t, s > 0.

The contraction group of T is defined by

C(T ) =
{
x ∈ G : lim

t→0
τt(x) = e

}
.

The automorphism group T is contractive if C(T ) = G.

It is obvious that a contractive automorphism group T induces on G a structure of
conical group. Conversely, any conical group with Γ = (0,+∞) has an associated contractive
automorphism group (the group of dilations based at the neutral element).

Further is proposition 5.4 [54].

Proposition 8.12 For a locally compact group G the following assertions are equivalent:

(i) G admits a contractive automorphism group;

(ii) G is a simply connected Lie group whose Lie algebra admits a positive graduation.
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9 Some examples of dilation structures

9.1 Snowflakes

The next example is a snowflake variation of the euclidean case: X = Rn and for any
a ∈ (0, 1] take

da(x, y) = ‖x− y‖α , δx
ε y = x+ ε

1
a (y − x) .

We leave to the reader to verify the axioms.
More general, if (X, d, δ) is a dilation structure then (X, da, δ(a)) is also a dilation struc-

ture, for any a ∈ (0, 1], where

da(x, y) = (d(x, y))a
, δ(a)x

ε = δx

ε
1
a
.

9.2 Nonstandard dilations in the euclidean space

Take X = R2 with the euclidean distance. For any z ∈ C of the form z = 1 + iθ we define
dilations

δεx = εzx .

It is easy to check that (X, δ,+, d) is a conical group, equivalenty that the dilations

δx
ε y = x+ δε(y − x) .

form a dilation structure with the euclidean distance.
Two such dilation structures (constructed with the help of complex numbers 1 + iθ and

1 + iθ′) are equivalent if and only if θ = θ′.
There are two other surprising properties of these dilation structures. The first is that

if θ 6= 0 then there are no non trivial Lipschitz curves in X which are differentiable almost
everywhere. The second property is that any holomorphic and Lipschitz function from X to
X (holomorphic in the usual sense on X = R2 = C) is differentiable almost everywhere, but
there are Lipschitz functions from X to X which are not differentiable almost everywhere
(suffices to take a C∞ function from R2 to R2 which is not holomorphic).

9.3 Riemannian manifolds

The following interesting quotation from Gromov book [32], pages 85-86, motivates some of
the ideas underlying dilation structures, especially in the very particular case of a riemannian
manifold:

“3.15. Proposition: Let (V, g) be a Riemannian manifold with g continuous. For each
v ∈ V the spaces (V, λd, v) Lipschitz converge as λ → ∞ to the tangent space (TvV, 0) with
its Euclidean metric gv.

Proof+ : Start with a C1 map (Rn
, 0) → (V, v) whose differential is isometric at 0. The

λ-scalings of this provide almost isometries between large balls in Rn and those in λV for
λ → ∞. Remark: In fact we can define Riemannian manifolds as locally compact path
metric spaces that satisfy the conclusion of Proposition 3.15.“

The problem of domains and codomains left aside, any chart of a Riemannian man-
ifold induces locally a dilation structure on the manifold. Indeed, take (M,d) to be a
n-dimensional Riemannian manifold with d the distance on M induced by the Riemannian
structure. Consider a diffeomorphism φ of an open set U ⊂M onto V ⊂ Rn and transport
the dilations from V to U (equivalently, transport the distance d from U to V ). There is
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only one thing to check in order to see that we got a dilation structure: the axiom A3,
expressing the compatibility of the distance d with the dilations. But this is just a metric
way to express the distance on the tangent space of M at x as a limit of rescaled distances
(see Gromov Proposition 3.15, [32], p. 85-86). Denoting by gx the metric tensor at x ∈ U ,
we have:

[dx(u, v)]2 =

= gx

(
d

d ε |ε=0

φ−1 (φ(x) + ε(φ(u)− φ(x))) ,
d

d ε |ε=0

φ−1 (φ(x) + ε(φ(v)− φ(x)))
)

A basically different example of a dilation structure on a riemannian manifold will be
explained next. Let M be a n dimensional riemannian manifold and exp be the geodesic
exponential. To any point x ∈ M and any vector v ∈ TxM the point expx(v) ∈ M is
located on the geodesic passing thru x and tangent to v; if we parameterize this geodesic
with respect to length, such that the tangent at x is parallel and has the same direction as
v, then expx(v) ∈M has the coordinate equal with the length of v with respect to the norm
on TxM . We define implicitly the dilation based at x, of coefficient ε > 0 by the relation:

δx
ε expx(u) = expx (εu) .

It is not straightforward to check that we obtain a strong dilation structure, but it is true.
There are interesting facts related to the numbers A,B and the minimal regularity required
for the riemannian manifold. This example is different from the first because instead of using
a chart (same for all x) we use a family of charts indexed with respect to the basepoint of
the dilations.
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10 Dilation structures in ultrametric spaces

Here we are concerned with dilation structures on ultrametric spaces. The special case
considered is the boundary of the infinite dyadic tree, topologically the same as the middle-
thirds Cantor set. This is also the space of infinite words over the alphabet X = {0, 1}.
Self-similar dilation structures are introduced and studied on this space.

We show that on the boundary of the dyadic tree, any self-similar dilation structure is
described by a web of interacting automata. This is achieved in theorems 10.8 and 10.13.
These theorems are analytical in nature, but they admit an easy interpretation in terms of
automata by using classical results as theorem 10.2 and proposition 10.3.

The subject is relevant for applications to the hot topic of self-similar groups of isometries
of the dyadic tree (for an introduction into self-similar groups see [4]).

10.1 Words and the Cantor middle-thirds set

Let X be a finite, non empty set. The elements of X are called letters. The collection of
words of finite length in the alphabet X is denoted by X∗. The empty word ∅ is an element
of X∗.

The length of any word w ∈ X∗, w = a1...am, ak ∈ X for all k = 1, ...,m, is denoted by
| w |= m. The set of words which are infinite at right is denoted by

Xω = {f | f : N∗ → X} = XN∗
.

Concatenation of words is naturally defined. If q1, q2 ∈ X∗ and w ∈ Xω then q1q2 ∈ X∗ and
q1w ∈ Xω.

The shift map s : Xω → Xω is defined by w = w1 s(w), for any word w ∈ Xω. For any
k ∈ N∗ we define [w]k ∈ Xk ⊂ X∗, {w}k ∈ X

ω by

w = [w]k sk(w) , {w}k = sk(w) .

The topology on Xω is generated by cylindrical sets qXω, for all q ∈ X∗. The topological
space Xω is compact.

To any q ∈ X∗ is associated a continuous injective transformation q̂ : Xω → Xω,
q̂(w) = qw. The semigroup X∗ (with respect to concatenation) can be identified with the
semigroup (with respect to function composition) of these transformations. This semigroup
is obviously generated by X. The empty word ∅ corresponds to the identity function.

The dyadic tree T is the infinite rooted planar binary tree. Any node has two descen-
dants. The nodes are coded by elements of X∗, X = {0, 1}. The root is coded by the empty
word and if a node is coded by x ∈ X∗ then its left hand side descendant has the code x0
and its right hand side descendant has the code x1. We shall therefore identify the dyadic
tree with X∗ and we put on the dyadic tree the natural (ultrametric) distance on X∗. The
boundary (or the set of ends) of the dyadic tree is then the same as the compact ultrametric
space Xω.

10.2 Automata

In this section we use the same notations as [31].

Definition 10.1 An (asynchronous) automaton is an oriented set (XI , XO, Q, π, λ), with:

(a) XI , XO are finite sets, called the input and output alphabets,
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(b) Q is a set of internal states of the automaton,

(c) π is the transition function, π : XI ×Q→ Q,

(d) λ is the output function, λ : XI ×Q→ X∗
O.

If λ takes values in XO then the automaton is called synchronous.

The functions λ and π can be continued to the set X∗
I ×Q by: π(∅, q) = q, λ(∅, q) = ∅,

π(xw, q) = π(w, π(x, q)) , λ(xw, q) = λ(x, q)λ(w, π(x, q))

for any x ∈ XI , q ∈ Q and any w ∈ X∗
I .

An automaton is nondegenerate if the functions λ and π can be uniquely extended by
the previous formulæto Xω

I ×Q.
To any nondegenerated automaton (XI , XO, Q, π, λ) and any q ∈ Q is associated the

function λ(·, q) : Xω
I → Xω

O. The following is theorem 2.4 [31].

Theorem 10.2 The mapping f : Xω
I → Xω

O is continuous if and only if it is defined by a
certain nondegenerate asynchronous automaton.

The proof given in [31] is interesting to read because it provides a construction of an
automaton which defines the continuous function f .

10.3 Isometries of the dyadic tree

An isomorphism of T is just an invertible transformation which preserves the structure of
the tree. It is well known that isometries of (Xω, d) are the same as isometries of T .

Let A ∈ Isom(Xω, d) be such an isometry. For any finite word q ∈ X∗ we may define
Aq ∈ Isom(Xω, d) by

A(qw) = A(q)Aq(w)

for any w ∈ Xω. Note that in the previous relation A(q) makes sense because A is also an
isometry of T .

The following description of isometries of the dyadic tree in terms of automata can be
deduced from an equivalent formulation of proposition 3.1 [31] (see also proposition 2.18
[31]).

Proposition 10.3 A function Xω → Xω is an isometry of the dyadic tree if and only if it
is generated by a synchronous automaton with XI = XO = X.

10.4 Dilation structures on the boundary of the dyadic tree

Dilation structures on the boundary of the dyadic tree will have a simpler form than general,
mainly because the distance is ultrametric.

We shall take the group Γ to be the set of integer powers of 2, seen as a subset of dyadic
numbers. Thus for any p ∈ Z the element 2p ∈ Q2 belongs to Γ. The operation is the
multiplication of dyadic numbers and the morphism ν : Γ → (0,+∞) is defined by

ν(2p) = d(0, 2p) =
1
2p

∈ (0,+∞) .
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Axiom A0. This axiom states that for any p ∈ N and any x ∈ Xω the dilation

δx
2p : U(x) → V2p(x)

is a homeomorphism, the sets U(x) and V2p(x) are open and there is A > 1 such that the
ball centered in x and radius A is contained in U(x). But this means that U(x) = Xω,
because Xω = B(x, 1).

Further, for any p ∈ N we have the inclusions:

B(x,
1
2p

) ⊂ δx
2pXω ⊂ V2p(x) . (10.4.1)

For any p ∈ N∗ the associated dilation δx
2−p : W2−p(x) → B(x,B) = Xω , is injective,

invertible on the image. We suppose that W2−p(x) is open, that

V2p(x) ⊂W2−p(x) (10.4.2)

and that for all p ∈ N∗ and u ∈ Xω we have δx
2−p δx

2pu = u . We leave aside for the moment
the interpretation of the technical condition before axiom A4.

Axioms A1 and A2. Nothing simplifies.

Axiom A3. Because d is an ultrametric distance and Xω is compact, this axiom has very
strong consequences, for a non degenerate dilation structure.

In this case the axiom A3 states that there is a non degenerate distance function dx on
Xω such that we have the limit

lim
p→∞

2pd(δx
2pu, δx

2pv) = dx(u, v) (10.4.3)

uniformly with respect to x, u, v ∈ Xω.
We continue further with first properties of dilation structures.

Lemma 10.4 There exists p0 ∈ N such that for any x, u, v ∈ Xω and for any p ∈ N, p ≥ p0,
we have

2pd(δx
2pu, δx

2pv) = dx(u, v) .

Proof. From the limit (10.4.3) and the non degeneracy of the distances dx we deduce that

lim
p→∞

log2 (2pd(δx
2P u, δ

x
2P v)) = log2 d

x(u, v) ,

uniformly with respect to x, u, v ∈ Xω, u 6= v. The right hand side term is finite and the
sequence from the limit at the left hand side is included in Z. Use this and the uniformity
of the convergence to get the desired result. �

In the sequel p0 is the smallest natural number satisfying lemma 10.4.

Lemma 10.5 For any x ∈ Xω and for any p ∈ N, p ≥ p0, we have δx
2pXω = [x]pXω.

Otherwise stated, for any x, y ∈ Xω, any q ∈ X∗, | q |≥ p0 there exists w ∈ Xω such that

δqx
2|q|

w = qy

and for any z ∈ Xω there is y ∈ Xω such that δqx
2|q|

z = qy . Moreover, for any x ∈ Xω and
for any p ∈ N, p ≥ p0 the inclusions from (10.4.1), (10.4.2) are equalities.
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Proof. From the last inclusion in (10.4.1) we get that for any x, y ∈ Xω, any q ∈ X∗,
| q |≥ p0 there exists w ∈ Xω such that δqx

2|q|
w = qy . For the second part of the conclusion

we use lemma 10.4 and axiom A1. From there we see that for any p ≥ p0 we have

2pd(δx
2px, δx

2pu) = 2pd(x, δx
2pu) = dx(x, u) ≤ 1 .

Therefore 2pd(x, δx
2pu) ≤ 1, which is equivalent with the second part of the lemma.

Finally, the last part of the lemma has a similar proof, only that we have to use also the
last part of axiom A0. �

The technical condition before the axiom A4 turns out to be trivial. Indeed, from lemma
10.5 it follows that for any p ≥ p0, p ∈ N, and any x, u, v ∈ Xω we have δx

2pu = [x]pw,
w ∈ Xω. It follows that

δx
2pv ∈ [x]pXω = W2−p(x) = W2−p(δx

2pu) .

Lemma 10.6 For any x, u, v ∈ Xω such that 2p0d(x, u) ≤ 1, 2p0d(x, v) ≤ 1 we have
dx(u, v) = d(u, v) . Moreover, under the same hypothesis, for any p ∈ N we have

2pd(δx
2pu, δx

2pv) = d(u, v) .

Proof. By lemma 10.4, lemma 10.5 and axiom A2. Indeed, from lemma 10.4 and axiom
A2, for any p ∈ N and any x, u′, v′ ∈ Xω we have

dx(u′, v′) = 2p0+pd(δx
2p+p0u

′, δx
2p+p0 v

′) =

= 2p 2p0d(δx
2p0 δ

x
2pu′, δx

2p0 δ
x
2pv′) = 2pdx(δx

2pu′, δx
2pv′) .

This is just the cone property for dx. From here we deduce that for any p ∈ Z we have
dx(u′, v′) = 2pdx(δx

2pu′, δx
2pv′) . If 2p0d(x, u) ≤ 1, 2p0d(x, v) ≤ 1 then write x = qx′, | q |= p0,

and use lemma 10.5 to get the existence of u′, v′ ∈ Xω such that δx
2p0u

′ = u , δx
2p0 v

′ = v .
Therefore, by lemma 10.4, we have

d(u, v) = 2−p0dx(u′, v′) = dx(δx
2−p0u

′, δx
2−p0 v

′) = dx(u, v) .

The first part of the lemma is proven. For the proof of the second part write again

2pd(δx
2pu, δx

2pv) = 2pdx(δx
2pu, δx

2pv) = dx(u, v) = d(u, v)

which finishes the proof. �
The space Xω decomposes into a disjoint union of 2p0 balls which are isometric. There

is no connection between the dilation structures on these balls, therefore we shall suppose
further that p0 = 0.

Our purpose is to find the general form of a dilation structure on Xω, with p0 = 0.

Definition 10.7 A function W : N∗ × Xω → Isom(Xω) is smooth if for any ε > 0 there
exists µ(ε) > 0 such that for any x, x′ ∈ Xω such that d(x, x′) < µ(ε) and for any y ∈ Xω

we have
1
2k
d(W x

k (y),W x′

k (y)) ≤ ε ,

for an k such that d(x, x′) < 1/2k.
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Theorem 10.8 Let (Xω, d, δ) be a dilation structure on (Xω, d), where d is the standard
distance on Xω, such that p0 = 0. Then there exists a smooth (according to definition 10.7)
function

W : N∗ ×Xω → Isom(Xω) , W (n, x) = W x
n

such that for any q ∈ X∗, α ∈ X, x, y ∈ Xω we have

δqαx
2 qᾱy = qαx̄1W

qαx
|q|+1(y) . (10.4.4)

Conversely, to any smooth function W : N∗ × Xω → Isom(Xω) is associated a dilation
structure (Xω, d, δ), with p0 = 0, induced by functions δx

2 , defined by δx
2x = x and otherwise

by relation (10.4.4).

Proof. Let (Xω, d, δ) be a dilation structure on (Xω, d), such that p0 = 0. Any two
different elements of Xω can be written in the form qαx and qᾱy, with q ∈ X∗, α ∈ X,
x, y ∈ Xω. We also have d(qαx, qᾱy) = 2−|q| . From the following computation (using
p0 = 0 and axiom A1):

2−|q|−1 =
1
2
d(qαx, qᾱy) = d(qαx, δqαx

2 qᾱy) ,

we find that there exists wqαx
|q|+1(y) ∈ X

ω such that δqαx
2 qᾱy = qαwqαx

|q|+1(y) . Further on, we
compute:

1
2
d(qᾱx, qᾱy) = d(δqαx

2 qᾱx, δqαx
2 qᾱy) = d(qαwqαx

|q|+1(x), qαw
qαx
|q|+1(y)) .

From this equality we find that 1 >
1
2
d(x, y) = d(wqαx

|q|+1(x), w
qαx
|q|+1(y)) , which means that

the first letter of the word wqαx
|q|+1(y) does not depend on y, and is equal to the first letter

of the word wqαx
|q|+1(x). Let us denote this letter by β (which depends only on q, α, x).

Therefore we may write:
wqαx
|q|+1(y) = βW qαx

|q|+1(y) ,

where the properties of the function y 7→W qαx
|q|+1(y) remain to be determined later.

We go back to the first computation in this proof:

2−|q|−1 = d(qαx, δqαx
2 qᾱy) = d(qαx, qαβW qαx

|q|+1(y)) .

This shows that β̄ is the first letter of the word x. We proved the relation (10.4.4), excepting
the fact that the function y 7→ W qαx

|q|+1(y) is an isometry. But this is true. Indeed, for any
u, v ∈ Xω we have

1
2
d(qᾱu, qᾱv) = d(δqαx

2 qᾱu, δqαx
2 qᾱv) = d(qαx̄1W

qαx
|q|+1(x), qαx̄1W

qαx
|q|+1(y)) .

This proves the isometry property.
The dilations of coefficient 2 induce all dilations (by axiom A2). In order to satisfy the

continuity assumptions from axiom A1, the function W : N∗ × Xω → Isom(Xω) has to
be smooth in the sense of definition 10.7. Indeed, axiom A1 is equivalent to the fact that
δx′

2 (y′) converges uniformly to δx
2 (y), as d(x, x′), d(y, y′) go to zero. There are two cases to

study.
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Case 1: d(x, x′) ≤ d(x, y), d(y, y′) ≤ d(x, y). It means that x = qαq′βX, y = qᾱq”γY ,
x′ = qαq′β̄X ′, y′ = qᾱq”γ̄Y ′, with d(x, y) = 1/2k, k =| q | .

Suppose that q′ 6= ∅. We compute then:

δx
2 (y) = qαq̄′1W

x
k+1(q”γY )

δx′

2 (y′) = qαq̄′1W
x′

k+1(q”γ̄Y
′)

All the functions denoted by a capitalized ”W” are isometries, therefore we get the estima-
tion:

d(δx
2 (y), δx′

2 (y′)) =
1

2k+2
d(W x

k+1(q”γY ),W x′

k+1(q”γ̄Y
′)) ≤

≤ 1
2k+2

d(q”γY, q”γ̄Y ′) +
1

2k+2
d(W x

k+1(q”γY ),W x′

k+1(q”γY )) =

=
1
2
d(y, y′) +

1
2k+2

d(W x
k+1(q”γY ),W x′

k+1(q”γY )) .

We see that if W is smooth in the sense of definition 10.7 then the structure δ satisfies the
uniform continuity assumptions for this case. Conversely, if δ satisfies A1 then W has to be
smooth.

If q′ = ∅ then a similar computation leads to the same conclusion.
Case 2: d(x, x′) > d(x, y) > d(y, y′). It means that x = qαq′βX, x′ = qᾱX ′, y =

qαq′β̄q”γ̄Y , y′ = qαq′β̄q”γY ′, with d(x, x′) = 1 2k, k =| q | .
We compute then: δx

2 (y) = qαq′βX̄1W
x
k+2+|q′|(q”γ̄Y ),

δx′

2 (y′) = qᾱX̄ ′
1W

x′

k+1(q
′β̄q”γY ′) ≤ 1

2k
= d(x, x′) .

Therefore in his case the continuity is satisfied, without any supplementary constraints on
the function W .

The first part of the theorem is proven.
For the proof of the second part of the theorem we start from the functionW : N∗×Xω →

Isom(Xω). It is sufficient to prove for any x, y, z ∈ Xω the equality

1
2
d(y, z) = d(δx

2y, δ
x
2 z) .

Indeed, then we can construct the all dilations from the dilations of coefficient 2 (thus
we satisfy A2). All axioms, excepting A1, are satisfied. But A1 is equivalent with the
smoothness of the function W , as we proved earlier.

Let us prove now the before mentioned equality. If y = z there is nothing to prove.
Suppose that y 6= z. The distance d is ultrametric, therefore the proof splits in two cases.

Case 1: d(x, y) = d(x, z) > d(y, z). This is equivalent to x = qᾱx′, y = qαq′βy′,
z = qαq′β̄z′, with q, q′ ∈ X∗, α, β ∈ X, x′, y′, z′ ∈ Xω. We compute:

d(δx
2y, δ

x
2 z) = d(δqᾱx′

2 qαq′βy′, δqᾱx′

2 qαq′β̄z′) =

= d(qᾱx̄′1W
x
|q|+1(q

′βy′), qᾱx̄′1W
x
|q|+1(q

′β̄z′)) = 2−|q|−1d(W x
|q|+1(q

′βy′),W x
|q|+1(q

′β̄z′)) =

= 2−|q|−1d(q′βy′, q′β̄z′)) =
1
2
d(qαq′βy′, qαq′β̄z′) =

1
2
d(y, z) .
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Case 2: d(x, y) = d(y, z) > d(x, z). If x = z then we write x = qαu, y = qᾱv and we
have

d(δx
2y, δ

x
2 z) = d(qαū1W

x
|q|+1(v), qαu) = 2−|q|+1 =

1
2
d(y, z) .

If x 6= z then we can write z = qᾱz′, y = qαq′βy′, x = qαq′β̄x′, with q, q′ ∈ X∗, α, β ∈ X,
x′, y′, z′ ∈ Xω. We compute:

d(δx
2y, δ

x
2 z) = d(δqαq′β̄x′

2 qαq′βy′, δqαq′β̄x′

2 qᾱz′) =

= d(qαq′β̄x̄′1W
x
|q|+|q′|+2(y

′), qαγW x
|q|+1(z

′)) ,

with γ ∈ X, γ̄ = q′1 if q′ 6= ∅, otherwise γ = β. In both situations we have d(δx
2y, δ

x
2 z) =

2−|q|−1 =
1
2
d(y, z) . The proof is done. �

10.5 Self-similar dilation structures

Let (Xω, d, δ) be a dilation structure. There are induced dilations structures on 0Xω and
1Xω.

Definition 10.9 For any α ∈ X and x, y ∈ Xω we define δα,x
2 y by the relation

δαx
2 αy = α δα,x

2 y .

The following proposition has a straightforward proof, therefore we skip it.

Proposition 10.10 If (Xω, d, δ) is a dilation structure and α ∈ X then (Xω, d, δα) is a
dilation structure.

If (Xω, d, δ′) and (Xω, d, δ”) are dilation structures then (Xω, d, δ) is a dilation structure,
where δ is uniquely defined by δ0 = δ′, δ1 = δ”.

Definition 10.11 A dilation structure (Xω, d, δ) is self-similar if for any α ∈ X and x, y ∈
Xω we have

δαx
2 αy = α δx

2y .

Self-similarity is thus related to linearity. Indeed, let us compare self-similarity with the
following definition of linearity.

Definition 10.12 For a given dilation structure (Xω, d, δ), a continuous transformation
A : Xω → Xω is linear (with respect to the dilation structure) if for any x, y ∈ Xω we have

Aδx
2y = δAx

2 Ay

The previous definition provides a true generalization of linearity for dilation structures.
This can be seen by comparison with the characterisation of linear (in fact affine) transfor-
mations in vector spaces from the proposition 5.6.

The definition of self-similarity 10.11 is related to linearity in the sense of definition
10.12. To see this, let us consider the functions α̂ : Xω → Xω, α̂x = αx, for α ∈ X. With
this notations, the definition 10.11 simply states that a dilation structure is self-similar if
these two functions, 0̂ and 1̂, are linear in the sense of definition 10.12.

The description of self-similar dilation structures on the boundary of the dyadic tree is
given in the next theorem.
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Theorem 10.13 Let (Xω, d, δ) be a self-similar dilation structure and W : N∗ × Xω →
Isom(Xω) the function associated to it, according to theorem 10.8. Then there exists a
function W : Xω → Isom(Xω) such that:

(a) for any q ∈ X∗ and any x ∈ Xω we have W qx
|q|+1 = W x ,

(b) there exists C > 0 such that for any x, x′, y ∈ Xω and for any λ > 0, if d(x, x′) ≤ λ

then d(W x(y),W x′(y)) ≤ Cλ .

Proof. We define W x = W x
1 for any x ∈ Xω . We want to prove that this function satisfies

(a), (b).
(a) Let β ∈ X and any x, y ∈ Xω, x = qαu, y = qᾱv. By self-similarity we obtain:

βqαū1W
βx
|q|+2(v) = δβx

2 βy = βδx
2y = βqαū1W

x
|q|+1(v) . We proved that

W βx
|q|+2(v) = W x

|q|+1(v)

for any x, v ∈ Xω and β ∈ X This implies (a).
(b) This is a consequence of smoothness, in the sense of definition 10.7, of the function

W : N∗ ×Xω → Isom(Xω). Indeed, (Xω, d, δ) is a dilation structure, therefore by theorem
10.8 the previous mentioned function is smooth.

By (a) the smoothness condition becomes: for any ε > 0 there is µ(ε) > 0 such that for
any y ∈ Xω, any k ∈ N and any x, x′ ∈ Xω, if d(x, x′) ≤ 2kµ(ε) then

d(W x(y),W x′(y)) ≤ 2kε .

Define then the modulus of continuity: for any ε > 0 let µ̄(ε) be given by

µ̄(ε) = sup
{
µ : ∀x, x′, y ∈ Xω d(x, x′) ≤ µ =⇒ d(W x(y),W x′(y)) ≤ ε

}
.

We see that the modulus of continuity µ̄ has the property

µ̄(2kε) = 2kµ̄(ε)

for any k ∈ N. Therefore there exists C > 0 such that µ̄(ε) = C−1ε for any ε = 1/2p, p ∈ N.
The point (b) follows immediately. �
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11 Sub-riemannian manifolds

Sub-riemannian geometry is the modern incarnation of non-holonomic spaces, discovered in
1926 by the romanian mathematician Gheorghe Vrănceanu [63], [64]. The sub-riemannian
geometry is the study of non-holonomic spaces endowed with a Carnot-Carathéodory dis-
tance. Such spaces appear in applications to thermodynamics, to the mechanics of non-
holonomic systems, in the study of hypo-elliptic operators cf. Hörmander [42], in harmonic
analysis on homogeneous cones cf. Folland, Stein [28], and as boundaries of CR-manifolds.

The interest in these spaces comes from several intriguing features which they have:
from the metric point of view they are fractals (the Hausdorff dimension with respect to the
Carnot-Carathéodory distance is strictly bigger than the topological dimension, cf. Mitchell
[51]); the metric tangent space to a point of a regular sub-riemannian manifold is a Carnot
group (a simply connected nilpotent Lie group with a positive graduation), also known
classicaly as a homogeneous cone; the asymptotic space (in the sense of Gromov-Hausdorff
distance) of a finitely generated group with polynomial growth is also a Carnot group, by a
famous theorem of Gromov [33] wich leads to an inverse to the Tits alternative; finally, on
such spaces we have enough structure to develop a differential calculus resembling to the one
proposed by Cheeger [23] and to prove theorems like Pansu’ version of Rademacher theorem
[53], leading to an ingenious proof of a Margulis rigidity result.

There are several fundamental papers dedicated to the establisment of the sub-riemannian
geometry, among them Mitchell [51], Belläıche [5], a substantial paper of Gromov asking
for an intrinsic point of view for sub-riemannian geometry [39], Margulis, Mostow [48], [49],
dedicated to Rademacher theorem for sub-riemannian manifolds and to the construction of
a tangent bundle of such manifolds, and Vodopyanov [56] (among other papers), concerning
the same subject.

There is a reason for the existence of so many papers, written by important mathe-
maticians, on the same subject: the fundamental geometric properties of sub-riemannian
manifolds are very difficult to prove. Maybe the most difficult problem is to provide a rig-
orous construction of the tangent bundle of such a manifold, starting from the properties of
the Carnot-Carathéodory distance, and somehow allowing to generalize Pansu’ differential
calculus.

In several articles devoted to sub-riemannian geometry, these fundamental results were
proved using differential geometry tools, which are not intrinsic to sub-riemannian geometry,
therefore leading to very long proofs, sometimes with unclear parts, corrected or clarified in
other papers dedicated to the same subject.

The fertile ideas of Gromov, Belläıche and other founders of the field of analysis in
sub-riemannian spaces are now developed into a hot research area. For the study of sub-
riemannian geometry under weaker than usual regularity hypothesis see for example the
string of papers by Vodopyanov, among them [56], [57]. In these papers Vodopyanov con-
structs a tangent bundle structure for a sub-riemannian manifold, under weak regularity
hypothesis, by using notions as horizontal convergence.

Based on the notion of dilation structure [11], I tried to give a an intrinsic treatment to
sub-riemannian geometry in the paper [15], after a series of articles [10], [17], [18] dedicated
to the sub-riemannian geometry of Lie groups endowed with left invariant distributions.

In this article we show that normal frames are the central objects in the establishment
of fundamental properties in sub-riemannian geometry, in the following precise sense. We
prove that for regular sub-riemannian manifolds, the existence of normal frames (definition
11.7) implies that induced dilation structures exist (theorems 11.10, 11.11). The existence
of normal frames has been proved by Belläıche [5], starting with theorem 4.15 and ending
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in the first half of section 7.3 (page 62). From these facts all classical results concerning
the structure of the tangent space to a point of a regular sub-riemannian manifold can be
deduced as straightforward consequences of the structure theorems 13.6, 13.1, 13.5, 13.8
from the formalism of dilation structures.

In conclusion, our purpose is twofold: (a) we try to show that basic results in sub-
riemannian geometry are particular cases of the abstract theory of dilation structures, and
(b) we try to minimize the contribution of classical differential calculus in the proof of these
basic results, by showing that in fact the differential calculus on the sub-riemannian manifold
is needed only for proving that normal frames exist and after this stage an intrinsic way of
reasoning is possible.

If we take the point of view of Gromov, that the only intrinsic object on a sub-riemannian
manifold is the Carnot-Carathéodory distance, the underlying differential structure of the
manifold is clearly not intrinsic. Nevertheless in all proofs that I know this differential
structure is heavily used. Here we try to prove that in fact it is sufficient to take as in-
trinsic objects of sub-riemannian geometry the Carnot-Carathéodory distance and dilation
structures compatible with it.

The closest results along these lines are maybe the ones of Vodopyanov. There is a clear
correspondence between his way of defining the tangent bundle of a sub-riemannian manifold
and the way of dilation structures. In both cases the tangent space to a point is defined
only locally, as a neighbourhood of the point, in the manifold, endowed with a local group
operation. Vodopyanov proves the existence of the (locally defined) operation under very
weak regularity assumptions on the sub-riemannian manifold. The main tool of his proofs is
nevertheless the differential structure of the underlying manifold. In distinction, we prove in
[11], in an abstract setting, that the very existence of a dilation structure induces a locally
defined operation. Here we show that the differential structure of the underlying manifold
is important only in order to prove that dilation structures can indeed be constructed from
normal frames.

Let M be a connected n dimensional real manifold. A distribution is a smooth subbundle
D ofM . To any point x ∈M there is associated the vector space Dx ⊂ TxM . The dimension
of the distribution D at point x ∈M is denoted by

m(x) = dimDx

The distribution is smooth, therefore the function x ∈ M 7→ m(x) is locally constant. We
suppose further that the dimension of the distribution is globally constant and we denote it
by m (thus m = m(x) for any x ∈M). Clearly m ≤ n; we are interested in the case m < n.

A horizontal curve c : [a, b] → M is a curve which is almost everywhere derivable and
for almost any t ∈ [a, b] we have ċ(t) ∈ Dc(t). The class of horizontal curves will be denoted
by Hor(M,D).

Further we shall use the following notion of non-integrability of the distribution D.

Definition 11.1 The distribution D is completely non-integrable if M is locally connected
by horizontal curves curves c ∈ Hor(M,D).

A sufficient condition for the distribution D to be completely non-integrable is given by
Chow condition (C) [24].

Theorem 11.2 (Chow) Let D be a distribution of dimension m in the manifold M . Suppose
there is a positive integer number k (called the rank of the distribution D) such that for any
x ∈ X there is a topological open ball U(x) ⊂ M with x ∈ U(x) such that there are smooth
vector fields X1, ..., Xm in U(x) with the property:
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(C) the vector fields X1, ..., Xm span Dx and these vector fields together with their iterated
brackets of order at most k span the tangent space TyM at every point y ∈ U(x).

Then the distribution D is completely non-integrable in the sense of definition 11.1.

Definition 11.3 A sub-riemannian (SR) manifold is a triple (M,D, g), where M is a con-
nected manifold, D is a completely non-integrable distribution on M , and g is a metric
(Euclidean inner-product) on the distribution (or horizontal bundle) D.

11.1 The Carnot-Carathéodory distance

Given a distribution D which satisfies the hypothesis of Chow theorem 11.2, let us consider
a point x ∈ M , its neighbourhood U(x), and the vector fields X1, ..., Xm satisfying the
condition (C).

One can define on U(x) a filtration of bundles as follows. Define first the class of hori-
zontal vector fields on U :

X 1(U(x), D) = {X ∈ X∞(U) : ∀y ∈ U(x) , X(y) ∈ Dy}

Next, define inductively for all positive integers j:

X j+1(U(x), D) = X j(U(x), D) + [X 1(U(x), D),X j(U(x), D)]

Here [·, ·] denotes the bracket of vector fields. We obtain therefore a filtration X j(U(x), D) ⊂
X j+1(U(x), D). Evaluate now this filtration at y ∈ U(x):

V j(y, U(x), D) =
{
X(y) : X ∈ X j(U(x), D)

}
According to Chow theorem there is a positive integer k such that for all y ∈ U(x) we have

Dy = V 1(y, U(x), D) ⊂ V 2(y, U(x), D) ⊂ ... ⊂ V k(y, U(x), D) = TyM

Consequently, to the sub-riemannian manifold is associated the string of numbers:

ν1(y) = dimV 1(y, U(x), D) < ν2(y) = dimV 2(y, U(x), D) < ... < n = dimM

Generally k, νj(y) may vary from a point to another.
The number k is called the step of the distribution at y.

Definition 11.4 The distribution D is regular if νj(y) are constant on the manifold M .
The sub-riemannian manifold M,D, g) is regular if D is regular and for any x ∈M there is
a topological ball U(x) ⊂M with x ∈ U(M) and an orthonormal (with respect to the metric
g) family of smooth vector fields {X1, ..., Xm} in U(x) which satisfy the condition (C).

The lenght of a horizontal curve is

l(c) =
∫ b

a

(
gc(t)(ċ(t), ċ(t))

) 1
2 dt

The length depends on the metric g.

Definition 11.5 The Carnot-Carathéodory distance (or CC distance) associated to the sub-
riemannian manifold is the distance induced by the length l of horizontal curves:

d(x, y) = inf {l(c) : c ∈ Hor(M,D) , c(a) = x , c(b) = y}
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The Chow theorem ensures the existence of a horizontal path linking any two sufficiently
closed points, therefore the CC distance is locally finite. The distance depends only on the
distribution D and metric g, and not on the choice of vector fields X1, ..., Xm satisfying the
condition (C). The space (M,d) is locally compact and complete, and the topology induced
by the distance d is the same as the topology of the manifold M . (These important details
may be recovered from reading carefully the constructive proofs of Chow theorem given by
Belläıche [5] or Gromov [39].)

11.2 Normal frames

In the following we stay in a small open neighbourhood of an arbitrary, but fixed point
x0 ∈M . All results are local in nature (that is they hold for some small open neighbourhood
of an arbitrary, but fixed point of the manifold M). That is why we shall no longer mention
the dependence of various objects on x0, on the neighbourhood U(x0), or the distribution
D.

We shall work further only with regular sub-riemannian manifolds, if not otherwise
stated. The topological dimension of M is denoted by n, the step of the regular sub-
riemannian manifold (M,D, g) is denoted by k, the dimension of the distribution is m, and
there are numbers νj , j = 1, ..., k such that for any x ∈ M we have dimV j(x) = νj . The
Carnot-Carathéodory distance is denoted by d.

Definition 11.6 An adapted frame {X1, ..., Xn} is a collection of smooth vector fields which
is obtained by the construction described below.

We start with a collection X1, ..., Xm of vector fields which satisfy the condition (C).
In particular for any point x the vectors X1(x), ..., Xm(x) form a basis for Dx. We fur-
ther associate to any word a1....aq with letters in the alphabet 1, ...,m the multi-bracket
[Xa1 , [..., Xaq ]...].

One can add, in the lexicographic order, n − m elements to the set {X1, ..., Xm} until
we get a collection {X1, ..., Xn} such that: for any j = 1, ..., k and for any point x the set{
X1(x), ..., Xνj (x)

}
is a basis for V j(x).

Let {X1, ..., Xn} be an adapted frame. For any j = 1, ..., n the degree deg Xj of the
vector field Xj is defined as the only positive integer p such that for any point x we have

Xj(x) ∈ V p
x \ V p−1(x)

Further we define normal frames. The name has been used by Vodopyanov [56], but
for a slightly different object. The existence of normal frames in the sense of the following
definition is the hardest technical problem in the classical establishment of sub-riemannian
geometry. For the informed reader the referee pointed out that condition (a) Definition
11.7 is a part of the conclusion of Gromov approximation theorem, namely when one point
coincides with the center of nilpotentization; also condition (b) is equivalent with a statement
of Gromov concerning the convergence of rescaled vector fields to their nilpotentization (an
informed reader must at least follow in all details the papers Belläıche [5] and Gromov [39],
where differential calculus in the classical sense is heavily used). Therefore the conditions of
Definition 11.7 concentrate that part of the foundations of sub-riemannian geometry which
makes use of classical differential calculus.

The key details in the Definition below are uniform convergence assumptions. This is in
line with Gromov suggestions in the last section of Belläıche [5].
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Definition 11.7 An adapted frame {X1, ..., Xn} is a normal frame if the following two
conditions are satisfied:

(a) we have the limit

lim
ε→0+

1
ε
d

(
exp

(
n∑
1

εdeg XiaiXi

)
(y), y

)
= A(y, a) ∈ (0,+∞)

uniformly with respect to y in compact sets and a = (a1, ..., an) ∈ W , with W ⊂ Rn

compact neighbourhood of 0 ∈ Rn,

(b) for any compact set K ⊂M with diameter (with respect to the distance d) sufficiently
small, and for any i = 1, ..., n there are functions

Pi(·, ·, ·) : UK × UK ×K → R

with UK ⊂ Rn a sufficiently small compact neighbourhood of 0 ∈ Rn such that for any
x ∈ K and any a, b ∈ UK we have

exp

(
n∑
1

aiXi

)
(x) = exp

(
n∑
1

Pi(a, b, y)Xi

)
◦ exp

(
n∑
1

biXi

)
(x)

and such that the following limit exists

lim
ε→0+

ε−deg XiPi(εdeg Xjaj , ε
deg Xkbk, x) ∈ R

and it is uniform with respect to x ∈ K and a, b ∈ UK .

The existence of normal frames is proven in Belläıche [5], starting with theorem 4.15 and
ending in the first half of section 7.3 (page 62).

In order to understand normal frames let us look to the case of a Lie group G endowed
with a left invariant distribution. The distribution is completely non-integrable if it is
generated by the left translation of a vector subspace D of the algebra g = TeG which
bracket generates the whole algebra g. Take {X1, ..., Xm} a collection of m = dimD left
invariant independent vector fields and define with their help an adapted frame, as explained
in definition 11.6. Then the adapted frame {X1, ..., Xn} is in fact normal.

11.3 Sub-riemannian dilation structures

To any normal frame of a regular sub-riemannian manifold we associate a dilation structure.
(Technically this is a dilation structure defined only locally, as in the case of riemannian
manifolds.)

Definition 11.8 To any normal frame {X1, ..., Xn} of a regular sub-riemannian mani-
fold (M,D, g) we associate the dilation structure (M,d, δ) defined by: d is the Carnot-
Carathéodory distance, and for any point x ∈ M and any ε ∈ (0,+∞) (sufficiently small if
necessary), the dilation δx

ε is given by:

δx
ε

(
exp

(
n∑

i=1

aiXi

)
(x)

)
= exp

(
n∑

i=1

aiε
degXiXi

)
(x)
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We shall prove that (M,d, δ) is indeed a dilation structure. This allows us to get the
main results concerning the infinitesimal geometry of a regular sub-riemannian manifold, as
particular cases of theorems 13.6, 13.1, 13.5 and 13.8.

We only have to prove axioms A3 and A4 of dilation structures. We do this in the next
two theorems. Before this let us decribe what we mean by ”sufficiently closed”.

Definition 11.9 Further we shall say that a property P(x1, x2, x3, ...) holds for x1, x2, x3, ...
sufficiently closed if for any compact, non empty set K ⊂ X, there is a positive constant
C(K) > 0 such that P(x1, x2, x3, ...) is true for any x1, x2, x3, ... ∈ K with d(xi, xj) ≤ C(K).

In the following we prove a result similar to Gromov local approximation theorem [39],
p. 135, or to Belläıche theorem 7.32 [5]. Note however that here we take as a hypothesis
the existence of a normal frame.

Theorem 11.10 Consider X1, ..., Xn a normal frame and the associated dilations provided
by definition 11.8. Then axiom A3 of dilation structures is satisfied, that is the limit

lim
ε→0

1
ε
d (δx

εu, δ
x
ε v) = dx(u, v)

exists and it uniform with respect to x,u,v sufficiently closed.

Proof. Let x, u, v ∈M be sufficiently closed. We write

u = exp

(
n∑
1

uiXi

)
(x) , v = exp

(
n∑
1

viXi

)
(x)

we compute, using definition 11.8:

1
ε
d (δx

εu, δ
x
ε v) =

1
ε
d

(
δx
ε exp

(
n∑
1

uiXi

)
(x), δx

ε exp

(
n∑
1

viXi

)
(x)

)
=

=
1
ε
d

(
exp

(
n∑
1

εdeg XiuiXi

)
(x), exp

(
n∑
1

εdeg XiviXi

)
(x)

)
= Aε

Let us denote by uε = exp

(
n∑
1

εdeg XiuiXi

)
(x). Use the first part of the property (b),

definition 11.7 of a normal system, to write further:

Aε =
1
ε
d

(
uε, exp

(
n∑
1

Pi(εdeg Xjvj , ε
deg Xkuk, x)Xi

)
(uε)

)
=

=
1
ε
d

(
uε, exp

(
n∑
1

εdeg Xi
(
ε−deg Xi Pi(εdeg Xjvj , ε

deg Xkuk, x)
)
Xi

)
(uε)

)
We make a final notation: for any i = 1, ..., n

aε
i = ε−deg Xi Pi(εdeg Xjvj , ε

deg Xkuk, x)
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thus we have:

1
ε
d (δx

εu, δ
x
ε v) =

1
ε
d

(
uε, exp

(
n∑
1

εdeg Xiaε
iXi

)
(uε)

)

By the second part of property (b), definition 11.7, the vector aε ∈ Rn converges to a finite
value a0 ∈ Rn, as ε→ 0, uniformly with respect to x, u, v in compact set. In the same time
uε converges to x, as ε→ 0. The proof ends by using property (a), definition 11.7. Indeed,
we shall use the key assumption of uniform convergence. With the notations from definition
11.7, for fixed η > 0 the term

B(η, ε) =
1
ε
d

(
uη, exp

(
n∑
1

εdeg Xiaη
iXi

)
(uη)

)

converges to a real number A(uη, aη) as ε→ 0, uniformly with respect to uη and aη. Since
uη converges to x and aη converges to a0 as η → 0, by the uniform convergence assumption
in (a), definition 11.7 we get that

lim
ε→0

1
ε
d (δx

εu, δ
x
ε v) = lim

η→0
A(uη, aη) = A(x, a0)

The proof is done. �
In the next Theorem we prove that axiom A4 of dilation structures is satisfied. The

referee informed us that Theorem 11.11 also follows from results of Vodopyanov and Kar-
manova [59], quoted in [57] p. 267; a complete version of this result will apear in a work
by Karmanova and Vodopyanov “Geometry of Carnot-Carathéodory spaces, differentiability
and coarea formula” in the book “Analysis and Mathematical Physics”, Birchhäuser 2008.

Theorem 11.11 Consider X1, ..., Xn a normal frame and the associated dilations provided
by definition 11.8. Then axiom A4 of dilation structures is satisfied: as ε tends to 0 the
quantity

∆x
ε (u, v) = δ

δx
ε u

ε−1 ◦ δx
ε (v)

converges, uniformly with respect to x, u, v sufficiently closed.

Proof. We shall use the notations from definition 11.6, 11.7, 11.8.
Let x, u, v ∈M be sufficiently closed. We write

u = exp

(
n∑
1

uiXi

)
(x) , v = exp

(
n∑
1

viXi

)
(x)

We compute now ∆x
ε (u, v):

∆x
ε (u, v) = δ

exp(Pn
1 εdeg XiuiXi)(x)

ε−1 exp

(
n∑
1

εdeg XiviXi

)
(x)

Let us denote by uε = δx
εu. Thus we have

∆x
ε (u, v) = δuε

ε−1 exp

(
n∑
1

εdeg XiviXi

)
(x)
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We use the first part of the property (b), definition 11.7, in order to write

exp

(
n∑
1

εdeg XiviXi

)
(x) = exp

(
n∑
1

Pi(εdeg Xjvj , ε
deg Xkuk, x)Xi

)
(uε)

We finish the computation:

∆x
ε (u, v) = exp

(
n∑
1

ε− deg Xi Pi(εdeg Xjvj , ε
deg Xkuk, x)Xi

)
(uε)

As ε goes to 0 the point uε converges to x uniformly with respect to x, u sufficiently closed
(as a corollary of the previous theorem, for example). The proof therefore ends by invoking
the second part of the property (b), definition 11.7. �

With the help of a normal frame we can prove the existence of strong dilation structures
on regular sub-riemannian manifolds. The following is a consequence of theorems 6.3, 6.4
[14].

Theorem 11.12 Let (M,D, g) be a regular sub-riemannian manifold, U ⊂ M an open
set which admits a normal frame. Define for any x ∈ U and ε > 0 (sufficiently small if
necessary), the dilation δx

ε given by:

δx
ε

(
exp

(
n∑

i=1

aiXi

)
(x)

)
= exp

(
n∑

i=1

aiε
degXiXi

)
(x)

Then (U, d, δ) is a strong dilation structure.
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12 The Kirchheim-Magnani counterexample to metric
differentiability

In Kirchheim-Magnani [47] the authors construct a left invariant distance ρ on the Heisenberg
group such that the identity map id is 1-Lipschitz but it is not metrically differentiable
anywhere.

We shall give an interpretation of the Kirchheim-Magnani counterexample to metric
differentiability. In fact we show that they construct something which fails shortly from
being a dilation structure.

We shall construct a structure (H(1), ρ, δ̄) on H(1) which satisfies all axioms of a dilation
structure, excepting A3 and A4. We prove that for (H(1), ρ, δ̄) the axiom A4 implies A3.
Finally we prove that A4 for (H(1), ρ, δ̄) is equivalent with id metrically differentiable from
(H(1), d) to (H(1), ρ), where d is a left invariant CC distance.

For the elements of the Heisenberg group H(1) = R2×R we use the notation x̃ = (x, x̄),
with x̃ ∈ H(1), x ∈ R2, x̄ ∈ R. In this subsection we shall use the following operation on
H(1):

x̃ỹ = (x, x̄)(y, ȳ) = (x+ y, x̄+ ȳ + 2ω(x, y)),

where ω is the canonical symplectic form on R2. On H(1) we consider the left invariant
distance d uniquely determined by the formula:

d((0, 0), (x, x̄)) = max
{
‖x‖,

√
| x̄ |

}
.

The construction proposed by Kirchheim and Magnani is described further. Take an
invertible, non decreasing function g : [0,+∞) → [0,+∞), continuous at 0, such that
g(0) = 0.

For a function g which is well chosen, the function ρ : H(1) → [0,+∞),

ρ(x̃) = max {‖x‖, g(| x̄ |)}

induces a left invariant invariant distance on H(1) (we use the same symbol)

ρ(x̃, ỹ) = ρ(x̃−1ỹ).

In order to check this it is sufficient to prove that for any x̃, ỹ ∈ H(1) we have

ρ(x̃ỹ) ≤ ρ(x̃) + ρ(ỹ),

and that ρ(x̃) = 0 if and only if x̃ = (0, 0). The following result is theorem 2.1 [47].

Theorem 12.1 (Kirchheim-Magnani) If the function g has the expression

g−1(t) = k(t) + t2

for any t > 0, where k : [0,+∞) → [0,+∞) is a convex function, strictly increasing,
continuous at 0, and such that k(0) = 0, then the function ρ induces a left invariant distance
(denoted also by ρ). Moreover, the identity function id is 1-Lipschitz from (H(1), d) to
(H(1), ρ).

Further we shall work with a function g satisfying the hypothesis of theorem 12.1, and
with the associated function ρ described in the previous subsection.
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Definition 12.2 Define for any ε > 0, the function

δ̄ε(x, x̄) = (εx, sgn(x̄)g−1 (εg(| x̄ |)))

for any x̃ = (x, x̄) ∈ H(1).
We define the following field of dilations δ̄ by: for any ε > 0 and x̃, ỹ ∈ H(1) let

δ̄x̃ỹ = x̃δ̄
(
x̃−1ỹ

)
.

For any ε > 0 and x̃, ỹ ∈ H(1) we define

β̄ε(x̃, ỹ) = δ̄ε−1

(
δ̄ε(x̃)δ̄ε(ỹ)

)
.

We want to know when (H(1), ρ, δ̄) is a dilation structure.

Proposition 12.3 The structure (H(1), ρ, δ̄) satisfies the axioms A0, A1, A2. Moreover,
A4 implies A3.

Proof. It is easy to check that for any ε, µ ∈ (0,+∞) we have

δ̄εδ̄µ = δ̄εµ

and that id = δ1.
Moreover, from g non decreasing and continuous at 0 we deduce that

lim
ε→0

δ̄εx̃ = (0, 0),

uniformly with respect to x̃ in compact sets.
Another computation shows that

ρ(δ̄εx̃) = ερ(x̃)

for any x̃ ∈ H(1) and ε > 0. Otherwise stated, the function ρ is homogeneous with respect
to δ̄.

All that is left to prove is that A4 implies A3. Remark that δ̄ is left invariant (in the
sense of transport by left translations in H(1)) and the distance ρ is also left invariant. Then
axiom A4 takes the form: there exists the limit

lim
ε→0

β̄ε(x̃, ỹ) = β̄(x̃, ỹ) ∈ H(1) (12.0.1)

uniform with respect to x̃, ỹ ∈ K, K compact set.
From the homogeneity of the function ρ with respect to δ̄ we deduce that for any x̃, ỹ ∈

H(1) we have:
1
ε
ρ
(
δ̄ε(x̃), δ̄ε(ỹ)

)
= ρ(β̄ε(x̃−1, ỹ)).

From the left invariance of δ̄ and ρ it follows that A4 implies A3. �

Theorem 12.4 If the triple (H(1), ρ, δ̄) is a dilation structure then id is metrically differ-
entiable from (H(1), d) to (H(1), ρ).
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Proof. We know that the triple (H(1), ρ, δ̄) is a dilation structure if and only if (12.0.1) is
true. Taking (12.0.1) as hypothesis we deduce that the identity function is derivable from
(H(1), d, δ) to (H(1), ρ, δ̄). Indeed, computation shows that id derivable is equivalent to the
existence of the limit

lim
ε→0

δ̄ε−1δεũ = (u, sgn(ū)g−1

(
lim
ε→0

1
ε
g(ε2 | ū |)

)
)

uniform with respect to ũ in compact set. Therefore the function id is derivable everywhere
if and only if the uniform limit, with respect to ū in compact set:

A(ū) = lim
ε→0

1
ε
g(ε2 | ū |) (12.0.2)

exists. We want to show that (12.0.1) implies the existence of this limit.
For this we shall use an equivalent (isomorphic) description of (H(1), ρ, δ̄). Consider the

function F : H(1) → H(1), defined by

F (x, x̄) = (x, sgn(x̄)g(| x̄ |)).

The function F is invertible because g is invertible. For any ε > 0 let δ̂ε be the usual
dilations:

δ̂ε(x, x̄) = (εx, εx̄).

It is then straightforward that
δ̄ε = F−1δ̂εF,

for any ε > 0.
The function F can be made into a group isomorphism by re-defining the group operation

on H(1)
x̃ · ỹ = F ((x, h(x̄))(y, h(ȳ)),

where h is the function
h(t) = sgn(t)(t2 + k(| t |)).

Let µ be the transported left invariant distance on H(1), defined by

µ(F (x̃), F (ỹ)) = ρ(x̃, ỹ).

Remark that µ has the simple expression

µ((0, 0), (x, x̄)) = max {| x |, | x̄ |} .

Exactly as before we can construct the structure δ̂ by

δ̂x̃
ε ỹ = x̃ · δ̂ε

(
x̃−1 · ỹ

)
.

We get a dilation structure (H(1), µ, δ̂) isomorphic with (H(1), ρ, δ̄).
The identity function id is derivable from (H(1), d, δ) to (H(1), ρ, δ̄) if and only if the

function F is derivable from (H(1), d, δ) to (H(1), µ, δ̂).
The axiom A4 for the dilation structure (H(1), µ, δ̂) implies that for any x̃, ỹ ∈ H(1) the

limit exists

lim
ε→0

1
ε
g

(
| ε2

(
1
2
ω(x, y)+ | x̄ | x̄+ | x̄ | x̄

)
+ sgn(x̄)k(ε | x̄ |) + sgn(ȳ)k(ε | ȳ |) |

)
,
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uniform with respect to ỹ in compact set. Take in the previous limit x̄ = ȳ = 0 and denote

ū =
1
2
ω(x, y). We get (12.0.2), therefore we proved that id is derivable from (H(1), d, δ) to

(H(1), ρ, δ̄).
Finally, the derivability of id implies the metric differentiability. Indeed, we use (12.0.2)

to compute ν, the metric differential of id. We obtain that

νx̃ = µ((x,A(x̄))) = max {| x |, A(ū)} .

The proof is done. �
In the counterexample of Kirchheim and Magnani the identity function id is not metric

differentiable, therefore the corresponding triple (H(1), ρ, δ̄) is not a dilation structure.

84



13 Tangent bundle of a dilation structure

13.1 Metric profiles associated with dilation structures

In axiom A3 we take limits. In this subsection we shall look at dilation structures from the
metric point of view, by using Gromov-Hausdorff distance and metric profiles.

We state the interpretation of the axiom A3 as a theorem. But before a definition: we
denote by (δ, ε) the distance on

B̄dx(x, 1) = {y ∈ X : dx(x, y) ≤ 1}

given by

(δ, ε)(u, v) =
1
ε
d(δx

εu, δ
x
ε v) .

Theorem 13.1 Let (X, d, δ) be a dilation structure. The following are consequences of
axioms A0, ... , A3 only:

(a) for all u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all µ ∈ (0, A) we have:

dx(u, v) =
1
µ
dx(δx

µu, δ
x
µv) .

We shall say that dx has the cone property with respect to dilations.

(b) The curve ε > 0 7→ Px(ε) = [B̄dx(x, 1), (δ, ε), x] is a metric profile.

Proof. (a) Indeed, for ε, µ ∈ (0, 1) we have:

| 1
εµ
d(δx

ε δ
x
µu, δ

x
ε δ

x
µv) − dx(u, v) | ≤ | 1

εµ
d(δx

εµu, δ
x
ε δ

x
µu)−

1
εµ
d(δx

εµv, δ
x
ε δ

x
µv) | +

+ | 1
εµ
d(δx

εµu, δ
x
εµv) − dx(u, v) | .

Use now the axioms A2 and A3 and pass to the limit with ε → 0. This gives the desired
equality.

(b)We have to prove that Px is a metric profile. For this we have to compare two pointed
metric spaces:

(
(δx, εµ), B̄dx(x, 1), x

)
and

(
1
µ

(δx, ε), B̄ 1
µ (δx,ε)(x, 1), x

)
.

Let u ∈ X such that
1
µ

(δx, ε)(x, u) ≤ 1 .

This means that:
1
ε
d(δx

εx, δ
x
εu) ≤ µ .

Use further axioms A1, A2 and the cone property proved before:

1
ε
dx(δx

εx, δ
x
εu) ≤ (O(ε) + 1)µ
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therefore
dx(x, u) ≤ (O(ε) + 1)µ .

It follows that for any u ∈ B̄ 1
µ (δx,ε)(x, 1) we can choose w(u) ∈ B̄dx(x, 1) such that

1
µ
dx(u, δx

µw(u)) = O(ε) .

We want to prove that

| 1
µ

(δx, ε)(u1, u2) − (δx, εµ)(w(u1), w(u2)) | ≤ O(εµ) +
1
µ
O(ε) +O(ε) .

This goes as following:

| 1
µ

(δx, ε)(u1, u2) − (δx, εµ)(w(u1), w(u2)) |

= | 1
εµ
d(δx

εu1, δ
x
εu2) − 1

εµ
d(δx

εµw(u1), δx
εµw(u2)) |≤

≤ O(εµ) + | 1
εµ
d(δx

εu1, δ
x
εu2) − 1

εµ
d(δx

ε δ
x
µw(u1), δx

ε δ
x
µw(u2)) | ≤

≤ O(εµ) +
1
µ
O(ε) +

1
µ
| dx(u1, u2) − dx(δx

µw(u1), δx
µw(u2)) .

In order to obtain the last estimate we used twice axiom A3. We continue:

O(εµ) +
1
µ
O(ε) +

1
µ
| dx(u1, u2) − dx(δx

µw(u1), δx
µw(u2)) ≤

≤ O(εµ) +
1
µ
O(ε) +

1
µ
dx(u1, δ

x
µw(u1)) +

1
µ
dx(u1, δ

x
µw(u2)) ≤

≤ O(εµ) +
1
µ
O(ε) +O(ε) .

This shows that the property (b) of a metric profile is satisfied. The property (a) is proved
in theorem 13.2. �

The following theorem is related to Mitchell [51] theorem 1, concerning sub-riemannian
geometry.

Theorem 13.2 In the hypothesis of theorem 13.1, we have the following limit:

lim
ε→0

1
ε

sup {| d(u, v)− dx(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .

Therefore if dx is a true (i.e. nondegenerate) distance, then (X, d) admits a metric tangent
space in x.

Moreover, the metric profile [B̄dx(x, 1), (δ, ε), x] is almost nice, in the following sense: let
c ∈ (0, 1). Then we have the inclusion:

δx
µ−1

(
B̄ 1

µ (δx,ε)(x, c)
)
⊂ B̄dx(x, 1) .
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Moreover, the following Gromov-Hausdorff distance is of order O(ε) for µ fixed (that is the
modulus of convergence O(ε) does not depend on µ) :

µ dGH

(
[B̄dx(x, 1), (δx, ε), x], [δx

µ−1

(
B̄ 1

µ (δx,ε)(x, c)
)
, (δx, εµ), x]

)
= O(ε) .

For another Gromov-Hausdorff distance we have the estimate:

dGH

(
[B̄ 1

µ (δx,ε)(x, c),
1
µ

(δx, ε), x] , [δx
µ−1

(
B̄ 1

µ (δx,ε)(x, c)
)
, (δx, εµ), x]

)
= O(εµ)

when ε ∈ (0, ε(c)).

Proof. We start from the axioms A0, A3 and we use the cone property. By A0, for
ε ∈ (0, 1) and u, v ∈ B̄d(x, ε) there exist U, V ∈ B̄d(x,A) such that

u = δx
εU, v = δx

εV.

By the cone property we have

1
ε
| d(u, v)− dx(u, v) |=| 1

ε
d(δx

εU, δ
x
εV )− dx(U, V ) | .

By A2 we have

| 1
ε
d(δx

εU, δ
x
εV )− dx(U, V ) |≤ O(ε).

This proves the first part of the theorem.
For the second part of the theorem take any u ∈ B̄ 1

µ (δx,ε)(x, c). We have then

dx(x, u) ≤ cµ+O(ε) .

Then there exists ε(c) > 0 such that for any ε ∈ (0, ε(c)) and u in the mentioned ball we
have:

dx(x, u) ≤ µ

In this case we can take directly w(u) = δx
µ−1u and simplify the string of inequalities from

the proof of theorem 13.1, point (b), to get eventually the three points from the second part
of the theorem. �

13.2 Infinitesimal translations

In this section we shall use the calculus with binary decorated trees introduced in section 4,
for a space endowed with a dilation structure.

Theorem 13.3 Let (X, d, δ) be a dilation structure. Then the ”infinitesimal translations”

Lx
u(v) = lim

ε→0
∆x

ε (u, v)

are dx isometries.
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Proof. The first part of the conclusion of theorem 13.2 can be written as:

sup
{

1
ε
| d(u, v) − dx(u, v) | : d(x, u) ≤ 3

2
ε, d(x, v) ≤ 3

2
ε

}
→ 0 (13.2.1)

as ε→ 0.
For ε > 0 sufficiently small the points x, δx

εu, δ
x
ε v, δ

x
εw are close one to another. Precisely,

we have
d(δε

xu, δ
ε
xv) = ε(dx(u, v) +O(ε)) .

Therefore, if we choose u, v, w such that dx(u, v) < 1, dx(u,w) < 1, then there is η > 0 such
that for all ε ∈ (0, η) we have

d(δε
xu, δ

ε
xv) ≤

3
2
ε , d(δε

xu, δ
ε
xv) ≤

3
2
ε .

We apply the estimate (13.2.1) for the basepoint δx
εu to get:

1
ε
| d(δx

ε v, δ
x
εw) − dδx

ε u(δx
ε v, δ

x
εw) |→ 0

when ε→ 0. This can be written, using the cone property of the distance dδx
ε u, like this:

| 1
ε
d(δx

ε v, δ
x
εw) − dδx

ε u
(
δ

δx
ε u

ε−1 δ
x
ε v, δ

δx
ε u

ε−1 δ
x
εw
)
|→ 0 (13.2.2)

as ε→ 0. By the axioms A1, A3, the function

(x, u, v) 7→ dx(u, v)

is an uniform limit of continuous functions, therefore uniformly continuous on compact sets.
We can pass to the limit in the left hand side of the estimate (13.2.2), using this uniform
continuity and axioms A3, A4, to get the result. �

Let us define, in agreement with definition 7.4 (b):

Σx
ε (u, v) = δx

ε−1δ
δx

ε u
ε v.

Corollary 13.4 If for any x the distance dx is non degenerate then there exists C > 0 such
that: for any x and u with d(x, u) ≤ C there exists a dx isometry Σx(u, ·) obtained as the
limit:

lim
ε→0

Σx
ε (u, v) = Σx(u, v)

uniformly with respect to x, u, v in compact set.

Proof. From theorem 13.3 we know that ∆x(u, ·) is a dx isometry. If dx is non degenerate
then ∆x(u, ·) is invertible. Let Σx(u, ·) be the inverse.

From proposition 7.5 we know that Σx
ε (u, ·) is the inverse of ∆x

ε (u, ·). Therefore

dx(Σx
ε (u,w),Σx(u,w)) = dx(∆x(u,Σx

ε (u,w)), w) =

= dx(∆x(u,Σx
ε (u,w)),∆x

ε (u,Σx
ε (u,w)).

From the uniformity of convergence in theorem 13.3 and the uniformity assumptions in
axioms of dilation structures, the conclusion follows. �

The next theorem is the generalization of proposition 8.6.
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Theorem 13.5 Let (X, d, δ) be a dilation structure (which satisfies the strong form of the
axiom A2), such that for any x ∈ X the distance dx is non degenerate. Then for any x ∈ X
(U(x),Σx, δx) is a conical group. Moreover, left translations of this group are dx isometries.

Proof. We start by proving that (U(x),Σx) is a local uniform group. The uniformities are
induced by the distance d.

We shall use the general relations written in terms of binary decorated trees. Indeed,
according to proposition 7.5, we can pass to the limit with ε→ 0 and define:

invx(u) = lim
ε→0

∆x
ε (u, x) = ∆x(u, x).

From relation (d) , proposition (7.5) we get (after passing to the limit with ε→ 0)

invx(invx(u)) = u.

We shall see that invx(u) is the inverse of u. Relation (c), proposition (7.5) gives:

∆x(u, v) = Σx(invx(u), v) (13.2.3)

therefore relations (a), (b) from proposition 7.5 give

Σx(invx(u),Σx(u, v)) = v, (13.2.4)

Σx(u,Σx(u, v)) = v. (13.2.5)

Relation (e) from proposition 7.5 gives

Σx(u,Σx(v, w)) = Σx(Σx(u, v), w) (13.2.6)

which shows that Σx is an associative operation. From (13.2.5), (13.2.4) we obtain that for
any u, v

Σx(Σx(invx(u), u), v) = v, (13.2.7)

Σx(Σx(u, invx(u)), v) = v. (13.2.8)

Remark that for any x, v and ε ∈ (0, 1) we have Σx(x, v) = v. Therefore x is a neutral
element at left for the operation Σx. From the definition of invx, relation (13.2.3) and the
fact that invx is equal to its inverse, we get that x is an inverse at right too: for any x, v
we have

Σx(v, x) = v.

Replace now v by x in relations (13.2.7), (13.2.8) and prove that indeed invx(u) is the inverse
of u.

We still have to prove that (U(x),Σx) admits δx as dilations.In this reasoning we need
the axiom A2 in strong form.

Namely we have to prove that for any µ ∈ (0, 1) we have

δx
µΣx(u, v) = Σx(δx

µu, δ
x
µv).

For this is sufficient to notice that

δx
µ∆x

εµ(u, v) = ∆x
ε (δx

µu, δ
x
µv)
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and pass to the limit as ε → 0. Notice that here we used the fact that dilations δx
ε and δx

µ

exactly commute (axiom A2 in strong form).
Finally, left translations Lx

u are dx isometries. Indeed, this is a straightforward conse-
quence of theorem 13.3 and corollary 13.4. �

The conical group (U(x),Σx, δx) can be regarded as the tangent space of (X, δ, d) at x
and denoted further by TxX.

A reformulation of parts of theorems 6,7 [11] is the following.

Theorem 13.6 A dilation structure (X, d, δ) has the following properties.

(a) For all x ∈ X, u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all µ ∈ (0, A) we
have:

dx(u, v) =
1
µ
dx(δx

µu, δ
x
µv) .

We shall say that dx has the cone property with respect to dilations.

(b) The metric space (X, d) admits a metric tangent space at x, for any point x ∈ X.
More precisely we have the following limit:

lim
ε→0

1
ε

sup {| d(u, v)− dx(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .

For the next theorem (composite of results in theorems 8, 10 [11]) we need the previously
introduced notion of a normed conical local group.

Theorem 13.7 Let (X, d, δ) be a strong dilation structure. Then for any x ∈ X the triple
(U(x),Σx, δx) is a normed local conical group, with the norm induced by the distance dx.

The conical group (U(x),Σx, δx) can be regarded as the tangent space of (X, d, δ) at x.
Further will be denoted by: TxX = (U(x),Σx, δx).

The dilation structure on this conical group has dilations defined by

δ̄x,u
ε y = Σx (u, δx

ε ∆x(u, y)) . (13.2.9)

13.3 Topological considerations

In this subsection we compare various topologies and uniformities related to a dilation
structure.

The axiom A3 implies that for any x ∈ X the function dx is continuous, therefore open
sets with respect to dx are open with respect to d.

If (X, d) is separable and dx is non degenerate then (U(x), dx) is also separable and the
topologies of d and dx are the same. Therefore (U(x), dx) is also locally compact (and a set
is compact with respect to dx if and only if it is compact with respect to d).

If (X, d) is separable and dx is non degenerate then the uniformities induced by d and dx

are the same. Indeed, let {un : n ∈ N} be a dense set in U(x), with x0 = x. We can embed
(U(x), (δx, ε)) (see definition 15.6) isometrically in the separable Banach space l∞, for any
ε ∈ (0, 1), by the function

φε(u) =
(

1
ε
d(δx

εu, δ
x
εxn)− 1

ε
d(δx

εx, δ
x
εxn)

)
n

.
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A reformulation of point (a) in theorem 13.1 is that on compact sets φε uniformly converges
to the isometric embedding of (U(x), dx)

φ(u) = (dx(u, xn)− dx(x, xn))n .

Remark that the uniformity induced by (δ, ε) is the same as the uniformity induced by d,
and that it is the same induced from the uniformity on l∞ by the embedding φε. We proved
that the uniformities induced by d and dx are the same.

From previous considerations we deduce the following characterization of tangent spaces
associated to a dilation structure.

Corollary 13.8 Let (X, d, δ) be a strong dilation structure with group Γ = (0,+∞). Then
for any x ∈ X the local group (U(x),Σx) is locally a simply connected Lie group whose Lie
algebra admits a positive graduation (a homogeneous group).

Proof. Use the facts: (U(x),Σx) is a locally compact group (from previous topological
considerations) which admits δx as a contractive automorphism group (from theorem 13.5).
Apply then Siebert proposition 8.12 ( which is [54] proposition 5.4). �

13.4 Differentiability with respect to dilation structures

We briefly explain the notion of differentiability associated to dilation structures (section
7.2 [11]). First we need the natural definition below.

Definition 13.9 Let (N, δ) and (M, δ̄) be two conical groups. A function f : N → M is a
conical group morphism if f is a group morphism and for any ε > 0 and u ∈ N we have
f(δεu) = δ̄εf(u).

The definition of the derivative with respect to dilations structures follows.

Definition 13.10 Let (X, δ, d) and (Y, δ, d) be two strong dilation structures and f : X → Y
be a continuous function. The function f is differentiable in x if there exists a conical
group morphism Qx : TxX → Tf(x)Y , defined on a neighbourhood of x with values in a
neighbourhood of f(x) such that

lim
ε→0

sup
{

1
ε
d
(
f (δx

εu) , δ
f(x)

ε Qx(u)
)

: d(x, u) ≤ ε

}
= 0, (13.4.10)

The morphism Qx is called the derivative of f at x and will be sometimes denoted by Df(x).
The function f is uniformly differentiable if it is differentiable everywhere and the limit

in (13.4.10) is uniform in x in compact sets.
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14 Related constructions of tangent bundles

14.1 Mitchell’s theorem 1. Belläıche’s construction

We collect here three key items in the edification of sub-Riemannian geometry. The first is
Mitchell [51] theorem 1:

Theorem 14.1 For a regular sub-Riemannian space (M,D, g), the tangent cone of (M,dCC)
at x ∈ M exists and it is isometric to (N(D), dN ), which is a Carnot group with a left in-
variant distribution and dN is a induced Carnot-Carathéodory distance.

We shall prove this theorem in the particular case of a Lie group with left-invariant distri-
bution. For a detailed proof of the general case see Vodop’yanov & Greshnov [57] [58].

The Carnot group N(D) is called the nilpotentisation of the regular distribution D and
it can be constructed from D exclusively. However, the metric on N(D) depends on the
choice of metric g on the sub-Riemannian manifold.

Recall that the limit in the Gromov-Hausdorff sense is defined up to isometry. This
means it this case that N(D) is a model for the tangent space at x to (M,dCC). In the
Riemannian case D = TM and N(D) = Rn, as a group with addition.

This theorem tells us nothing about the tangent bundle. There are however other ways
to associate a tangent bundle to a metric measure space (Cheeger [23]) or to a regular
sub-Riemannian manifold (Margulis & Mostow [48], [49]). These bundles differs. As Tyson
(interpreting Cheeger) asserts (see Tyson paper in these proceedings (??)), Cheeger tangent
bundle can be identified with the distribution D and Margulis-Mostow bundle is the same
as the usual tangent bundle, but with the fiber isomorphic with N(D), instead of Rn. We
shall explain how the Margulis-Mostow tangent bundle is constructed a bit further (again
in the particular case considered here).

Let us not, for the moment, be too ambitious and restrict to the question: is there a
metric derivation of the group operation onN(D)? Belläıche [5] writes that he asked Gromov
this question, who pointed out that the key tool to construct the operation from metric is
uniformity. Belläıche proposed therefore the following construction, which starts from the
proof of Mitchell theorem 1, where it can be seen that the Gromov-Hausdorff convergence
to the tangent space is uniform with respect to x ∈M . This means that for any ε > 0 there
is R(ε) > 0 and map φx,ε : BCC(x,R(ε)) → N(D) such that

dN (φx,ε(y), φx,ε(z)) = dCC(y, z) + o(ε) ∀y, z ∈ BCC(x,R(ε))

Let us forget about ε (Belläıche does not mention anything about it further) and take
arbitrary X,Y ∈ N(D). Pick then y ∈ M such that φx(y) = X. Denote φxy = φyφ

−1
x .

Then the operation in N(D) is defined by:

X
n· Y = lim

λ→∞
φ−1

xy δ
−1
λ φxyδλ(Y )

It is easier to understand this in the Euclidean case, that is in Rn. We can take for
example

φx(y) = Q(x)(y − x) = X , y = x+Q−1X ,x 7→ Q(x) ∈ SO(n) arbitrary

(and we have no dependence on ε) Let us compute the operation. We get

lim
λ→∞

φ−1
xy δ

−1
λ φxyδλ(Y ) = X + Y
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as expected. Notice that the arbitrary choice of the rotations Q(x) does not influence the
result. The tangent spaces at any point can rotate independently, which is a sign that this
construction cannot lead to a tangent bundle.

There are several problems with Belläıche’s construction:

a) when λ→∞ the expression φxyδλ(Y ) might not make sense,

b) is not clear how ε and λ interact.

This is the reason why we introduced (first in [9], then here) the notion of uniform group,
which encodes all that one really need to do the construction, again in the case of Lie groups
with left invariant distributions.

Another way to transform Belläıche’s construction into an effective one (and more, to
obtain a tangent bundle) is proposed by Margulis and Mostow. We shall explain further their
construction. However, there are other problems emerging. as mentioned in the introduction.

14.2 Margulis & Mostow tangent bundle

In this section we shall apply Margulis & Mostow [49] construction of the tangent bundle
to a SR manifold for the case of a group with left invariant distribution. It will turn that
the tangent bundle does not have a group structure, due to the fact that, as previously, the
non-smoothness of the right translations is not studied.

The main point in the construction of a tangent bundle is to have a functorial definition
of the tangent space. This is achieved by Margulis & Mostow [49] in a very natural way.
One of the geometrical definitions of a tangent vector v at a point x, to a manifold M , is
the following one: identify v with the class of smooth curves which pass through x and have
tangent v. If the manifold M is endowed with a distance then one can define the equivalence
relation based in x by: c1 ≡x c2 if c1(0) = c2(0) = x and the distance between c1(t) and
c2(t) is negligible with respect to t for small t. The set of equivalence classes is the tangent
space at x. One has to put then some structure on the tangent space (as, for example, the
nilpotent multiplication).

To put is practice this idea is not so easy though. This is achieved by the following
sequence of definitions and theorems. For commodity we shall explain this construction in
the case M = G connected Lie group, endowed with a left invariant distribution D. The
general case is the one of a regular sub-Riemannian manifold. We shall denote by dG the
CC distance on G and we identify G with g, as previously. The CC distance induced by the
distribution DN , generated by left translations of G using nilpotent multiplication

n·, will be
denoted by dN .

Definition 14.2 A C∞ curve in G with x = c(0) is called rectifiable at t = 0 if dG(x, c(t)) ≤
Ct as t→ 0.

Two C∞ curves c′, c” with c′(0) = x = c”(0) are called equivalent at x if

t−1dG(c′(t), c”(t)) → 0

as t→ 0.
The tangent cone to G as x, denoted by CxG is the set of equivalence classes of all C∞

paths c with c(0) = x, rectifiable at t = 0.

Let c : [−1, 1] → G be a C∞ rectifiable curve, x = c(0) and

v = lim
t→0

δ−1
t

(
c(0)−1 g

· c(t)
)

(14.2.1)
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The limit v exists because the curve is rectifiable.
Introduce the curve c0(t) = x expG(δtv). Then

d(x, c0(t)) = d(e, x−1c(t)) <| v | t

as t→ 0 (by the Ball-Box theorem) The curve c is equivalent with c0. Indeed, we have (for
t > 0):

1
t
dG(c(t), c0(t)) =

1
t
dG(c(t), x

g
· δtv) =

1
t
dG(δt(v−1)

g
· x−1 g

· c(t), 0)

The latter expression is equivalent (by the Ball-Box Theorem) with

1
t
dN (δt(v−1)

g
· x−1 g

· c(t), 0) = dN

(
δ−1
t

(
δt(v−1)

g
· δt

(
δ−1
t

(
x−1 g

· c(t)
))))

The right hand side (RHS) converges to dN (v−1 n· v, 0), as t → 0, as a consequence of the
definition of v.

Therefore we can identify CxG with the set of curves t 7→ x expG(δtv), for all v ∈ g.
Remark that the equivalence relation between curves c1, c2, such that c1(0) = c2(0) = x
can be redefined as:

lim
t→0

δ−1
t

(
c2(t)−1 g

· c1(t)
)

= 0 (14.2.2)

In order to define the multiplication Margulis & Mostow introduce the families of seg-
ments rectifiable at t.

Definition 14.3 A family of segments rectifiable at t = 0 is a C∞ map

F : U → G

where U is an open neighbourhood of G× 0 in G×R satisfying

(a) F(·, 0) = id

(b) the curve t 7→ F(x, t) is rectifiable at t = 0 uniformly for all x ∈ G, that is for every
compact K in G there is a constant CK and a compact neighbourhood I of 0 such that
dG(y,F(y, t)) < CKt for all (y, t) ∈ K × I.

Two families of segments rectifiable at t = 0 are called equivalent if

t−1dG(F1(x, t),F2(x, t)) → 0

as t→ 0, uniformly on compact sets in the domain of definition.

Part (b) from the definition of a family of segments rectifiable can be restated as: there
exists the limit

v(x) = lim
t→0

δ−1
t

(
x−1 g

· F(x, t)
)

(14.2.3)

and the limit is uniform with respect to x ∈ K, K arbitrary compact set.
It follows then, as previously, that F is equivalent to F0, defined by:

F0(x, t) = x
g
· δtv(x)

Also, the equivalence between families of segments rectifiable can be redefined as:

lim
t→0

δ−1
t

(
F2(x, t)−1 g

· F1(x, t)
)

= 0 (14.2.4)

uniformly with respect to x ∈ K, K arbitrary compact set.
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Definition 14.4 The product of two families F1, F2 of segments rectifiable at t = 0 is
defined by

(F1 ◦ F2) (x, t) = F1(F2(x, t), t)

The product is well defined by Lemma 1.2 op. cit.. One of the main results is then the
following theorem (5.5).

Theorem 14.5 Let c1, c2 be C∞ paths rectifiable at t = 0, such that c1(0) = x0 = c2(0).
Let F1, F2 be two families of segments rectifiable at t = 0 with:

F1(x0, t) = c1(t) , F2(x0, t) = c2(t)

Then the equivalence class of
t 7→ F1 ◦ F2(x0, t)

depends only on the equivalence classes of c1 and c2. This defines the product of the elements
of the tangent cone Cx0G.

This theorem is the straightforward consequence of the following facts (5.1(5) and 5.2 in
Margulis & Mostow [49]).

We shall denote by F ≈ F ′ the equivalence relation of families of segments rectifiable;
the equivalence relation of rectifiable curves based at x will be denoted by c

x
≈ c′.

Lemma 14.6 (a) Let F1 ≈ F2 and G1 ≈ G2. Then F1 ◦ G1 ≈ F2 ◦ G2.

(b) The map F 7→ F0 is constant on equivalence classes of families of segments rectifiable.

Proof. Let
F0(x, t) = x

g
· δtw1(x) , G0(x, t) = x

g
· δtw2(x)

For the point (a) it is sufficient to prove that

F ◦ G ≈ F0 ◦ G0

This is true by the following chain of estimates.

1
t
dG(F ◦ G(x, t),F0 ◦ G0(x, t)) =

=
1
t
dG(δtw1(G0(x, t))−1 g

· δtw2(x)−1 g
· x−1 g

· F(G(x, t), t), 0)

The RHS of this equality behaves like

dN (δ−1
t

(
δtw1(G0(x, t))−1 g

· δtw2(x)−1 g
· δt

(
δ−1
t

(
x−1 g

· G(x, t)
))

g
·

g
· δt

(
δ−1
t

(
G(x, t)−1 g

· F(G(x, t), t)
)))

, 0)

This quantity converges (uniformly with respect to x ∈ K, K an arbitrary compact) to

dN (w1(x)−1 n· w2(x)−1 n· w2(x)
n· w1(x), 0) = 0

The point (b) is easier: let F ≈ G and consider F0, G0, as above. We want to prove that
F0 = G0, which is equivalent to w1 = w2.
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Because≈ is an equivalence relation all we have to prove is that if F0 ≈ G0 then w1 = w2.
We have:

1
t
dG(F0(x, t),G0(x, t)) =

1
t
dG(x

g
· δtw1(x), x

g
· δtw2(x))

We use the
g
· left invariance of dG and the Ball-Box theorem to deduce that the RHS behaves

like
dN (δ−1

t

(
δtw2(x)−1 g

· δtw1(x)−1
)
, 0)

which converges to dN (w1(x), w2(x)) as t goes to 0. The two families are equivalent, therefore
the limit equals 0, which implies that w1(x) = w2(x) for all x. �

We shall apply this theorem. Let ci(t) = x0 expG δtvi, for i = 1, 2. It is easy to check
that Fi(x, t) = x expG(δtvi) are families of segments rectifiable at t = 0 which satisfy the
hypothesis of the theorem. But then

(F1 ◦ F2) (x, t) = x0 expG(δtv1) expG(δtv2)

which is equivalent with
F expG

(
δt(v1

n· v2)
)

Therefore the tangent bundle defined by this procedure is the same as the virtual tangent
bundle which we shall define soon, inspired from the construction proposed by Belläıche.

Maybe I misunderstood the notations, but it seems to me that several times the au-
thors claim that the exponential map which they construct is bi-Lipschitz (as in 5.1(4) and
Corollary 4.5). This is false, as explained before. In Belläıche [5], Theorem 7.32 and also at
the beginning of section 7.6 we find that the exponential map is only 1/m Hölder continu-
ous (where m is the step of the nilpotentization). However, the final results of Margulis &
Mostow hold true, if not entirely proven facts, as statements at least.

14.3 Vodop’yanov & Greshnov definition of the derivability

We choose Vodop’yanov & Greshnov [57], [58] way of defining the derivability in order
to explain Margulis & Mostow [48] Rademacher theorem 10.5 (or Vodop’yanov & Greshnov
theorem 1). The definition (10.3.1) of derivability in the paper [48] is to be compared with the
definition of P differentiability from [57], first page, which is in my opinion clearer. However,
the reader entering for the first time in this subject might find hard to understand why such
elementary notions as differentiability need so lengthy discussions. It is, I think, another
sign of the fact that the foundations of non-Euclidean analysis are still in construction.

We stay, as previously, in the case of Lie groups with left invariant distributions. We put
on such groups Lebesgue measures coming from arbitrary atlases.

Definition 14.7 A mapping f : G1 → G2 is said to be differentiable at x ∈ G1 if the
mapping exp−1

G2
◦Lf(x) ◦ f ◦Lx ◦ expG1

is Pansu derivable at 0, when we identify the algebras
g1, g2 with the nilpotentisations of G1, G2 respectively.

The following theorem then holds. The original (and stronger) versions of this theorem
concern quasi-conformal mapping and can be found in Margulis & Mostow [48], Vodop’yanov
& Greshnov [57] and the paper by Vodop’yanov in these proceedings.

Theorem 14.8 Any Lipschitz map f : E ⊂ G1 → G2, E measurable, is derivable almost
everywhere.

96



15 Infinitesimal affine geometry of dilation structures

15.1 Affine transformations

Definition 15.1 Let (X, d, δ) be a dilation structure. A transformation A : X → X is
affine if it is Lipschitz and it commutes with dilations in the following sense: for any x ∈ X,
u ∈ U(x) and ε ∈ Γ, ν(ε) < 1, if A(u) ∈ U(A(x)) then

Aδx
ε = δA(x)

ε A(u) .

The local group of affine transformations, denoted by Aff(X, d, δ) is formed by all invertible
and bi-lipschitz affine transformations of X.

Aff(X, d, δ) is indeed a local group. In order to see this we start from the remark that
if A is Lipschitz then there exists C > 0 such that for all x ∈ X and u ∈ B(x,C) we have
A(u) ∈ U(A(x)). The inverse of A ∈ Aff(X, d, δ) is then affine. Same considerations apply
for the composition of two affine, bi-lipschitz and invertible transformations.

In the particular case of X finite dimensional real, normed vector space, d the distance
given by the norm, Γ = (0,+∞) and dilations δx

εu = x+ ε(u− x), an affine transformation
in the sense of definition 15.1 is an affine transformation of the vector space X.

Proposition 15.2 Let (X, d, δ) be a dilation structure and A : X → X an affine transfor-
mation. Then:

(a) for all x ∈ X, u, v ∈ U(x) sufficiently close to x, we have:

AΣx
ε (u, v) = ΣA(x)

ε (A(u), A(v)) .

(b) for all x ∈ X, u ∈ U(x) sufficiently close to x, we have:

A invx(u) = invA(x)A(u) .

Proposition 15.3 Let (X, d, δ) be a strong dilation structure and A : X → X an affine
transformation. Then A is uniformly differentiable and the derivative equals A.

The proofs are straightforward, just use the commutation with dilations.

15.2 Infinitesimal linearity of dilation structures

We begin by an explanation of the term ”sufficiently closed“, which will be used repeatedly
in the following.

We work in a dilation structure (X, d, δ). Let K ⊂ X be a compact, non empty set.
Then there is a constant C(K) > 0, depending on the set K such that for any ε, µ ∈ Γ with
ν(ε), ν(µ) ∈ (0, 1] and any x, y, z ∈ K with d(x, y), d(x, z), d(y, z) ≤ C(K) we have

δy
µz ∈ Vε(x) , δx

ε z ∈ Vµ(δx
ε y) .

Indeed, this is coming from the uniform (with respect to K) estimates:

d(δx
ε y, δ

x
ε z) ≤ εdx(y, z) + εO(ε) ,

d(x, δy
µz) ≤ d(x, y) + d(y, δy

µz) ≤ d(x, y) + µdy(y, z) + µO(µ) .
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Definition 15.4 A property P(x1, x2, x3, ...) holds for x1, x2, x3, ... sufficiently closed if for
any compact, non empty set K ⊂ X, there is a positive constant C(K) > 0 such that
P(x1, x2, x3, ...) is true for any x1, x2, x3, ... ∈ K with d(xi, xj) ≤ C(K).

For example, we may say that the expressions

δx
ε δ

y
µz , δ

δx
ε y

µ δx
ε z

are well defined for any x, y, z ∈ X sufficiently closed and for any ε, µ ∈ Γ with ν(ε), ν(µ) ∈
(0, 1].

Definition 15.5 A dilation structure (X, d, δ) is linear if for any ε, µ ∈ Γ such that ν(ε), ν(µ) ∈
(0, 1], and for any x, y, z ∈ X sufficiently closed we have

δx
ε δ

y
µz = δ

δx
ε y

µ δx
ε z .

This definition means simply that a linear dilation structure is a dilation structure with
the property that dilations are affine in the sense of definition 15.1.

Let us look to a dilation structure in finer details. We do this by defining induced dilation
structures from a given one.

Definition 15.6 Let (X, δ, d) be a dilation structure and x ∈ X a point. In a neighbourhood
U(x) of x, for any µ ∈ (0, 1) we define the distances:

(δx, µ)(u, v) =
1
µ
d(δx

µu, δ
x
µv).

The next theorem shows that on a dilation structure we almost have translations (the
operators Σx

ε (u, ·)), which are almost isometries (that is, not with respect to the distance
d, but with respect to distances of type (δx, µ)). It is almost as if we were working with
a normed conical group, only that we have to use families of distances and to make small
shifts in the tangent space, as it is done at the end of the proof of theorem 15.7.

Theorem 15.7 Let (X, δ, d) be a (strong) dilation structure. For any u ∈ U(x) and v close
to u let us define

δ̂x,u
µ,ε v = Σx

µ(u, δ
δx

µu
ε ∆x

µ(u, v)) = δx
µ−1δ

δx
µu

ε δx
µv .

Then (U(x), δ̂x
µ, (δ

x, µ)) is a (strong) dilation structure.
The transformation Σx

µ(u, ·) is an isometry from (δδx
µu, µ) to (δx, µ). Moreover, we have

Σx
µ(u, δx

µu) = u.

Proof. We have to check the axioms. The first part of axiom A0 is an easy consequence
of theorem 13.1 for (X, δ, d). The second part of A0, A1 and A2 are true based on simple
computations.

The first interesting fact is related to axiom A3. Let us compute, for v, w ∈ U(x),

1
ε
(δx, µ)(δ̂x,u

µ,ε v, δ̂
x,u
µε w) =

1
εµ
d(δx

µδ̂
x,u
µε v, δ

x
µδ̂

x,u
µε w) =
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=
1
εµ
d(δ

δx
µu

ε δx
µv, δ

δx
µu

ε δx
µw) =

1
εµ
d(δ

δx
µu

εµ ∆x
µ(u, v), δ

δx
µu

εµ ∆x
µ(u,w)) =

= (δδx
µu, εµ)(∆x

µ(u, v),∆x
µ(u,w)).

The axiom A3 is then a consequence of axiom A3 for (X, d, δ) and we have

lim
ε→0

1
ε
(δx, µ)(δ̂x,u

µε v, δ̂
x,u
µε w) = dδx

µu(∆x
µ(u, v),∆x

µ(u,w)).

The axiom A4 is also a straightforward consequence of A4 for (X, d, δ). The second part of
the theorem is a simple computation. �

The induced dilation structures (U(x), δ̂x
µ, (δ

x, µ)) should converge in some sense to the
dilation structure on the tangent space at x, as ν(µ) converges to zero. Remark that we
have one easy convergence in strong dilation structures:

lim
µ→0

δ̂x,u
µ,ε v = δ̄x,u

ε v

where δ̄x are the dilations in the tangent space at x, cf. (13.2.9). Indeed, this comes from:

δ̂x,u
µ,ε v = Σx

µ(u, δ
δx

µu
ε ∆x

µ(u, v))

so, when ν(µ) converges we get the mentioned limit.
The following proposition gives a more precise estimate: the order of approximation of

the dilations δ by dilations δ̂x
ε , in neighbourhoods of δx

ε y of order ε, as ν(ε) goes to zero.

Proposition 15.8 Let (X, δ, d) be a dilation structure. With the notations of theorem 15.7
we introduce

δ̂x,u
ε v = δ̂x,u

ε,ε v = δx
ε−1δ

δx
ε u

ε δx
ε v .

Then we have for any x, y, v sufficiently closed:

lim
ε→0

1
ε

(δx, ε)
(
δ

δx
ε y

ε v , δ̂
x,δx

ε y
ε v

)
= 0 . (15.2.1)

Proof. We start by a computation:

1
ε

(δx, ε)
(
δ

δx
ε y

ε v , δ̂
x,δx

ε y
ε v

)
=

1
ε2
d
(
δx
ε δ

δx
ε y

ε v , δx
ε δ̂

x,δx
ε y

ε v
)

=

=
1
ε2
d
(
δx
ε2Σx

ε (y, v) , δx
ε2 δx

ε−2δ
δx

ε2y

ε2 ∆x
ε (δx

ε y, v)
)

=

=
1
ε2
d (δx

ε2Σx
ε (y, v) , δx

ε2Σx
ε2 (y,∆x

ε (δxy, v))) .

This last expression converges as ν(ε) goes to 0 to

dx (Σx(y, v),Σx(y,∆x(x, v))) = dx (v,∆x(x, v)) = 0

�
The result from this proposition indicates that strong dilation structures are infinitesi-

mally linear. In order to make a precise statement we need a measure for nonlinearity of a
dilation structure, given in the next definition. Then we have to repeat the computations
from the proof of proposition 15.8 in a slightly different setting, related to this measure of
nonlinearity.
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Definition 15.9 The following expression:

Lin(x, y, z; ε, µ) = d
(
δx
ε δ

y
µz , δ

δx
ε y

µ δx
ε z
)

(15.2.2)

is a measure of lack of linearity, for a general dilation structure.

The next theorem shows that indeed, infinitesimally any strong dilation structure is
linear.

Theorem 15.10 Let (X, d, δ) be a strong dilation structure. Then for any x, y, z ∈ X
sufficiently close we have

lim
ε→0

1
ε2
Lin(x, δx

ε y, z; ε, ε) = 0 . (15.2.3)

Proof. From the hypothesis of the theorem we have:

1
ε2
Lin(x, δx

ε y, δ
x
ε z; ε, ε) =

1
ε2
d
(
δx
ε δ

δx
ε y

ε z , δ
δx

ε2y
ε δx

ε z
)

=

=
1
ε2
d
(
δx
ε2 Σx

ε (y, z) , δx
ε2 δx

ε−2 δ
δx

ε2y
ε δx

ε z
)

=

=
1
ε2
d (δx

ε2 Σx
ε (y, z) , δx

ε2 Σx
ε2(y , ∆x

ε (δx
ε y, z))) =

= O(ε2) + dx (Σx
ε (y, z) , Σx

ε2(y , ∆x
ε (δx

ε y, z))) .

The dilation structure satisfies A4, therefore as ε goes to 0 we obtain:

lim
ε→0

1
ε2
Lin(x, δx

ε y, δ
x
ε z; ε, ε) = dx (Σx(y, z) , Σx(y , ∆x(x, z))) =

= dx (Σx(y, z) , Σx(y, z)) = 0 . �

15.3 Linear strong dilation structures

Remark that for general dilation structures the ”translations” ∆x
ε (u, ·) are not affine. Nev-

ertheless, they commute with dilation in a known way: for any u, v sufficiently close to x
and µ ∈ Γ, ν(µ) < 1, we have:

∆x
ε

(
δx
µu, δ

x
µv
)

= δ
δx

εµu
µ ∆x

εµ(u, v) .

This is important, because the transformations Σx
ε (u, ·) really behave as translations.

The reason for which such transformations are not affine is that dilations are generally not
affine.

Linear dilation structures are very particular dilation structures. The next proposition
gives a family of examples of linear dilation structures.

Proposition 15.11 The dilation structure associated to a normed conical group is linear.
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Proof. Indeed, for the dilation structure associated to a normed conical group we have,
with the notations from definition 15.5:

δ
δx

ε y
µ δx

ε z =
(
xδε(x−1y)

)
δµ
(
δε(y−1x)x−1 x δε(x−1z)

)
=

=
(
xδε(x−1y)

)
δµ
(
δε(y−1x) δε(x−1z)

)
=
(
xδε(x−1y)

)
δµ
(
δε(y−1z)

)
=

= x
(
δε(x−1y) δε δµ(y−1z)

)
= x δε

(
x−1y δµ(y−1z)

)
= δx

ε δ
y
µz .

Therefore the dilation structure is linear. �
The affinity of translations Σx

ε is related to the linearity of the dilation structure, as
described in the theorem below, point (a). As a consequence, we prove at point (b) that a
linear and strong dilation structure comes from a conical group.

Theorem 15.12 Let (X, d, δ) be a dilation structure.

(a) If the dilation structure is linear then all transformations ∆x
ε (u, ·) are affine for any

u ∈ X.

(b) If the dilation structure is strong (satisfies A4) then it is linear if and only if the
dilations come from the dilation structure of a conical group, precisely for any x ∈ X
there is an open neighbourhood D ⊂ X of x such that (D, dx, δ) is the same dilation
structure as the dilation structure of the tangent space of (X, d, δ) at x.

Proof. (a) If dilations are affine, then let ε, µ ∈ Γ, ν(ε), ν(µ) ≤ 1, and x, y, u, v ∈ X such
that the following computations make sense. We have:

∆x
ε (u, δy

µv) = δ
δx

ε u

ε−1 δ
x
ε δ

y
µv .

Let Aε = δ
δx

ε u

ε−1 . We compute:

δ
∆x

ε (u,y)
µ ∆x

ε (u, v) = δ
Aεδx

ε y
µ Aεδ

x
ε v .

We use twice the affinity of dilations:

δ
∆x

ε (u,y)
µ ∆x

ε (u, v) = Aεδ
δx

ε y
µ δx

ε v = δ
δx

ε u

ε−1 δ
x
ε δ

y
µv .

We proved that:
∆x

ε (u, δy
µv) = δ

∆x
ε (u,y)

µ ∆x
ε (u, v) ,

which is the conclusion of the part (a).
(b) Suppose that the dilation structure is strong. If dilations are affine, then by point (a)

the transformations ∆x
ε (u, ·) are affine as well for any u ∈ X. Then, with notations made

before, for y = u we get
∆x

ε (u, δu
µv) = δ

δx
ε u

µ ∆x
ε (u, v) ,

which implies
δu
µv = Σx

ε (u, δx
µ∆x

ε (u, v)) .

We pass to the limit with ε→ 0 and we obtain:

δu
µv = Σx(u, δx

µ∆x(u, v)) .

We recognize at the right hand side the dilations associated to the conical group TxX.
By proposition 15.11 the opposite implication is straightforward, because the dilation

structure of any conical group is linear. �
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16 Noncommutative affine geometry

We propose here to call ”noncommutative affine geometry“ the generalization of affine ge-
ometry described in theorem 5.5, but without the restriction Γ = (0,+∞). For short,
noncommutative affine geometry in the sense explained further is the study of the proper-
ties of linear strong dilation structures. Equally, by theorem 15.12, it is the study of normed
conical groups.

As a motivation for this name, in the proposition below we give a relation, true for
linear dilation structures, with an interesting interpretation. We shall explain what this
relation means in the most trivial case: the dilation structure associated to a real normed
affine space. In this case, for any points x, u, v, let us denote w = Σx

ε (u, v). Then w equals
(approximatively, due to the parameter ε) the sum u+x v. Denote also w′ = ∆u

ε (x, v); then
w′ is (approximatively) equal to the difference between v and x based at u. In our space (a
classical affine space over a vector space) we have w = w′. The next proposition shows that
the same is true for any linear dilation structure.

Proposition 16.1 For a linear dilation structure (X, δ, d), for any x, u, v ∈ X sufficiently
closed and for any ε ∈ Γ, ν(ε) ≤ 1, we have:

Σx
ε (u, v) = ∆u

ε (x, v) .

Proof. We have the following string of equalities, by using twice the linearity of the dilation
structure:

Σx
ε (u, v) = δx

ε−1δ
δx

ε u
ε v = δu

ε δ
x
ε−1v =

= δ
δu

ε x

ε−1 δ
u
ε v = ∆u

ε (x, v) .

The proof is done. �

16.1 Inverse semigroups and Menelaos theorem

Here we prove that for strong dilation structures linearity is equivalent to a generalization of
the statement from corollary 5.8. The result is new for Carnot groups and the proof seems
to be new even for vector spaces.

Definition 16.2 A semigroup S is an inverse semigroup if for any x ∈ S there is an unique
element x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1.

An important example of an inverse semigroup is I(X), the class of all bijective maps
φ : domφ → imφ, with domφ, imφ ⊂ X. The semigroup operation is the composition of
functions in the largest domain where this makes sense.

By the Vagner-Preston representation theorem [43] every inverse semigroup is isomorphic
to a subsemigroup of I(X), for some set X.

Definition 16.3 A dilation structure (X, d, δ) has the Menelaos property if for any two
sufficiently closed x, y ∈ X and for any ε, µ ∈ Γ with ν(ε), ν(µ) ∈ (0, 1) we have

δx
ε δ

y
µ = δw

εµ ,

where w ∈ X is the fixed point of the contraction δx
ε δ

y
µ (thus depending on x, y and ε, µ).

Theorem 16.4 A linear dilation structure has the Menelaos property.
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Proof. Let x, y ∈ X be sufficiently closed and ε, µ ∈ Γ with ν(ε), ν(µ) ∈ (0, 1). We shall
define two sequences xn, yn ∈ X, n ∈ N.

We begin with x0 = x, y0 = y. Suppose further that xn, yn were defined and that they
are sufficiently closed. Then we use twice the linearity of the dilation structure:

δxn
ε δyn

µ = δ
δxn

ε yn
µ δxn

ε = δ
δδ

xn
ε yn

µ xn

ε δ
δxn

ε yn
µ .

We shall define then by induction

xn+1 = δ
δxn

ε yn
µ xn , yn+1 = δxn

ε yn . (16.1.1)

Provided that we prove by induction that xn, yn are sufficiently closed, we arrive at the
conclusion that for any n ∈ N

δxn
ε δyn

µ = δx
ε δ

y
µ . (16.1.2)

The points x0, y0 are sufficiently closed by hypothesis. Suppose now that xn, yn are suffi-
ciently closed. Due to the linearity of the dilation structure, we can write the first part of
(16.1.1) as:

xn+1 = δxn
ε δyn

µ xn .

Then we can estimate the distance between xn+1, yn+1 like this:

d(xn+1, yn+1) = d(δxn
ε δyn

µ xn, δ
xn
ε yn) = ν(ε) d(δyn

µ xn, yn) = ν(εµ)d(xn, yn) .

From ν(εµ) < 1 it follows that xn+1, yn+1 are sufficiently closed. By induction we deduce
that for all n ∈ N the points xn+1, yn+1 are sufficiently closed. We also find out that

lim
n→∞

d(xn, yn) = 0 . (16.1.3)

From relation (16.1.2) we deduce that the first part of (16.1.1) can be written as:

xn+1 = δxn
ε δyn

µ xn = δx
ε δ

y
µxn .

The transformation δx
ε δ

y
µ is a contraction of coefficient ν(εµ) < 1, therefore we easily get:

lim
n→∞

xn = w , (16.1.4)

where w is the unique fixed point of the contraction δx
ε δ

y
µ.

We put together (16.1.3) and (16.1.4) and we get the limit:

lim
n→∞

yn = w , (16.1.5)

Using relations (16.1.4), (16.1.5), we may pass to the limit with n→∞ in relation (16.1.2):

δx
ε δ

y
µ = lim

n→∞
δxn
ε δyn

µ = δw
ε δ

w
µ = δw

εµ .

The proof is done. �

Corollary 16.5 Let (X, d, δ) be a strong linear dilation structure, with group Γ and the
morphism ν injective. Then any element of the inverse subsemigroup of I(X) generated by
dilations is locally a dilation δx

ε or a left translation Σx(y, ·).
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Proof. Let (X, d, δ) be a strong linear dilation structure. From the linearity and theorem
16.4 we deduce that we have to care only about the results of compositions of two dilations
which are isometries.

The dilation structure is strong, therefore by theorem 15.12 the dilation structure is
locally coming from a conical group.

Let us compute a composition of dilations δx
ε δ

y
µ, with ν(εµ) = 1. Because the morphism

ν is injective, it follows that µ = ε−1. In a conical group we can make the following
computation (here δε = δe

ε with e the neutral element of the conical group):

δx
ε δ

y
ε−1z = xδε

(
x−1yδε−1

(
y−1z

))
= xδε

(
x−1y

)
y−1z .

Therefore the composition of dilations δx
ε δ

y
µ, with εµ = 1, is a left translation.

Another easy computation shows that composition of left translations with dilations are
dilations. The proof end by remarking that all the statements are local. �

A counterexample. The Corollary 16.5 is not true without the injectivity assumption
on ν. Indeed, consider the Carnot group N = C× R with the elements denoted by X ∈ N ,
X = (x, x′), with x ∈ C, x′ ∈ R, and operation

X Y = (x, x′)(y, y′) = (x+ y, x′ + y′ +
1
2
Imxȳ)

We take Γ = C∗ and morphism ν : Γ → (0,+∞), ν(ε) =| ε |. Dilations are defined as: for
any ε ∈ C∗ and X = (x, x′) ∈ N :

δεX = (εx, | ε |2 x′)

These dilations induce the field of dilations δX
ε Y = Xδε(X−1Y ).

The morphism ν is not injective. Let now ε, µ ∈ C∗ with εµ = −1 and ε ∈ (0, 1). An
elementary (but a bit long) computation shows that for X = (0, 0) and Y = (y, y′) with
y 6= 0, y′ 6= 0, the composition of dilations δX

ε δ
Y
µ is not a left translation in the group N ,

nor a dilation. �
Further we shall suppose that the morphism ν is always injective, if not explicitly stated

otherwise. Therefore we shall consider Γ ⊂ (0,+∞) as a subgroup.

16.2 On the barycentric condition

The barycentric condition is (Af3): for any ε ∈ (0, 1) δx
ε y = δy

1−ε x. In particular, the
condition (Af3) tells that the transformation y 7→ δy

εx is also a dilation. Is this true for
linear dilation structures? Theorem 5.5 indicates that (Af3) is true if and only if this is a
dilation structure of a normed real affine space.

Proposition 16.6 Let X be a normed conical group with neutral element e, dilations δ and
distance d induced by the homogeneous norm ‖ · ‖, and ε ∈ (0, 1) ∩ Γ. Then the function

hε : X → X , hε(x) = xδε(x−1) = δx
ε e

is invertible and the inverse gε has the expression

gε(y) =
∞∏

k=0

δεk(y) = lim
N→∞

N∏
k=0

δεk(y)

Remark 16.7 As the choice of the neutral element is not important, the previous proposi-
tion says that for any ε ∈ (0, 1) and any fixed y ∈ X the function x 7→ δx

ε y is invertible.
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Proof. Let ε ∈ (0, 1) be fixed. For any natural number N we define gN : X → X by

gN (y) =
N∏

k=0

δεk(y)

For fixed y ∈ X (gN (y))N is a Cauchy sequence. Indeed, for any N ∈ N we have:

d(gN (y), gN+1(y)) = ‖δεN+1(y)‖

thus for any N,M ∈ N, M ≥ 1 we have

d(gN (y), gN+M (y)) ≤

(
M∑

k=N+1

εk

)
‖y‖ ≤ εN+1

1− ε
‖y‖

Let then gε(y) = lim
N→∞

gN (y). We prove that gε is the inverse of hε. We have, for any

natural number N and y ∈ X
y δεgN (y) = gN+1(y)

By passing to the limit with N we get that hε ◦ gε(y) = y for any y ∈ X.
Let us now compute

gN ◦ hε(x) =
N∏

k=0

δεk(xδε(x−1)) =
N∏

k=0

δεk(x) δεk+1(x−1) =

= x δεN+1(x−1)

therefore as N goes to infinity we get gε ◦ hε(x) = x. �
For any ε ∈ (0, 1) the functions hε, gε are homogeneous, that is

hε(δµx) = δµ hε(x) , gε(δµy) = δµ gε(y)

for any µ > 0 and x, y ∈ X.
In the presence of the barycentric condition we get the following:

Corollary 16.8 Let (X, d, δ) be a strong dilation structure with group Γ ⊂ (0,+∞), which
satisfies the barycentric condition (Af3). Then for any u, v ∈ X and ε ∈ (0, 1)∩Γ the points
invu(v), u and δu

ε v are collinear in the sense:

d(invu(v), u) + d(u, δu
ε v) = d(invu(v), δu

ε v)

Proof. There is no restriction to work with the group operation with neutral element e
and denote δε := δe

ε . With the notation from the proof of the proposition 16.6, we use the
expression of the function gε, we apply the homogeneous norm ‖ · ‖ and we obtain:

‖gε(y)‖ ≤

( ∞∑
k=0

εk

)
‖x‖ =

1
1− ε

‖y‖

with equality if and only if e, y and yδεy are collinear in the sense d(e, y) + d(y, yδεy) =
d(e, yδεy). The barycentric condition can be written as: hε(x) = δ1−ε(x). We have therefore:

‖x‖ = ‖gε ◦ hε(x)‖ ≤ 1
1− ε

‖hε(x)‖ =
1− ε

1− ε
‖x‖ = ‖x‖
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therefore e, x and xδεx are on a geodesic. This is true also for the choice: e = invu(v),
x = u, which gives the conclusion. �

We can actually say more in the case Γ = (0,+∞).

Proposition 16.9 Let (X, d, δ) be a strong dilation structure with group Γ = (0,+∞),
which satisfies the barycentric condition (Af3). Then for any x ∈ X the group operation Σx

is abelian and moreover the graduation of X, as a homogeneous group with respect to the
operation Σx has only one level.

Proof. Let us denote the neutral element by e instead of x and denote δε := δe
ε . According

to corollary 13.8 X is a Lie homogeneous group. The barycentric condition implies: for any
x ∈ X and ε ∈ (0, 1) we have δ1−εy = yδεy

−1, which implies:

δ1−ε(y) δε(y) = y

for any y and for any ε ∈ (0, 1). This fact implies that {δµy : µ ∈ (0,+∞)} is a one
parameter semigroup. Moreover, let fy : R → X, defined by: if ε > 0 then fy(ε) = δεy,
else fy(ε) = δεy

−1. Then fy is a group morphism from R to X, with fy(1) = y. Therefore
fy(ε) = exp(εy) = εy. According to definition 5.3 the group X is identified with its Lie

algebra and any element y has a decomposition y = y1 + y2 + ...+ ym and δεy =
m∑

j=1

εjyj .

We proved that m = 1, otherwise said that the graduation of the group has only one level,
that is the group is abelian. �

16.3 The ratio of three collinear points

In this section we prove that the noncommutative affine geometry is a geometry in the sense
of the Erlangen program, because it can be described as the geometry of collinear triples
(see definition 16.10). Collinear triples generalize the basic ratio invariant of classical affine
geometry.

Indeed, theorem 16.4 provides us with a mean to introduce a version of the ratio of three
collinear points in a strong linear dilation structure. We define here collinear triples, the
ratio function and the ratio norm.

Definition 16.10 Let (X, d, δ) be a strong linear dilation structure. Denote by xα = (x, α),
for any x ∈ X and α ∈ (0,+∞). An ordered set (xα, yβ , zγ) ∈ (X × (0,+∞))3 is a collinear
triple if:

(a) αβγ = 1 and all three numbers are different from 1,

(b) we have δx
α δ

y
β δ

z
γ = id.

The ratio norm r(xα, yβ , zγ) of the collinear triple (xα, yβ , zγ) is given by the expression:

r(xα, yβ , zγ) =
α

1− αβ

Let (xα, yβ , zγ) be a collinear triple. Then we have: δx
α δ

y
β = δz

αβ with α, β, αβ not equal to
1. By theorem 16.4 the point z is uniquely determined by (xα, yβ), therefore we can express
it as a function z = w(x, y, α, β). The function w is called the ratio function.
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In the next proposition we obtain a formula for w(x, y, α, β). Alternatively this can be
seen as another proof of theorem 16.4.

Proposition 16.11 In the hypothesis of proposition 16.6, for any ε, µ ∈ (0, 1) and x, y ∈ X
we have:

w(x, y, ε, µ) = gεµ (hε(x)hµ(δεy))

Proof. Any z ∈ X with the property that for any u ∈ X we have δx
ε δ

y
µ(u) = δz

εµ(u)
satisfies the equation:

x δε
(
x−1yδµ(y−1)

)
= zδεµ(z−1) (16.3.6)

This equation can be put as:

hε(x) δε (hµ(y)) = hεµ(z)

From proposition 16.6 we obtain that indeed exists and it is unique z ∈ X solution of this
equation. We use further homogeneity of hµ and we get:

z = w(x, y, ε, µ) = gεµ (hε(x)hµ(δεy)) �

Remark that if (xα, yβ , zγ) is a collinear triple then any circular permutation of the triple
is also a collinear triple. We can not deduce from here a collinearity notion for the triple
of points {x, y, z}. Indeed, as the following example shows, even if (xα, yβ , zγ) is a collinear
triple, it may happen that here are no numbers α′, β′, γ′ such that (yβ′ , xα′

, zγ′) is a collinear
triple.

Collinear triples in the Heisenberg group. The Heisenberg group H(n) = R2n+1 is
a 2-step Carnot group. For the points of X ∈ H(n) we use the notation X = (x, x̄), with
x ∈ R2n and x̄ ∈ R. The group operation is :

X Y = (x, x̄)(y, ȳ) = (x+ y, x̄+ ȳ +
1
2
ω(x, y))

where ω is the standard symplectic form on R2n. We shall identify the Lie algebra with the
Lie group. The bracket is

[(x, x̄), (y, ȳ)] = (0, ω(x, y))

The Heisenberg algebra is generated by

V = R2n × {0}

and we have the relations V + [V, V ] = H(n), {0} × R = [V, V ] = Z(H(n)).
The dilations on H(n) are

δε(x, x̄) = (εx, ε2x̄)

For X = (x, x̄), Y = (y, ȳ) ∈ H(n) and ε, µ ∈ (0,+∞), εµ 6= 1, we compute Z = (z, z̄) =
w(x̃, ỹ, ε, µ) with the help of equation (16.3.6). This equation writes:

((1− ε)x, (1− ε2)x̄) (ε(1− µ)y, ε2(1− µ2)ȳ) = ((1− εµ)z, (1− ε2µ2)z̄)

After using the expression of the group operation we obtain:

Z =
(

1− ε

1− εµ
x+

ε(1− µ)
1− εµ

y,
1− ε2

1− ε2µ2
x̄+

ε2(1− µ2)
1− ε2µ2

ȳ +
ε(1− ε)(1− µ)

2(1− ε2µ2)
ω(x, y)

)
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Suppose now that (Xα, Y β , Zγ) and (Y β′ , Xα′
, Zγ′) are collinear triples such that X =

(x, 0), Y = (y, 0) and ω(x, y) 6= 0. From the computation of the ratio function, we get that
there exist numbers k, k′ 6= 0 such that:

z = kx + (1− k)y = (1− k′)x + k′y ,

z̄ =
k(1− k)

2
ω(x, y) =

k′(1− k′)
2

ω(y, x)

From the equalities concerning z we get that k′ = 1 − k. This lead us to contradiction in
the equalities concerning z̄. Therefore, in this case, if (Xα, Y β , Zγ) is a collinear triple then
there are no α′, β′, γ′ such that (Y β′ , Xα′

, Zγ′) is a collinear triple. �
In a general linear dilation structure the relation (5.2.5) does not hold. Nevertheless,

there is some content of this relation which survives in the general context.

Proposition 16.12 For x, y sufficiently closed and for ε, µ ∈ Γ with ν(ε), ν(µ) ∈ (0, 1), we
have the distance estimates:

d(x,w(x, y, ε, µ)) ≤ ν(ε)
1− ν(εµ)

d(x, δy
µx) (16.3.7)

d(y, w(x, y, ε, µ)) ≤ 1
1− ν(εµ)

d(y, δx
ε y) (16.3.8)

Proof. Further we shall use the notations from the proof of theorem 16.4, in particular
w = w(x, y, ε, µ). We define by induction four sequences of points (the first two sequences
are defined as in relation (16.1.1)):

xn+1 = δ
δxn

ε yn
µ xn , yn+1 = δxn

ε yn

x′n+1 = δ
δ

y′n
ε x′n

µ xn , y′n+1 = δ
x′n+1
ε y′n

with initial conditions x0 = x, y0 = y, x′0 = x, y′0 = δx
ε y. The first two sequences are like in

the proof of theorem 16.4, while for the third and fourth sequences we have the relations
x′n = xn, y′n = yn+1. These last sequences come from the fact that they appear if we repeat
the proof of theorem 16.4 starting from the relation:

δ
δx

ε y
µ δx

ε = δw
εµ

We know that all these four sequences converge to w as n goes to ∞. Moreover, we know
from the proof of theorem 16.4 that for all n ∈ N we have

d(xn, xn+1) = d(x, δx
ε δ

y
µx)ν(εµ)n

There is an equivalent relation in terms of the sequence y′n, which is the following:

d(y′n, y
′
n+1) = d(δx

ε y, δ
δx

ε y
µ δx

ε δ
x
ε y)ν(εµ)n

This relation becomes: for any n ∈ N, n ≥ 1

d(yn, yn+1) = d(y, δx
ε y)ν(εµ)n+1
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For the first distance estimate we write:

d(x,w) ≤
∞∑

n=0

d(xn, xn+1) = d(x, δx
ε δ

y
µx)

( ∞∑
n=0

ν(εµ)n

)
=

ν(ε)
1− ν(εµ)

d(x, δy
µx)

For the second distance estimate we write:

d(y, w) ≤ d(y, y1) +
∞∑

n=1

d(yn, yn+1) = d(y, y1) +
ν(εµ)

1− ν(εµ)
d(y, δx

ε y) =

= d(y, δx
ε y)

(
1 +

ν(εµ)
1− ν(εµ)

)
=

1
1− ν(εµ)

d(y, δx
ε y)

and the proof is done. �
For a collinear triple (xα, yβ , zγ) in a general linear dilation structure we cannot say that

x, y, z lie on the same geodesic. This is false, as shown by easy examples in the Heisenberg
group, the simplest noncommutative Carnot group.

Nevertheless, theorem 16.4 allows to speak about collinearity in the sense of definition
16.10.

Affine geometry is the study of relations which are invariant with respect to the group
of affine transformations. An invertible transformation is affine if and only if it preserves
the ratio of any three collinear points. We are thus arriving to the following definition.

Definition 16.13 Let (X, d, δ) be a linear dilation structure. A geometrically affine trans-
formation T : X → X is a Lipschitz invertible transformation such that for any collinear
triple (xα, yβ , zγ) the triple ((Tx)α, (Ty)β , (Tz)γ) is collinear.

The group of geometric affine transformations defines a geometry in the sense of Erlangen
program. The main invariants of such a geometry are collinear triples. There is no obvious
connection between collinearity and geodesics of the space, as in classical affine geometry.
(It is worthy to notice that in fact, there might be no geodesics in the metric space (X, d)
of the linear dilation structure (X, d, δ). For example, there are linear dilation structures
defined over the boundary of the dyadic tree [13], which is homeomorphic with the middle
thirds Cantor set.)

The first result for such a geometry is the following.

Theorem 16.14 Let (X, d, δ) be a strong linear dilation structure. Any Lipschitz, invert-
ible, transformation T : (X, d) → (X, d) is affine in the sense of definition 15.1 if and only
if it is geometrically affine in the sense of definition 16.13.

Proof. The first implication, namely T affine in the sense of definition 15.1 implies T affine
in the sense of definition 16.13, is straightforward: by hypothesis on T , for any collinear triple
(xα, yβ , zγ) we have the relation

T δx
α δ

y
β δ

z
γ T

−1 = δTx
α δTy

β δTz
γ

Therefore, if (xα, yβ , zγ) is a collinear triple then the triple ((Tx)α, (Ty)β , (Tz)γ) is collinear.
In order to show the inverse implication we use the linearity of the dilation structure.

Let x, y ∈ X and ε, η ∈ Γ. Then
δx
ε δ

y
ηδ

x
ε−1 = δ

δx
ε y

η
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This identity leads us to the description of δx
ε y in terms of the ratio function. Indeed, we

have:
δx
ε y = w(w(x, y, ε, η), εη, ε−1)

If the transformation T is geometrically affine then we easily find that it is affine in the sense
of definition 15.1:

T (δx
ε y) = w(w(Tx, Ty, ε, η), εη, ε−1) = δTx

ε Ty

�
As a conclusion for this section, theorem 16.14 shows that in a linear dilation structure

we may take dilations as the basic affine invariants. It is surprising that in such a geometry
there is no obvious notion of a line, due to the fact that not any permutation of a collinear
triple is again a collinear triple.
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17 The Radon-Nikodym property

Definition 17.1 A dilation structure (X, d, δ) has the Radon-Nikodym property if any Lip-
schitz curve c : [a, b] → (X, d) is derivable almost everywhere.

Example 17.1 For (X, d) = (V, d), a real, finite dimensional, normed vector space, with
distance d induced by the norm, the (usual) dilations δx

ε are given by:

δx
ε y = x+ ε(y − x)

Dilations are defined everywhere. The group Γ is (0,+∞) and the function ν is the identity.
There are few things to check (see the appendix): axioms 0,1,2 are obviously true. For

axiom A3, remark that for any ε > 0, x, u, v ∈ X we have:

1
ε
d(δx

εu, δ
x
ε v) = d(u, v) ,

therefore for any x ∈ X we have dx = d.
Finally, let us check the axiom A4. For any ε > 0 and x, u, v ∈ X we have

δ
δx

ε u

ε−1 δ
x
ε v = x+ ε(u− x) +

1
ε

(x+ ε(v − x)− x− ε(u− x)) =

= x+ ε(u− x) + v − u

therefore this quantity converges to

x+ v − u = x+ (v − x)− (u− x)

as ε→ 0. The axiom A4 is verified.
This dilation structure has the Radon-Nikodym property. �

Example 17.2 Because dilation structures are defined by local requirements, we can easily
define dilation structures on riemannian manifolds, using particular atlases of the manifold
and the riemannian distance (infimum of length of curves joining two points). Note that
any finite dimensional manifold can be endowed with a riemannian metric. This class of
examples covers all dilation structures used in differential geometry. The axiom A4 gives
an operation of addition of vectors in the tangent space (compare with Belläıche [5] last
section). �

Example 17.3 Take X = R2 with the euclidean distance d. For any z ∈ C of the form
z = 1 + iθ we define dilations

δεx = εzx .

It is easy to check that (R2, d, δ) is a dilation structure, with dilations

δx
ε y = x+ δε(y − x) .

Two such dilation structures (constructed with the help of complex numbers 1 + iθ and
1 + iθ′) are equivalent if and only if θ = θ′.

There are two other interesting properties of these dilation structures. The first is that
if θ 6= 0 then there are no non trivial Lipschitz curves in X which are differentiable al-
most everywhere. It means that such dilation structure does not have the Radon-Nikodym
property.

The second property is that any holomorphic and Lipschitz function from X to X (holo-
morphic in the usual sense on X = R2 = C) is differentiable almost everywhere, but there
are Lipschitz functions from X to X which are not differentiable almost everywhere (suffices
to take a C∞ function from R2 to R2 which is not holomorphic). �
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The Radon-Nikodym property can be stated in two equivalent ways.

Proposition 17.2 Let (X, d, δ) be a dilation structure. Then the following are equivalent:

(a) (X, d, δ) has the Radon-Nikodym property;

(b) any Lipschitz curve c′ : [a′, b′] → (X, d) admits a reparametrization c : [a, b] → (X, d)
such that for almost every t ∈ [a, b] there is ċ(t) ∈ U(c(t)) such that

1
ε
d(c(t+ ε), δc(t)

ε ċ(t)) → 0

1
ε
d(c(t− ε), δc(t)

ε invc(t)(ċ(t))) → 0 ;

(c) any Lipschitz curve c′ : [a′, b′] → (X, d) admits a reparametrization c : [a, b] → (X, d)
such that for almost every t ∈ [a, b] there is a conical group morphism

ċ(t) : R → Tc(t)X

such that for any a ∈ R we have

1
ε
d(c(t+ εa), δc(t)

ε ċ(t)(a)) → 0.

Proof. It is straightforward that a conical group morphism f : R → (N, δ) is defined by
its value f(1) ∈ N . Indeed, for any a > 0 we have f(a) = δaf(1) and for any a < 0 we have
f(a) = δaf(1)−1. From the morphism property we also deduce that

δv =
{
δav : a > 0, v = f(1) or v = f(1)−1

}
is a one parameter group and that for all α, β > 0 we have

δα+βu = δαuδβu �

Definition 17.3 In a conical group N we shall denote by D(N) the set of all u ∈ N with
the property that ε ∈ ((0,∞),+) 7→ δεu ∈ N is a morphism of semigroups .

D(N) is always non empty, because it contains the neutral element of N . D(N) is also
a cone, with dilations δε, and a closed set.

We shall always identify a conical group morphism f : R → N with its value f(1) ∈
D(N).

17.1 Length formula from Radon-Nikodym property

Theorem 17.4 Let (X, d, δ) be a dilation structure with the Radon-Nikodym property, over
a complete length metric space (X, d). Then for any Lipschitz curve c : [a, b] → X the length
of γ = c([a, b]) is

L(γ) =
∫ b

a

dc(t)(c(t), ċ(t)) dt.
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Proof. The upper dilation of c in t is

Lip(c)(t) = lim sup
ε→0

sup
{
d(c(v), c(w))
| v − w |

: v 6= w , | v − t |, | w − t |< ε

}
.

From theorem 4.11 we deduce that for almost every t ∈ (a, b) we have

Lip(c)(t) = lim
s→t

d(c(s), c(t))
| s− t |

.

If the dilation structure has the Radon-Nikodym property then for almost every t ∈ [a, b]
there is ċ(t) ∈ D(Tc(t)X) such that

1
ε
d(c(t+ ε), δc(t)

ε ċ(t)) → 0.

Therefore for almost every t ∈ [a, b] we have

Lip(c)(t) = lim
ε→0

1
ε
d(c(t+ ε), c(t)) = dc(t)(c(t), ċ(t)).

The formula for length follows from here. �

17.2 Equivalent dilation structures and their distributions

Definition 17.5 Two strong dilation structures (X, δ, d) and (X, δ, d) are equivalent
if

(a) the identity map id : (X, d) → (X, d) is bilipschitz and

(b) for any x ∈ X there are functions P x, Qx (defined for u ∈ X sufficiently close to x)
such that

lim
ε→0

1
ε
d
(
δx
εu, δ

x

εQ
x(u)

)
= 0, (17.2.1)

lim
ε→0

1
ε
d
(
δ

x

εu, δ
x
εP

x(u)
)

= 0, (17.2.2)

uniformly with respect to x, u in compact sets.

Proposition 17.6 (X, δ, d) and (X, δ, d) are equivalent if and only if

(a) the identity map id : (X, d) → (X, d) is bilipschitz,

(b) for any x ∈ X there are conical group morphisms:

P x : Tx(X, δ, d) → Tx(X, δ, d) and Qx : Tx(X, δ, d) → Tx(X, δ, d)

such that the following limits exist

lim
ε→0

(
δ

x

ε

)−1

δx
ε (u) = Qx(u), (17.2.3)

lim
ε→0

(δx
ε )−1

δ
x

ε (u) = P x(u), (17.2.4)

and are uniform with respect to x, u in compact sets.
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The next theorem shows a link between the tangent bundles of equivalent dilation struc-
tures.

Theorem 17.7 Let (X, d, δ) and (X, d, δ) be equivalent strong dilation structures. Then for
any x ∈ X and any u, v ∈ X sufficiently close to x we have:

Σ
x
(u, v) = Qx (Σx (P x(u), P x(v))) . (17.2.5)

The two tangent bundles are therefore isomorphic in a natural sense.

As a consequence, the following corollary is straightforward.

Corollary 17.8 Let (X, d, δ) and (X, d, δ) be equivalent strong dilation structures. Then
for any x ∈ X we have

Qx(D(Tx(X, δ, d))) = D(Tx(X, δ, d))

If (X, d, δ) has the Radon-Nikodym property , then (X, d, δ) has the same property.
Suppose that (X, d, δ) and (X, d, δ) are complete length spaces with the Radon-Nikodym

property . If the functions P x, Qx from definition 17.5 (b) are isometries, then d = d.

18 Tempered dilation structures

The notion of a tempered dilation structure is inspired by the results from Venturini [62]
and Buttazzo, De Pascale and Fragala [34].

The examples of length dilation structures from this section are provided by the exten-
sion of some results from [34] (propositions 2.3, 2.6 and a part of theorem 3.1) to dilation
structures.

The following definition gives a class of distances D(Ω, d̄, δ̄), associated to a strong di-
lation structure (Ω, d̄, δ̄), which generalizes the class of distances D(Ω) from [34], definition
2.1.

Definition 18.1 For any strong dilation structure (Ω, d̄, δ̄) we define the class D(Ω, d̄, δ̄) of
all distance functions d on Ω such that

(a) d is a length distance,

(b) for any ε > 0 and any x, u, v sufficiently close the are constants 0 < c < C such that:

c d̄x(u, v) ≤ 1
ε
d(δ̄x

εu, δ̄
x
ε v) ≤ C d̄x(u, v) (18.0.1)

The dilation structure (Ω, d̄, δ̄) is tempered if d̄ ∈ D(Ω, d̄, δ̄).
On D(Ω, d̄, δ̄) we put the topology of uniform convergence (induced by distance d̄) on

compact subsets of Ω× Ω.

To any distance d ∈ D(Ω, d̄, δ̄) we associate the function:

φd(x, u) = lim sup
ε→0

1
ε
d(x, δx

εu)

defined for any x, u ∈ Ω sufficiently close. We have therefore

c d̄x(x, u) ≤ φd(x, u) ≤ C d̄x(x, u) (18.0.2)
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Notice that if d ∈ D(Ω, d̄, δ̄) then for any x, u, v sufficiently close we have

−d̄(x, u)O(d̄(x, u)) + c d̄x(u, v) ≤

≤ d(u, v) ≤ C d̄x(u, v) + d̄(x, u)O(d̄(x, u))

If c : [0, 1] → Ω is a d-Lipschitz curve and d ∈ D(Ω, d̄, δ̄) then we may decompose it in a
finite family of curves c1, ..., cn (with n depending on c) such that there are x1, ..., xn ∈ Ω
with ck is d̄xk -Lipschitz. Indeed, the image of the curve c([0, 1]) is compact, therefore we
may cover it with a finite number of balls B(c(tk), ρk, d̄

c(tk)) and apply (18.0.1). If moreover
(Ω, d̄, δ̄) is tempered then it follows that c : [0, 1] → Ω d-Lipschitz curve is equivalent with c
d̄-Lipschitz curve.

By using the same arguments as in the proof of theorem 17.4, we get the following
extension of proposition 2.4 [34].

Proposition 18.2 If (Ω, d̄, δ̄) is tempered, with the Radon-Nikodym property, and d ∈
D(Ω, d̄, δ̄) then

d(x, y) = inf

{∫ b

a

φd(c(t), ċ(t)) dt : c : [a, b] → X d̄-Lipschitz ,

c(a) = x, c(b) = y}

The next theorem is a generalization of a part of theorem 3.1 [34].

Theorem 18.3 Let (Ω, d̄, δ̄) be a strong dilation structure which is tempered, with the
Radon-Nikodym property, and dn ∈ D(Ω, d̄, δ̄) a sequence of distances converging to d ∈
D(Ω, d̄, δ̄). Denote by Ln, L the length functional induced by the distance dn, respectively by
d. Then Ln Γ-converges to L.

Proof. This is the generalization of the implication (i) ⇒ (iii), theorem 3.1 [34]. The proof
(p. 252-253) is almost identical, we only need to replace everywhere expressions like | x−y |
by d̄(x, y) and use proposition 18.2, relations (18.0.2) and (18.0.1) instead of respectively
proposition 2.4 and relations (2.6) and (2.3) [34]. �

Using this result we obtain a large class of examples of length dilation structures.

Corollary 18.4 If (Ω, d̄, δ̄) is strong dilation structure which is tempered and it has the
Radon-Nikodym property then it is a length dilation structure.

Proof. Indeed, from the hypothesis we deduce that δ̄x
ε d̄ ∈ D(Ω, d̄, δ̄). For any sequence

εn → 0 we thus obtain a sequence of distances dn = δ̄x
εn
d̄ converging to d̄x. We apply now

theorem 18.3 and we get the result. �

19 Coherent projections

For a given dilation structure with the Radon-Nikodym property, we shall give a procedure
to construct another dilation structure, such that the first one looks down to the the second
one.

This will be done with the help of coherent projections.
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Definition 19.1 Let (X, d̄, δ̄) be a strong dilation structure. A coherent projection of
(X, d̄, δ̄) is a function which associates to any x ∈ X and ε ∈ (0, 1] a map Qx

ε : U(x) → X
such that:

(I) Qx
ε : U(x) → Qx

ε (U(x)) is invertible and the inverse will be denoted by Qx
ε−1 ; for any

ε, µ > 0 and any x ∈ X we have

Qx
ε δ̄

x
µ = δ̄x

µ Q
x
ε

(II) the limit lim
ε→0

Qx
εu = Qxu is uniform with respect to x, u in compact sets.

(III) for any ε, µ > 0 and any x ∈ X we have Qx
ε Q

x
µ = Qx

εµ. Also Qx
1 = id and

Qx
εx = x.

(IV) define Θx
ε (u, v) = δ̄x

ε−1 Q
δ̄x

ε Qx
ε u

ε−1 δ̄x
εQ

x
εv. Then the limit exists

lim
ε→0

Θx
ε (u, v) = Θx(u, v)

and it is uniform with respect to x, u, v in compact sets.

Remark 19.2 Property (IV) is basically a smoothness condition on the coherent projection
Q, relative to the strong dilation structure (X, d̄, δ̄).

Proposition 19.3 Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection.
We define δx

ε = δ̄x
ε Q

x
ε . Then:

(a) for any ε, µ > 0 and any x ∈ X we have δx
ε δ̄

x
µ = δ̄x

µ δ
x
ε .

(b) for any x ∈ X we have QxQx = Qx (thus Qx is a projection).

(c) δ satisfies the conditions A1, A2, A4 from definition 6.1.

Proof. (a) this is a consequence of the commutativity condition (I) (second part). Indeed,
we have δx

ε δ̄
x
µ = δ̄x

ε Q
x
ε δ̄

x
µ = δ̄x

ε δ̄
x
µ Q

x
ε = δ̄x

µ δ̄
x
ε Q

x
ε = δ̄x

µ δ
x
ε .

(b) we pass to the limit ε → 0 in the equality Qx
ε2 = Qx

ε Q
x
ε and we get, based on

condition (II), that QxQx = Qx.
(c) Axiom A1 for δ is equivalent with (III). Indeed, the equality δx

ε δ
x
µ = δx

εµ is equivalent
with: δ̄x

εµQ
x
εµ = δ̄x

εµQ
x
ε Q

x
µ. This is true because Qx

ε Q
x
µ = Qx

εµ. We also have δx
1 =

δ̄x
1Q

x
1 = Qx

1 = id. Moreover δx
εx = δ̄x

ε Q
x
εx = Qx

ε δ̄
x
εx = Qx

εx = x. Let us compute now:

∆x
ε (u, v) = δ

δx
ε u

ε−1 δ
x
ε v = δ̄

δx
ε u

ε−1 Q
δx

ε u

ε−1 δ
x
ε v =

= δ̄
δx

ε u

ε−1 δ̄
x
ε Θx

ε (u, v) = ∆̄x
ε (Qx

εu,Θ
x
ε (u, v))

We can pass to the limit in the last term of this string of equalities and we prove that the
axiom A4 is satisfied by δ: there exists the limit

∆x(u, v) = lim
ε→0

∆x
ε (u, v) (19.0.1)

which is uniform as written in A4, moreover we have the equality

Θx
ε (u, v) = Σ̄x

ε (Qx
εu,∆

x
ε (u, v)) (19.0.2)

�
We collect two useful relations in the next proposition.
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Proposition 19.4 Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection.
We denote by δ the field of dilations induced by the coherent projection, as in the previous
proposition, and by ∆x is defined by (19.0.1). Then we have:

∆x(u, v) = ∆̄x(Qxu,Θx(u, v)) (19.0.3)

Qx∆x(u, v) = ∆̄x(Qxu,Qxv) (19.0.4)

Proof. After passing to the limit with ε → 0 in the relation (19.0.2) we get the formula
(19.0.3). In order to prove (19.0.4) we notice that:

Q
δx

ε u
ε ∆x

ε (u, v) = Q
δx

ε u
ε δ

δx
ε u

ε−1 δ
x
ε v =

= δ̄
δx

ε u

ε−1 δ̄
x
εQ

x
εv = ∆̄x

ε (Qx
εu,Q

x
εv)

which gives(19.0.4) as we pass to the limit with ε→ 0 in this relation. �
Next is described the notion of Q-horizontal curve.

Definition 19.5 Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. A
curve c : [a, b] → X is Q-horizontal if for almost any t ∈ [a, b] the curve c is derivable and
the derivative of c at t, denoted by ċ(t) has the property:

Qc(t)ċ(t) = ċ(t) (19.0.5)

A curve c : [a, b] → X is Q-everywhere horizontal if for all t ∈ [a, b] the curve c is
derivable and the derivative has the horizontality property (19.0.5).

We shall look first at some induced dilation structures.
For any x ∈ X and ε ∈ (0, 1) the dilation δx

ε can be seen as an isomorphism of strong
dilation structures with coherent projections:

δx
ε : (U(x), δx

ε d̄, δ̂
x
ε , Q̂

x
ε ) → (δx

εU(x),
1
ε
d̄, δ̄, Q)

which defines the dilations δ̂x,·
ε,· and coherent projection Q̂x

ε by:

δ̂x,u
ε,µ = δx

ε−1 δ̄
δx

ε u
µ δx

ε

Q̂x,u
ε,µ = δx

ε−1 Q
δx

ε u
µ δx

ε

Also the dilation δ̄x
ε is an isomorphism of strong dilation structures with coherent projections:

δ̄x
ε : (U(x), δ̄x

ε d̄, δ̄
x
ε , Q̄

x
ε ) → (δ̄x

εU(x),
1
ε
d̄, δ̄, Q)

which defines the dilations δ̄x,·
ε,· and coherent projection Q̄x

ε by:

δ̄x,u
ε,µ = δ̄x

ε−1 δ̄
δ̄x

ε u
µ δ̄x

ε

Q̄x,u
ε,µ = δ̄x

ε−1 Q
δ̄x

ε u
µ δ̄x

ε

Because δx
ε = δ̄x

ε Q
x
ε we get that

Qx
ε : (U(x), δx

ε d̄, δ̂
x
ε , Q̂

x
ε ) → (Qx

εU(x), δ̄x
ε d, δ̄

x
ε , Q̄

x
ε )

is an isomorphism of strong dilation structures with coherent projections.
Further is a useful description of the coherent projection Q̂x

ε .
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Proposition 19.6 With the notations previously made, for any ε ∈ (0, 1], x, u, v ∈ X
sufficiently close and µ > 0 we have:

(i) Q̂x,u
ε,µv = Σx

ε (u,Qδx
ε u

µ ∆x
ε (u, v)),

(ii) Q̂x,u
ε v = Σx

ε (u,Qδx
ε u∆x

ε (u, v)).

Proof. (i) implies (ii) when µ→ 0, thus it is sufficient to prove only the first point. This
is the result of a computation:

Q̂x,u
ε,µv = δx

ε−1 Q
δx

ε u
µ δx

ε =

= δx
ε−1 δ

δx
ε u

ε Q
δx

ε u
µ δ

δx
ε u

ε−1 δ
x
ε = Σx

ε (u,Qδx
ε u

µ ∆x
ε (u, v))

�
Notation concerning derivatives. We shall denote the derivative of a curve with

respect to the dilations δ̂x
ε by

d̂x
ε

dt
. Also, the derivative of the curve c with respect to δ̄ is

denoted by
d̄

dt
, and so on.

By computation we get: the curve c is δ̂x
ε -derivable if and only if δx

ε c is δ̄-derivable and

d̂x
ε

dt
c(t) = δx

ε−1
d̄

dt
(δx

ε c) (t)

With these notations we give a proposition which explains that the operator Θx
ε , from

the definition of coherent projections, is a lifting operator.

Proposition 19.7 If the curve δx
ε c is Q-horizontal then

d̄x
ε

dt
(Qx

εc) (t) = Θx
ε (c(t),

d̂x
ε

dt
c(t))

Proof. If the curve Qx
εc is δ̄x

ε derivable and Q̄x
ε horizontal. We have therefore:

d̄x
ε

dt
(Qx

εc) (t) = δ̄x
ε−1 Qδx

ε c(t) δ̄x
ε

d̄x
ε

dt
(Qx

εc) (t)

which implies:

δ̄x
ε

d̄x
ε

dt
(Qx

εc) (t) = Q
δx

ε c(t)

ε−1 δ̄x
ε

d̄x
ε

dt
(Qx

εc) (t) = Q
δx

ε c(t)

ε−1 δx
ε

d̂x
ε

dt
c(t)

which is the formula we wanted to prove. �

19.1 Distributions in sub-riemannian spaces

The inspiration for the notion of coherent projection comes from sub-riemannian geometry.
Further we shall work locally, just as in the mentioned section. Same notations are used.

Let {Y1, ..., Yn} be a frame induced by a parameterization φ : O ⊂ Rn → U ⊂M of a small
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open, connected set U in the manifold M . This parameterization induces a affine dilation
structure on U , by

δ̃φ(a)
ε φ(b) = φ (a+ ε(−a+ b))

We take the distance d̃(φ(a), φ(b)) = ‖b− a‖.
Let {X1, ..., Xn} be a normal frame, cf. definition 11.7, d be the Carnot-Carathéodory

distance and

δx
ε

(
exp

(
n∑

i=1

aiXi

)
(x)

)
= exp

(
n∑

i=1

aiε
degXiXi

)
(x)

be the dilation structure associated.
We may take another dilation structure, constructed as follows: extend the metric g on

the distribution D to a riemannian metric on M , denoted for convenience also by g. Let d̄
be the riemannian distance induced by the riemannian metric g, and the dilations

δ̄x
ε

(
exp

(
n∑

i=1

aiXi

)
(x)

)
= exp

(
n∑

i=1

aiεXi

)
(x)

Then (U, d̄, δ̄) is a strong dilation structure which is equivalent with the dilation structure
(U, d̃, δ̃).

From now we may define coherent projections associated either to the pair (δ̃, δ) or to the
pair (δ̄, δ). Because we put everything on the manifold (by the use of the chosen frames),
we shall obtain different coherent projections, both inducing the same dilation structure
(U, d, δ).

Let us define Qx
ε by:

Qx
ε

(
exp

(
n∑

i=1

aiXi

)
(x)

)
= exp

(
n∑

i=1

aiε
degXi−1Xi

)
(x) (19.1.6)

Proposition 19.8 Q is a coherent projection associated with the dilation structure (U, d̄, δ̄)
.

Proof. (I) definition 19.1 is true, because δx
ε u = Qx

ε δ̄
x
ε and δx

ε δ̄
x
ε = δ̄x

ε δ
x
ε . (II), (III) and

(IV) are consequences of these facts, with a proof similar to the one of proposition 19.3. �
Definition (19.1.6) of the coherent projection Q implies that:

Qx

(
exp

(
n∑

i=1

aiXi

)
(x)

)
= exp

 ∑
degXi=1

aiXi

 (x) (19.1.7)

Therefore Qx can be seen as a projection onto the (classical differential) geometric distribu-
tion.

Remark 19.9 The projection Qx has one more interesting feature: for any x and

u = exp

 ∑
degXi=1

aiXi

 (x)

we have Qxu = u and the curve

s ∈ [0, 1] 7→ δx
s u = exp

s ∑
degXi=1

aiXi

 (x)
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is D-horizontal and joins x and u. This will be related to the supplementary condition (B)
further.

We may equally define a coherent projection which induces the dilations δ from δ̃. Also,
if we change the chosen normal frame with another of the same kind, we shall pass to a
dilation structure which is equivalent to (U, d, δ). In conclusion, coherent projections are
not geometrical objects per se, but in a natural way one may define a notion of equivalent
coherent projections such that the equivalence class is geometrical, i.e. independent of the
choice of a pair of particular dilation structures, each in a given equivalence class. Another
way of putting this is that a class of equivalent dilation structures may be seen as a category
and a coherent projection is a functor between such categories. We shall not pursue this
line here.

The bottom line is that (U, d̄, δ̄) is a dilation structure which belongs to an equivalence
class which is independent on the distribution D, and also independent on the choice of
parameterization φ. It is associated to the manifold M only. On the other hand (U, d̄, δ̄)
belongs to an equivalence class which is depending only on the distribution D and metric
g on D, thus intrinsic to the sub-riemannian manifold (M,D, g). The only advantage of
choosing δ̄, δ related by the normal frame {X1, ..., Xn} is that they are associated with a
coherent projection with a simple expression.

19.2 Length functionals associated to coherent projections

Definition 19.10 Let (X, d̄, δ̄) be a strong dilation structure with the Radon-Nikodym prop-
erty and Q a coherent projection. We define the associated distance d : X ×X → [0,+∞]
by:

d(x, y) = inf

{∫ b

a

d̄c(t)(c(t), ċ(t)) dt : c : [a, b] → X d̄-Lipschitz ,

c(a) = x, c(b) = y, and ∀a.e. t ∈ [a, b] Qc(t)ċ(t) = ċ(t)
}

The relation x ≡ y if d(x, y) < +∞ is an equivalence relation. The space X decomposes
into a reunion of equivalence classes, each equivalence class being connected by horizontal
curves.

It is easy to see that d is a finite distance on each equivalence class. Indeed, from theorem
17.4 we deduce that for any x, y ∈ X d(x, y) ≥ d̄(x, y). Therefore d(x, y) = 0 implies x = y.
The other properties of a distance are straightforward.

Later we shall give a sufficient condition (the generalized Chow condition (Cgen)) on the
coherent projection Q for X to be (locally) connected by horizontal curves.

Proposition 19.11 Suppose that X is connected by horizontal curves and (X, d) is com-
plete. Then d is a length distance.

Proof. Because (X, d) is complete, it is sufficient to check that d has the approximate
middle property: for any ε > 0 and for any x, y ∈ X there exists z ∈ X such that

max {d(x, z), d(y, z)} ≤ 1
2
d(x, y) + ε

Given ε > 0, from the definition of d we deduce that there exists a horizontal curve
c : [a, b] → X such that c(a) = x, c(b) = y and d(x, y) + 2ε ≥ l(c) (where l(c) is the length
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of c with respect to the distance d̄). There exists then τ ∈ [a, b] such that∫ τ

a

d̄c(t)(c(t), ċ(t)) dt =
∫ b

τ

d̄c(t)(c(t), ċ(t)) dt =
1
2
l(c)

Let z = c(τ). We have then: max {d(x, z), d(y, z)} ≤ 1
2
l(c) ≤ 1

2
d(x, y) + ε. Therefore d

is a length distance. �
Notations concerning length functionals. The length functional associated to the

distance d̄ is denoted by l̄. In the same way the length functional associated with δ̄x
ε is

denoted by l̄xε .
We introduce the space Lε(X, d, δ) ⊂ X × Lip([0, 1], X, d):

Lε(X, d, δ) = {(x, c) ∈ X × C([0, 1], X) : c : [0, 1] ∈ U(x) ,

δx
ε c is d̄− Lip, Q− horizontal and Lip(δx

ε c) ≤ 2εld(δx
ε c)
}

For any ε ∈ (0, 1) we define the length functional

lε : Lε(X, d, δ) → [0,+∞] , lε(x, c) = lxε (c) =
1
ε
l̄(δx

ε c)

By theorem 17.4 we have:

lxε (c) =
∫ 1

0

1
ε
d̄δx

ε c(t)

(
δx
ε c(t),

d̄

dt
(δx

ε c) (t)
)

dt =

=
∫ 1

0

1
ε
d̄δx

ε c(t)

(
δx
ε c(t), δ

x
ε

d̂x
ε

dt
c(t)

)
dt

Another description of the length functional lxε is the following.

Proposition 19.12 For any (x, c) ∈ Lε(X, d, δ) we have

lxε (c) = l̄xε (Qx
εc)

Proof. Indeed, we shall use an alternate definition of the length functional. Let c be a
curve such that δx

ε c is d̄-Lipschitz and Q-horizontal. Then:

lxε (c) = sup

{
n∑

i=1

1
ε
d̄ (δx

ε c(ti), δ
x
ε c(ti+1)) : 0 = t1 < ... < tn+1 = 1

}
=

= sup

{
n∑

i=1

1
ε
d̄
(
δ̄x
εQ

x
εc(ti), δ̄

x
εQ

x
εc(ti+1)

)
: 0 = t1 < ... < tn+1 = 1

}
=

= l̄xε (Qx
εc)

�
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19.3 Supplementary hypotheses

Definition 19.13 Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection.
Further is a list of supplementary hypotheses on Q:

(A) δx
ε is d̄-bilipschitz in compact sets in the following sense: for any compact set K ⊂ X

and for any ε ∈ (0, 1] there is a number L(K) > 0 such that for any x ∈ K and u, v
sufficiently close to x we have:

1
ε
d̄ (δx

εu, δ
x
ε v) ≤ L(K) d̄(u, v)

(B) if u = Qxu then the curve t ∈ [0, 1] 7→ Qx δx
t u = δ̄x

t u = δx
t u is Q-everywhere

horizontal and for any a ∈ [0, 1] we have

lim sup
a→0

l̄
(
t ∈ [0, a] 7→ δ̄x

t u
)

d̄(x, δ̄x
au)

= 1

uniformly with respect to x, u in compact set K.

Condition (A), as well as the property (IV) definition 19.1, is another smoothness con-
dition on Q with respect to the strong dilation structure (X, d̄, δ̄).

The condition (A) has several useful consequences, among them the fact that for any
d̄-Lipschitz curve c, the curve δx

ε c is also Lipschitz. Another consequence is that Qx
ε is locally

d̄-Lipschitz. More precisely, for any compact set K ⊂ X and for any ε ∈ (0, 1] there is a
number L(K) > 0 such that for any x ∈ K and u, v sufficiently close to x we have:(

δ̄x
ε d̄
)

(Qx
εu,Q

x
εv) ≤ L(K) d̄(u, v) (19.3.8)

with the notation (
δ̄x
ε d̄
)
(u, v) =

1
ε
d̄
(
δ̄x
εu, δ̄

x
ε v
)

Indeed, we have: (
δ̄x
ε d̄
)
(Qx

εu,Q
x
εv) =

1
ε
d̄ (δx

εu, δ
x
ε v) ≤ L(K) d̄(u, v)

See the remark 19.9 for the meaning of the condition B for the case sub-riemannian
geometry, where it is explained why condition B is a generalization of the fact that the
”distribution” x 7→ QxU(x) is generated by horizontal one parameter flows.

Condition (B) will be useful later, along with the generalized Chow condition (Cgen).

20 The generalized Chow condition

Notations about words. For any set A we denote by A∗ the collection of finite words
q = a1...ap, p ∈ N, p > 0. The empty word is denoted by ∅. The length of the word
q = a1...ap is | q |= p; the length of the empty word is 0.

The collection of words infinite at right over the alphabet A is denoted by Aω. For any
word w ∈ Aω ∪A∗ and any p ∈ N we denote by [w]p the finite word obtained from the first
p letters of w (if p = 0 then [w]0 = ∅ (in the case of a finite word q, if p >| q | then [q]p = q).

For any non-empty q1, q2 ∈ A∗ and w ∈ Aω the concatenation of q1 and q2 is the finite
word q1q2 ∈ A∗ and the concatenation of q1 and w is the (infinite) word q1w ∈ Aω. The
empty word ∅ is seen both as an infinite word or a finite word and for any q ∈ A∗ and
w ∈ Aω we have q∅ = q (as concatenation of finite words) and ∅w = w (as concatenation of
a finite empty word and an infinite word).
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20.1 Coherent projections as transformations of words

To any coherent projection Q in a strong dilation structure (X, d̄, δ̄) we associate a family
of transformations as follows.

Definition 20.1 For any non-empty word w ∈ (0, 1]ω and any ε ∈ (0, 1] we define the
transformation

Ψεw : X∗
εw ⊂ X∗ \ {∅} → X∗

given by: for any non-empty finite word q = xx1...xp ∈ X∗
εw we have

Ψεw(xx1...xp) = Ψ1
εw(x)...Ψk+1

εw (xx1...xk)...Ψp+1
εw (xx1...xp)

The functions Ψk
εw are defined by: Ψ1

εw(x) = x, and for any k ≥ 1 we have

Ψk+1
εw ([q]k+1) = δx

ε−1 Q
δx

ε Ψk
εw([q]k)

wk δx
ε qk+1 (20.1.1)

If w = ∅ then Ψk
ε∅ is defined as previously Ψ1

ε∅(x) = x, with the only difference that for any
k ≥ 1 we have

Ψk+1
ε∅ ([q]k+1) = δx

ε−1 Qδx
ε Ψk

εw([q]k) δx
ε qk+1

The domain X∗
εw ⊂ X∗ \ {∅} is such that the previous definition makes sense. By using

the definition of a coherent projection, we may redefine X∗
εw as follows: for any compact set

K ⊂ X there is ρ = ρ(K) > 0 such that for any x ∈ K the word q = xx1...xp ∈ X∗
εw if for

any k ≥ 1 we have
d̄
(
xk+1,Ψk

εw([q]k)
)
≤ ρ

We shall explain the meaning of these transformations for ε = 1.

Proposition 20.2 Suppose that condition (B) holds for the coherent projection Q. If

y = Ψk+1
1∅ (xx1...xk)

then there is a Q-horizontal curve joining x and y.

Proof. By definition 20.1 for ε = 1 we have:

Ψ1
1w(x) = x , Ψ2

1w(x, x1) = Qx
w1
x1 ,

Ψ3
1w(x, x1, x2) = Q

Qx
w1

x1
w2 x2 ...

Suppose now that condition (B) holds for the coherent projection Q. Then the curve t ∈
[0, 1] 7→ δ̄x

t Q
xu is aQ-horizontal curve joining x withQxu. Therefore by applying inductively

the condition (B) we get that there is a Q-horizontal curve between Ψk
1∅(xx1...xk−1) and

Ψk+1
1∅ (xx1...xk) for any k > 1 and a Q-horizontal curve joining x and Ψ2

1∅(xx1). �
There are three more properties of the transformations Ψεw.

Proposition 20.3 With the notations from definition 20.1 we have:

(a) Ψεw Ψε∅ = Ψε∅. Therefore we have the equality of sets:

Ψε∅
(
X∗

ε∅ ∩ xX
∗) = Ψεw

(
Ψε∅

(
X∗

ε∅ ∩ xX
∗))

(b) Ψk+1
ε∅ (xq1...qk) = δx

ε−1 Ψk+1
1∅ (xδx

ε q1...δ
x
ε qk)

(c) lim
ε→0

δx
ε−1 Ψk+1

1∅ (xδx
ε q1...δ

x
ε qk) = Ψk+1

0∅ (xq1...qk) uniformly with respect to x, q1, ..., qk in
compact set.
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Proof. (a) We use induction on k to prove that for any natural number k we have:

Ψk+1
εw

(
Ψ1

ε∅(x)...Ψ
k+1
ε∅ (xq1...qk)

)
= Ψk+1

ε∅ (xq1...qk) (20.1.2)

For k = 0 we have have to prove that x = x which is trivial. For k = 1 we have to prove
that

Ψ2
εw

(
Ψ1

ε∅(x) Ψ2
ε∅(xq1)

)
= Ψ2

ε∅(xq1)

This means:
Ψ2

εw (x δx
ε−1 Qxδx

ε q1) = δx
ε−1 Qx

w1
δx
ε δ

x
ε−1 Qx δx

εx1 =

= δx
ε−1 Qx δx

εx1 = Ψ2
ε∅(xq1)

Suppose now that l ≥ 2 and for any k ≤ l the relations (20.1.2) are true. Then, as
previously, it is easy to check (20.1.2) for k = l + 1.

(b) is true by direct computation. The point (c) is a straightforward consequence of (b)
and definition of coherent projections. �

Definition 20.4 Let N ∈ N be a strictly positive natural number and ε ∈ (0, 1]. We say
that x ∈ X is (ε,N,Q)-nested in a open neighbourhood U ⊂ X if there is ρ > 0 such that
for any finite word q = x1...xN ∈ XN with

δ̄x
ε d̄
(
xk+1,Ψk

ε∅([xq]k)
)
≤ ρ

for any k = 1, ..., N , we have q ∈ UN .
If x ∈ U is (ε,N,Q)-nested then denote by U(x, ε,N,Q, ρ) ⊂ UN the collection of words

q ∈ UN such that δ̄x
ε d̄
(
xk+1,Ψk

ε∅([xq]k)
)
< ρ for any k = 1, ..., N .

Definition 20.5 A coherent projection Q satisfies the generalized Chow condition if:

(Cgen) for any compact set K there are ρ = ρ(K) > 0, r = r(K) > 0, a natural number
N = N(Q,K) and a function F (η) = O(η) such that for any x ∈ K and ε ∈ (0, 1]
there are neighbourhoods U(x), V (x) such that any x ∈ K is (ε,N,Q)-nested in U(x),
B(x, r, δ̄x

ε d̄) ⊂ V (x) and such that the mapping

x1...xN ∈ U(x,N,Q, ρ) 7→ ΨN+1
ε∅ (xx1...xN )

is surjective from U(x, ε,N,Q, ρ) to V (x). Moreover for any z ∈ V (x) there exist
y1, ...yN ∈ U(x, ε,N,Q, ρ) such that z = ΨN+1

ε∅ (xy1, ...yN ) and for any k = 0, ..., N−1
we have

δx
ε d̄
(
Ψk+1

ε∅ (xy1...yk),Ψk+2
ε∅ (xy1...yk+1)

)
≤ F (δx

ε d̄(x, z))

Condition (Cgen) is inspired from lemma 1.40 Folland-Stein [28]. If the coherent projec-
tion Q satisfies also (A) and (B) then in the space (U(x), δ̄x

ε ), with coherent projection Q̂x,·
ε.· ,

we can join any two sufficiently close points by a sequence of at most N horizontal curves.
Moreover there is a control on the length of these curves via condition (B) and condition
(Cgen); in sub-riemannian geometry the function F is of the type F (η) = η1/m with m
positive natural number.

Definition 20.6 Suppose that the coherent projection Q satisfies conditions (A), (B) and
(Cgen). Let us consider ε ∈ (0, 1] and x, y ∈ K, K compact in X. With the notations from

124



definition 20.5, suppose that there are numbers N = N(Q,K), ρ = ρ(Q,K) > 0 and words
x1...xN ∈ U(x, ε,N,Q, ρ) such that

y = ΨN+1
ε∅ (xx1...xN )

To these data we associate a short curve joining x and y, c : [0, N ] → X defined by: for
any t ∈ [0, N ] then let k = [t], where [b] is the integer part of the real number b. We define
the short curve by

c(t) = δ̄
x,Ψk+1

ε∅ (xx1...xk)

ε,t+N−k QΨk+1
ε∅ (xx1...xk)xk+1

Any short curve joining x and y is a increasing linear reparameterization of a curve c
described previously.

20.2 The candidate tangent space

Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. Then we have the
induced dilations

δ̊x,u
µ v = Σx(u, δx

µ∆x(u, v))

and the induced projection

Q̊x,u
µ v = Σx(u,Qx

µ∆x(u, v))

For any curve c : [0, 1] → U(x) which is δ̊x-derivable and Q̊x-horizontal almost everywhere:

d̊x

dt
c(t) = Q̊x,u d̊

x

dt
c(t)

we define the length

lx(c) =
∫ 1

0

d̄x

(
x,∆x(c(t),

d̊x

dt
c(t))

)
dt

and the distance function:

d̊x(u, v) = inf
{
lx(c) : c : [0, 1] → U(x) is δ̊x-derivable,

and Q̊x-horizontal a.e. , c(0) = u, c(1) = v
}

We want to prove that (U(x), d̊x, δ̊x) is a strong dilation structure and Q̊x is a coherent
projection. For this we need first the following proposition.

Proposition 20.7 The curve c : [0, 1] → U(x) is δ̊x-derivable, Q̊x-horizontal almost every-
where, and lx(c) < +∞ if and only if the curve Qxc is δ̄x-derivable almost everywhere and
l̄x(Qxc) < +∞. Moreover, we have

l̄x(Qxc) = lx(c)
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Proof. The curve c is Q̊x-horizontal almost everywhere if and only if for almost any t ∈
[0, 1] we have

Qx ∆x(c(t),
d̊x

dt
c(t)) = ∆x(c(t),

d̊x

dt
c(t))

We shall prove that c is Q̊x-horizontal is equivalent with

Θx(c(t),
d̊x

dt
c(t)) =

d̄x

dt
(Qxc) (t) (20.2.3)

Indeed, (20.2.3) is equivalent with

lim
ε→0

δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε)) = ∆̄x(Qxc(t),Θx(c(t),

d̊x

dt
c(t)))

which is equivalent with

lim
ε→0

δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε)) = ∆x(c(t),

d̊x

dt
c(t))

But this is equivalent with:

lim
ε→0

δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε)) = lim

ε→0
δx
ε−1∆x(c(t), c(t+ ε)) (20.2.4)

The horizontality condition for the curve c can be written as:

lim
ε→0

Qxδx
ε−1∆x(c(t), c(t+ ε)) = lim

ε→0
δx
ε−1∆x(c(t), c(t+ ε))

We use now the properties of Qx in the left hand side of the previous equality:

Qxδx
ε−1∆x(c(t), c(t+ ε)) = δ̄x

ε−1Qx∆x(c(t), c(t+ ε)) =

= δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε))

thus after taking the limit as ε→ 0 we prove that the limit

lim
ε→0

δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε))

exists and we obtain:

lim
ε→0

δx
ε−1∆x(c(t), c(t+ ε)) = lim

ε→0
δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε))

This last equality is the same as (20.2.4), which is equivalent with (20.2.3).
As a consequence we obtain the following equality, for almost any t ∈ [0, 1]:

d̄x

(
x,∆x(c(t),

d̊x

dt
c(t))

)
= ∆̄x(Qxc(t),

d̄x

dt
(Qxc) (t)) (20.2.5)

This implies that Qxc is absolutely continuous and by theorem 4.11, as in the proof of
theorem 17.4 (but without using the Radon-Nikodym property property, because we already
know that Qxc is derivable a.e.), we obtain the following formula for the length of the curve
Qxc:

l̄x(Qxc) =
∫ 1

0

d̄x

(
x, , ∆̄x(Qxc(t),

d̄x

dt
(Qxc) (t))

)
dt
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But we have also:

lx(c) =
∫ 1

0

d̄x

(
x,∆x(c(t),

d̊x

dt
c(t))

)
dt

By (20.2.5) we obtain l̄x(Qxc) = lx(c). �

Proposition 20.8 If (X, d̄, δ̄) is a strong dilation structure, Q is a coherent projection and
d̊x is finite then the triple (U(x),Σx, δx) is a normed conical group, with the norm induced
by the left-invariant distance d̊x.

Proof. The fact that (U(x),Σx, δx) is a conical group comes directly from the definition
19.1 of a coherent projection. Indeed, it is enough to use proposition 19.3 (c) and the for-
malism of binary decorated trees in [11] section 4 (or theorem 11 [11]), in order to reproduce
the part of the proof of theorem 10 (p.87-88) in that paper, concerning the conical group
structure. There is one small subtlety though. In the proof of theorem 13.5(a) the same
modification of proof has been done starting from the axiom A4+, namely the existence
of the uniform limit lim

ε→0
Σx

ε (u, v) = Σx(u, v). Here we need first to prove this limit, in a

similar way as in the corollary 9 [11]. We shall use for this the distance d̊x instead of the
distance in the metric tangent space of (X, d) at x denoted by dx (which is not yet proven
to exist). The distance d̊x is supposed to be finite by hypothesis. Moreover, by its definition
and proposition 20.7 we have

d̊x(u, v) ≥ d̄x(u, v)

therefore the distance d̊x is non degenerate. By construction this distance is also left invariant
with respect to the group operation Σx(·, ·). Therefore we may repeat the proof of corollary
9 [11] and obtain the result that A4+ is true for (X, d, δ).

What we need to prove next is that d̊x induces a norm on the conical group (U(x),Σx, δx).
For this it is enough to prove that

d̊x(̊δx,u
µ v, δ̊x,u

µ w) = µ d̊x(v, w) (20.2.6)

for any v, w ∈ U(x). This is a direct consequence of relation (20.2.5) from the proof of
the proposition 20.7. Indeed, by direct computation we get that for any curve c which is
Q̊x-horizontal a.e. we have:

lx(̊δx,u
µ c) =

∫ 1

0

d̄x

(
x,∆x

(
δ̊x,u
µ c(t),

d̊x

dt

(
δ̊x,u
µ c

)
(t)

))
dt =

=
∫ 1

0

d̄x

(
x, δx

µ∆x

(
c(t),

d̊x

dt
c(t)

))
dt

But c is Q̊x-horizontal a.e., which implies, via (20.2.5), that

δx
µ∆x

(
c(t),

d̊x

dt
c(t)

)
= δ̄x

µ∆x

(
c(t),

d̊x

dt
c(t)

)
therefore we have

lx(̊δx,u
µ c) =

∫ 1

0

d̄x

(
x, δ̄x

µ∆x

(
c(t),

d̊x

dt
c(t)

))
dt = µ lx(c)

This implies (20.2.6), therefore the proof is done. �
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Theorem 20.9 If the generalized Chow condition (Cgen) and condition (B) are true then
(U(x),Σx, δx) is local conical group which is a neighbourhood of the neutral element of a
Carnot group generated by QxU(x).

Proof. For any ε ∈ (0, 1], as a consequence of proposition 19.6 we can put the recurrence
relations (20.1.1) in the form:

Ψk+1
εw ([q]k+1) = Σx

ε

(
Ψk

εw([q]k), Qδx
ε Ψk

εw([q]k)
wk ∆x

ε

(
Ψk

εw([q]k), qk+1

))
(20.2.7)

This recurrence relation allows us to prove by induction that for any k the limit

Ψk
w([q]k) = lim

ε→0
Ψk

εw([q]k)

exists and it satisfies the recurrence relation:

Ψk+1
0w ([q]k+1) = Σx

(
Ψk

0w([q]k), Qx
wk

∆x
(
Ψk

0w([q]k), qk+1

))
(20.2.8)

and the initial condition Ψ1
0w(x) = x. We pass to the limit in the generalized Chow condition

(Cgen) and we thus obtain that a neighbourhood of the neutral element x is (algebraically)
generated by QxU(x). Then the distance d̊x. Therefore by proposition 20.8 (U(x),Σx, δx)
is a normed conical group generated by QxU(x).

Let c : [0, 1] → U(x) be the curve c(t) = δx
t u, with u ∈ QxU(x). Then we have

Qxc(t) = c(t) = δ̄x
t u. From condition (B) we get that c is δ̄-derivable at t = 0. A short

computation of this derivative shows that:

dδ̄

dt
c(0) = u

Another easy computation shows that the curve c is δ̄x-derivable if and only if the curve
c is δ̄-derivable at t = 0, which is true, therefore c is δ̄x-derivable, in particular at t =
0. Moreover, the expression of the δ̄x-derivative of c shows that c is also Qx-everywhere
horizontal (compare with the remark 19.9). We use the proposition 20.7 and relation (20.2.3)
from its proof to deduce that c = Qxc is δ̊x-derivable at t = 0, thus for any u ∈ QxU(x) and
small enough t, τ ∈ (0, 1) we have

δ̊x,x
t+τu = Σ̄x(δ̄x

t u, δ̄
x
τ u) (20.2.9)

By previous proposition 20.8 and corollary 6.3 [12] the normed conical group (U(x),Σx, δx)
is in fact locally a homogeneous group, i.e. a simply connected Lie group which admits a
positive graduation given by the eigenspaces of δx. Indeed, corollary 6.3 [11] is originally
about strong dilation structures, but the generalized Chow condition implies that the dis-
tances d, d̄ and d̊x induce the same uniformity, which, along with proposition 20.8, are the
only things needed for the proof of this corollary. The conclusion of corollary 6.3 [12] there-
fore is true, that is (U(x),Σx, δx) is locally a homogeneous group. Moreover it is locally
Carnot if and only if on the generating space QxU(x) any dilation δ̊x,x

ε u = δ̄x
ε is linear in

ε. But this is true, as shown by relation (20.2.9). This ends the proof. �

20.3 Coherent projections induce length dilation structures

Theorem 20.10 If (X, d̄, δ̄) is a tempered strong dilation structure, has the Radon-Nikodym
property and Q is a coherent projection, which satisfies (A), (B), (Cgen) then (X, d, δ) is a
length dilation structure.
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Proof. We shall prove that:

(a) for any function ε ∈ (0, 1) 7→ (xε, cε) ∈ Lε(X, d, δ) which converges to (x, c) as ε→ 0,
with c : [0, 1] → U(x) δ̊x-derivable and Q̊x-horizontal almost everywhere, we have:

lx(c) ≤ lim inf
ε→0

lxε(cε)

(b) for any sequence εn → 0 and any (x, c), with c : [0, 1] → U(x) δ̊x-derivable and Q̊x-
horizontal almost everywhere, there is a recovery sequence (xn, cn) ∈ Lεn(X, d, δ) such
that

lx(c) = lim
n→∞

lxn(cn)

Proof of (a). This is a consequence of propositions 20.7, 19.12 and definition 19.1 of a
coherent projection. With the notations from (a) we see that we have to prove

lx(c) = l̄x(Qxc) ≤ lim inf
ε→0

l̄xε(Qxε
ε cε)

This is true because (X, d̄, δ̄) is a tempered dilation structure and because of condition (A).
Indeed from the fact that (X, d̄, δ̄) is tempered and from (19.3.8) (which is a consequence of
condition (A)) we deduce that Qε is uniformly continuous on compact sets in a uniform way:
for any compact set K ⊂ X there is are constants L(K) > 0 (from (A)) and C > 0 (from
the tempered condition) such that for any ε ∈ (0, 1], any x ∈ K and any u, v sufficiently
close to x we have:

d̄ (Qx
εu,Q

x
εv) ≤ C

(
δ̄x
ε d̄
)
(Qx

εu,Q
x
εv) ≤ C L(K) d̄(u, v)

The sequence Qx
ε uniformly converges to Qx as ε goes to 0, uniformly with respect to x

in compact sets. Therefore if (xε, cε) ∈ Lε(X, d, δ) converges to (x, c) then (xε, Q
xε
ε cε) ∈

Lε(X, d̄, δ̄) converges to (x,Qxc). Use now the fact that by corollary 18.4 (X, d̄, δ̄) is a length
dilation structure. The proof is done.

Proof of (b). We have to construct a recovery sequence. We are doing this by dis-
cretization of c : [0, L] → U(x). Recall that c is a curve which is δ̊x-derivable a.e. and
Q̊x-horizontal, that is for almost every t ∈ [0, L] the limit

u(t) = lim
µ→0

δx
µ−1 ∆x(c(t), c(t+ µ))

exists and Qx u(t) = u(t). Moreover we may suppose that for almost every t we have
d̄x(x, u(t)) ≤ 1 and l̄x(c) ≤ L.

There are functions ω1, ω2 : (0,+∞) → [0,+∞) with lim
λ→0

ωi(λ) = 0, with the following

property: for any λ > 0 sufficiently small there is a division Aλ = {0 < t0 < ... < tP < L}
such that

λ

2
≤ min

{
t0

t1 − t0
,
L− tP

tP − tP−1
, tk − tk−1 : k = 1, ..., P

}
(20.3.10)

λ ≥ max
{

t0
t1 − t0

,
L− tP

tP − tP−1
, tk − tk−1 : k = 1, ..., P

}
(20.3.11)

and such that u(tk) exists for any k = 1, ..., P and

d̊x(c(0), c(t0)) ≤ t0 ≤ λ2 (20.3.12)
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d̊x(c(L), c(tP )) ≤ L− tP ≤ λ2 (20.3.13)

d̊x(u(tk−1),∆x(c(tk−1), c(tk)) ≤ (tk − tk−1) ω1(λ) (20.3.14)

|
∫ L

0

d̄x(x, u(t)) dt −
P−1∑
k=0

(tk+1 − tk) d̄x(x, u(tk)) | ≤ ω2(λ) (20.3.15)

Indeed (20.3.12), (20.3.13) are a consequence of the fact that c is d̊x-Lipschitz, (20.3.14) is
a consequence of Egorov theorem applied to

fµ(t) = δx
µ−1 ∆x(c(t), c(t+ µ))

and (20.3.15) comes from the definition of the integral

l(c) =
∫ L

0

d̄x(x, u(t)) dt

For each λ we shall choose ε = ε(λ) and we shall construct a curve cλ with the properties:

(i) (x, cλ) ∈ Lε(λ)(X, d, δ)

(ii) lim
λ→0

lxε(λ)(cλ) = lx(c).

At almost every t the point u(t) represents the velocity of the curve c seen as the the left
translation of d̊x

dt c(t) by the group operation Σx(·, ·) to x (which is the neutral element for
the mentioned operation). The derivative (with respect to δ̊x) of the curve c at t is

y(t) = Σx(c(t), u(t))

Let us take ε > 0, arbitrary for the moment. We shall use the points of the division Aλ

and for any k = 0, ..., P − 1 we shall define the point:

yε
k = Q̂x,c(tk)

ε Σx
ε (c(tk), u(tk)) (20.3.16)

Thus yε
k is obtained as the ”projection” by Q̂x,c(tk)

ε of the ”approximate left translation”
Σx

ε (c(tk), ·) by c(tk) of the velocity u(tk). Define also the point:

yk = Σx(c(tk), u(tk))

By construction we have:
yε

k = Q̂x,c(tk)
ε yε

k (20.3.17)

and by computation we see that yε
k can be expressed as:

yε
k = δx

ε−1 Qδx
ε c(tk) δ

δx
ε c(tk)

ε u(tk) = (20.3.18)

= Σx
ε (c(tk), Qδx

ε c(tk) u(tk)) = δx
ε−1 δ̄

δx
ε c(tk)

ε Qδx
ε c(tk) u(tk)

Let us define the curve

cεk(s) = δ̂x,c(tk)
ε,s yε

k , s ∈ [0, tk+1 − tk] (20.3.19)

which is a Q̂x
ε -horizontal curve (by supplementary hypothesis (B)) which joins c(tk) with

the point
zε
k = δ̂

x,c(tk)
ε,tk+1−tk

yε
k (20.3.20)
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The point zε
k is an approximation of the point

zk = δ̊
x,c(tk)
tk+1−tk

yk

We shall also consider the curve

ck(s) = δ̊x,c(tk)
s yk , s ∈ [0, tk+1 − tk] (20.3.21)

There is a short curve gε
k which joins zε

k with c(tk+1), according to condition (Cgen).
Indeed, for ε sufficiently small the points δx

ε z
ε
k and δx

ε c(tk+1) are sufficiently close.
Finally, take gε

0 and gε
P+1 ”short curves” which join c(0) with c(t0) and c(tP ) with c(L)

respectively.
Correspondingly, we can find short curves gk (in the geometry of the dilation structure

(U(x), d̊x, δ̊x, Q̊x)) joining zk with c(tk+1), which are the uniform limit of the short curves
gε

k as ε→ 0. Moreover this convergence is uniform with respect to k (and λ). Indeed, these
short curves are made by N curves of the type s 7→ δ̂x,uε

ε,s vε, with Q̂x,uεvε = vε. Also, the
short curves gk are made respectively by N curves of the type s 7→ δ̊x,u

s v, with Q̊x,uv = v.
Therefore we have:

d̄(̊δx,u
s v, δ̂x,uε

ε,s yε
k) =

= d̄(Σx(u, δ̄x
s ∆x(u, v)),Σx

ε (uε, δ̄
δx

ε uε
s ∆x

ε (uε, vε)))

By an induction argument on the respective ends of segments forming the short curves,
using the axioms of coherent projections, we get the result.

By concatenation of all these curves we get two new curves:

cελ = gε
0

(
P−1∏
k=0

cεk g
ε
k

)
gε

P+1

cλ = g0

(
P−1∏
k=0

ck gk

)
gP+1

From the previous reasoning we get that as ε → 0 the curve cελ uniformly converges to cλ,
uniformly with respect to λ.

By theorem 20.9, specifically from relation (20.2.9) and considerations below, we notice
that for any u = Qxu the length of the curve s 7→ δx

su is:

lx(s ∈ [0, a] 7→ δx
su) = a d̄x(x, u)

From here and relations (20.3.12), (20.3.13), (20.3.14), (20.3.15) we get that

lx(c) = lim
λ→0

lx(cλ) (20.3.22)

Condition (B) and the fact that (X, d̄, δ̄) is tempered imply that there is a positive
function ω3(ε) = O(ε) such that

| lxε (cελ)− lx(cλ) | ≤ ω3(ε)
λ

(20.3.23)

This is true because if v Q̂x,u
ε v then δx

ε v = Qδx
ε uδx

ε v, therefore by condition (B)

lxε (s ∈ [0, a] 7→ δ̂x,u
ε,s v)

δx
ε d̄(u, v)

=
l̄(s ∈ [0, a] 7→ δ̄

δx
ε u

s δx
ε v)

d̄(δx
εu, δ

x
ε v)

≤ O(ε) + 1
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Since each short curve is made by N segments and the division Aλ is made by 1/λ segments,
the relation (20.3.23) follows.

We shall choose now ε(λ) such that ω3(ε(λ)) ≤ λ2 and we define:

cλ = c
ε(λ)
λ

These curves satisfy the properties (i), (ii). Indeed (i) is satisfied by construction and (ii)
follows from the choice of ε(λ), uniform convergence of cελ to cλ, uniformly with respect to
λ, and relations (20.3.23), and (20.3.22). �
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21 Sub-riemannian symmetric spaces as braided dila-
tion structures

Sub-riemannian symmetric spaces have been introduced in [55], section 9. We shall be
interested in the description of sub-riemannian geometry by dilation structures, therefore
we shall use the same notations as in the previous paper [14] (see also the relevant citations
in that paper, as well as the long paper [19], where the study of sub-riemannian geometry
as a length dilation structure is completed).

Definition 21.1 (adaptation of [55] definition 8.1) Let (M,D, g) be a regular sub-riemannian
manifold. We say that Ψ : M →M is an infinitesimal isometry if Ψ is C1 and DΨ preserves
the metric g. An infinitesimal isometry is regular if for any x ∈M and any tangent vector
u ∈ TxM

Ψ(expx(u)) = expΨ(x)(DΨ(x)u)

By [55] theorem 8.2., C1 isometries are regular infinitesimal isometries and, conversely,
regular infinitesimal isometries are isometries.

An equivalent description of regular infinitesimal isometries is the following: they are C1

Pansu differentiable isometries.

Definition 21.2 ([55] definition 9.1) A sub-riemannian symmetric space is a regular sub-
riemannian manifold M,D, g) which has a transitive Lie group G of regular infinitesimal
isometries acting differentiably on M such that:

(i) there is a point x ∈ X such that the isotropy subgroup K of x is compact,

(ii) K contains an element Ψ such that DΨ(x)|Dx
= − id and Ψ is involutive.

If G is a group for which (i), (ii) holds then we call G an admissible isometry group for M .

Theorem 21.3 ([55] theorem 9.2) If M is a sub-riemannian symmetric space and G is an
admissible isometry group, then there exists an involution σ of G such that σ(K) ⊂ K with
the following properties (we write g = g+ +g−, where g+, g− are the subspaces of g on which
Dσ acts as Id, −Id):

(a) g is generated as a Lie algebra by a subspace p and the Lie algebra t of K with p ⊂ g−,
t ⊂ g+,

(b) there exists a positive definite quadratic form g on p and adK maps p to itself and
preserves g. Furthermore, p may be identified with Dx under the exponential map of
the Lie algebra g, and g with the sub-riemannian metric on Dx.

Conversely, given a Lie group G and an involution σ such that (a) and (b) hold, then
G/K forms a sub-riemannian symmetric space, where Dx0 = exp p for the point x0 identified
with the coset K, and the sub-riemannian metric on Dx0 is given by g. The bundle D and
its metric is then uniquely determined by the requirement that elements of G be infinitesimal
isometries.
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As a consequence of this theorem we see that we may endow a sub-riemannian symmetric
space, with admissible isometry group G, with a (reflexive space) operation

(x, y) ∈M2 7→ Ψ(x, y) = Ψxy

such that Ψ is distributive, for any x ∈ X the map Ψx satisfies (ii) definition 21.2, and for
any g ∈ G and any x, y ∈ X we have

g (Ψxy) = Ψg(x)g(y)

We explained in [14] that we can construct a dilation structure over a regular sub-
riemannian manifold by using adapted frames.

Let us consider now dilations structures with Γ isomorphic with R × Z2. That means
Γ is the commutative group made by two copies of (0,+∞), generated by (0,+∞) and an
element σ 6∈ (0,+∞), with the properties: for any ε ∈ (0,+∞) we have εσ = σε and σσ = 1.
The absolute we take has two elements, one corresponding to ε → 0 (we denote it by ”0”)
and the other one is the transport by σ of 0, denoted by ”0σ”. The morphism | · | is defined
by

| ε |= | σε |= ε

Let (X, d, δ) be a dilation structure with respect to the group Γ , absolute Abs(Γ) and
morphism | · | described previously. Then for any ε ∈ (0,+∞) and any x ∈ X we have the
relations:

δx
σ δ

x
ε = δx

ε δ
x
σ , δx

σ δ
x
σ = id

Proposition 21.4 Denote by σxy = δx
σy and suppose that for any x ∈ X the map σx is

not the identity map. Then σx is involutive, a isometry of dx and an isomorphism of the
conical group T xX.

Proof. For any x ∈ X clearly σx is involutive, commutes with dilations δx
ε and is an

isometry of dx. We need to show that it preserves the operation +x
∞. We shall work with

the notations from dilation structures. We have then, for any ε ∈ (0,+∞):

σδx
εσu ∆x

σε(u, v) = δ
δx

σεu

ε−1 δx
σεv = ∆x

ε (σxu, σxv)

We pass to the limit with ε→ 0 and we get the relation:

σx∆x(u, v) = ∆x(σxu, σxv)

which shows that σx is an isomorphism of T xX. �
This proposition motivates us to introduce braided R× Z2-dilation structures.

Definition 21.5 Let (X, d, δ) be a dilation structure, with respect to the group Γ , absolute
Abs(Γ) and morphism | · | described previously, and such that for any x ∈ X the map σx is
not the identity map. This dilation structure is braided if the map

(x, y) ∈ X2 7→ (σxy, x)

is a braided map.

Theorem 21.6 A sub-riemannian symmetric space M with admissible isometry group G
can be endowed with a braided R × Z2-dilation structure which is G-invariant, that is for
any g ∈ G, for any x, y ∈M , and for any ε ∈ Γ we have

g (δx
ε y) = δg(x)

ε g(y)
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Proof. In the particular case of a sub-riemannian symmetric space we may obviously
take the adapted frames to be G-invariant, therefore we may construct a dilation structure
(over the group (0,+∞) with multiplication) which is G-invariant. Because Ψx satisfies (ii)
definition 21.2, it follows Ψx is differentiable in x in the sense of dilation structures. We
extend the dilation structure to a braided one by defining for any x ∈ X

σx = TΨx(x, ·)

By G-invariance of both the dilation structure and the operation Ψ it follows that

TΨx(x, ·) = Ψx

therefore σx commutes with δx
ε , which ensures us that we well defined a braided dilation

structure. �
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Riemannian Geometry, A. Belläıche, J.-J. Risler eds., Progress in Mathematics, 144,
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