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Abstract We study new invariant probability measures, describing the distribution of mul-
tivalued inverse iterates (i.e. of different local inverse iterates) for a non-invertible smooth
function f which is hyperbolic, but not necessarily expanding on a repellor �. The methods
for the higher dimensional non-expanding and non-invertible case are different than the ones
for diffeomorphisms, due to the lack of a nice unstable foliation (local unstable manifolds
depend on prehistories and may intersect each other, both in � and outside �), and the fact
that Markov partitions may not exist on �. We obtain that for Lebesgue almost all points
z in a neighbourhood V of �, the normalized averages of Dirac measures on the consecu-
tive preimage sets of z converge weakly to an equilibrium measure μ− on �; this implies
that μ− is a physical measure for the local inverse iterates of f . It turns out that μ− is an
inverse SRB measure in the sense that it is the only invariant measure satisfying a Pesin
type formula for the negative Lyapunov exponents. Also we show that μ− has absolutely
continuous conditional measures on local stable manifolds, by using the above convergence
of measures. We prove then that f : (�, B(�),μ−) → (�, B(�),μ−) cannot be one-sided
Bernoulli, although it is an exact endomorphism of Lebesgue spaces. Several classes of ex-
amples of hyperbolic non-invertible and non-expanding repellors, with their inverse SRB
measures, are given in the end.

Keywords Hyperbolic non-invertible maps (endomorphisms) · Repellors · SRB measures
for endomorphisms · Physical and equilibrium measures · 1-sided Bernoulli maps

1 Introduction

SRB measures (Sinai, Ruelle, Bowen) and physical measures have been studied for many
classes of dynamical systems having some form of hyperbolicity, either uniform, partial or
non-uniform ([2, 8, 17, 20, 21], etc.). Intuitively physical measures describe the distributions
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of forward iterates in a neighbourhood of an attractor. SRB measures are usually defined by
the absolute continuity of their conditional measures on local unstable manifolds ([21]). The
term physical measures was introduced by Eckmann and Ruelle ([4]) who also proved many
of their properties and gave relations to examples from physics (turbulence theory, statisti-
cal mechanics, strange attractors, etc.). Measure-theoretic entropy and Lyapunov exponents
prove to be very important with regard to physical and SRB measures, as in Pesin’s entropy
formula ([4, 6, 7, 21], etc.). For uniformly hyperbolic diffeomorphisms having an attrac-
tor �, and for Anosov diffeomorphisms, physical measures are in fact SRB measures as
was proved by Sinai, Ruelle, Bowen ([2, 8, 17, 20, 21]). For other systems there may exist
physical measures which are not SRB (as in [4]). In [4], it was studied mainly the case of
attractors for diffeomorphisms or the case of a flow indexed with both positive and negative
parameters t . In such a case the inverse of the map is well defined and it is also a smooth
map. For flows we simply can take f t , t < 0. One cannot do the same if the dynamical
system is not invertible.

In this paper we focus on finding physical measures giving the distribution of consecutive
preimage sets for non-invertible smooth maps (such maps will be called endomorphisms),
in the vicinity of a hyperbolic repellor. There are many examples of systems which are
not invertible, for instance the non-invertible horseshoes from [1], s-hyperbolic holomor-
phic maps in several dimensions and their invariant sets ([9]), skew products having a finite
iterated function system in the base and overlaps in their fibers, hyperbolic toral endomor-
phisms, examples with invariant folded drapes or veils ([4]), baker’s transformations with
overlaps, hyperbolic basic sets with locally constant number of preimages (see [13]), etc.
By similarity to the SRB measure, one natural question would be to study the distribution
of various preimages near a hyperbolic repellor �. The problem is that there is no unique
inverse f −1; instead, if f does not have any critical points near the �, we will obtain local
inverse iterates, or equivalently a multivalued inverse iterate of f . If f is locally d-to-1
on a basic set �, and if the local inverse iterates of f on some open set W are denoted
by f −1

W,1, . . . , f
−1
W,d , then the multivalued inverse of f on W is (f −1

W,1, . . . , f
−1
W,d). Knowing

the behaviour of inverse trajectories of a system may be important when we want to obtain
information about the past states of the system.

It is important to keep in mind that the map f is not assumed expanding on �; indeed
for the expanding case a lot is known about the distribution of preimages (see [8, 19]) and
the situation is characterized by the fact that local inverse iterates decrease exponentially
fast the diameter of small balls; this guarantees that we have bounded distortion lemmas.
However in the general higher dimensional non-invertible hyperbolic case we do not have
control on the distortion of small balls under local inverse iterates; indeed they may increase
in the stable direction in backward time.

Non-invertibility brings many difficulties into the setting, like not being able to apply
directly Birkhoff Ergodic Theorem for f −1 like in the case of diffeomorphisms, the non-
existence of a Markov partition of � (as f is just an endomorphism, not necessarily ex-
panding on �), etc. One classical tool when dealing with endomorphisms would be to use
the natural extension �̂ of � (also known as the inverse limit), but then one looses differ-
entiability properties near �, as �̂ is not a manifold. In general for endomorphisms, local
unstable manifolds depend on whole prehistories not only on the base points ([18]); this
dependence is Holder continuous with respect to prehistories ([10]). Our repellors will be in
fact unions of global stable sets, but the overlappings and foldings of the system introduce a
complicated and very irregular dynamics. Moreover the number of preimages belonging to
� of a given point may vary a priori along �.

For attractors/repellors � for diffeomorphisms f we know that there exists an SRB/in-
verse SRB measure on � and that (�,f |�) becomes a Bernoulli 2-sided transformation
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([2, 8]). This is based mainly on the existence of Markov partitions in the invertible case
([2, 20]). Also for expanding maps there exist Markov partitions ([17, 19]) and the system is
isomorphic to a 1-sided Markov chain. In the non-invertible non-expanding case we however
do not have Markov partitions, as mentioned above. We will show that in our non-invertible
case, if � is a repellor with its inverse SRB measure μ− then (�,f |�,μ−) is not 1-sided
Bernoulli. This is in clear contrast with what happens for diffeomorphisms or expanding
maps.

The main directions and results of the paper are the following:
First we will specify what we understand by a repellor, in Definition 1. We prove that on

a repellor �, the number of preimages belonging to � of any x ∈ � is locally constant. We
also show a very important property of these sets, namely the stability under perturbations,
in Proposition 3. Then we prove in Theorem 1 that the pressure of the stable potential �s

along a connected repellor � is related to the number d of preimages of an arbitrary point,
which remain in �.

We will define next the probability measures

μz
n := 1

dn

∑

y∈f −nz∩U

1

n

n−1∑

i=0

δf iy, n ≥ 1, z ∈ V ⊂ U,

where V,U are close enough neighbourhoods of �. In Theorem 2 we give the main result,
namely the weak convergence of the measures μz

n towards the equilibrium measure μs of
the potential �s , for Lebesgue almost all points z ∈ V . In this Theorem, � will be assumed
connected (not a very restrictive assumption for our notion of repellor, as will be seen).
We show then in Theorem 3 that a Pesin type formula involving the negative Lyapunov
exponents can be derived for this physical measure μ− = μs . This will give also the absolute
continuity of conditional measures of μ− on stable manifolds, by using the convergence
of measures of Theorem 2 and a result of Liu ([7]) relating entropy, folding entropy and
negative Lyapunov exponents. In fact by using the convergence of the measures (μz

n)n from
Theorem 2, we show that the folding entropy Hμ−(ε/f −1ε) is equal to logd , where ε is the
partition of � into single points. Therefore by all these properties, it follows that μ− can be
viewed as an inverse SRB measure.

The above inverse Pesin type formula will imply in Theorem 4 that the repellor � with its
inverse SRB measure μ− is not isomorphic to a one-sided Bernoulli shift. This is in contrast
with the case of attractors for diffeomorphisms where the attractor, together with its SRB
measure, is 2-sided Bernoulli. We show however in Theorem 5 that μ− has Exponential
Decay of Correlations on Holder potentials; and that f |� : (�,μ−) → (�,μ−) is exact as
an endomorphism of Lebesgue spaces, hence mixing of any order ([16]).

The problem of isomorphisms to 1-sided Bernoulli shifts is delicate for smooth constant-
to-one endomorphisms, and is fundamentally different than the one in the case of diffeo-
morphisms and 2-sided Bernoulli shifts. In [3], Bruin and Hawkins gave criteria and sev-
eral classes of one-dimensional real or complex maps and measures, which are not 1-sided
Bernoulli. By contrast to the case of Bernoulli automorphisms, measure-theoretic entropy is
not a complete invariant for 1-sided Bernoulli shifts. The connected repellors from our paper
represent new examples of invariant sets on which smooth endomorphisms are constant-to-
one. We find thus new classes of smooth endomorphisms and natural invariant measures
on basic sets (not necessarily expanding), which are not 1-sided Bernoulli. Still, they will
be shown to display the strong mixing properties mentioned above (Exponential Decay of
Correlations, and mixing of any order).
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Finally we describe some classes of examples in Sect. 3, among which hyperbolic toral
endomorphisms, other Anosov endomorphisms, as well as new classes of non-expanding
repellors which are not Anosov, together with their inverse SRB measures.

2 Main Results

First we will specify what do we understand by repellor. As a general setting throughout
the paper, we consider f : M → M a smooth (say C 2) map on a Riemannian manifold, and
� an f -invariant compact set in M which does not intersect the critical set Cf of f . We
remark that the preimages of a point from � do not have to remain in � necessarily. Also
let us notice that if Cf would intersect �, the basic ideas would remain the same as long as
we assume an integrability condition on log |Dfs | over �.

Definition 1 Let f : M → M be a smooth (for example C 2) map on a Riemannian manifold
and let � be a compact set which is f -invariant (i.e. f (�) = �) and s.t f |� is topologically
transitive; assume also that there exists a neighbourhood U of � such that � = ⋂

n∈Z
f nU .

Such a set will be called a basic set for f ([5]). We say that � is a repellor for f if � is a
basic set for f , Cf ∩� = ∅ and if there exists a neighbourhood U of � such that Ū ⊂ f (U).

We will call any point y ∈ f −1(x) an f -preimage of x ∈ M ; and by n-preimage of x we
mean any point y ∈ f −n(x), for an integer n > 0.

Proposition 1 In the setting of Definition 1, if � is a repellor for f , then f −1� ∩ U = �.
If moreover � is assumed to be connected, the number of f -preimages that a point has in �

is constant.

Proof Let a point x ∈ �, and y be an f -preimage of x from U . Then f ny ∈ �,n ≥ 1. From
Definition 1, since � is assumed to be a repellor, the point y has a preimage y−1 in U ; then
y−1 has a preimage y−2 from U , and so on. Thus y has a full prehistory belonging to U and
also its forward orbit belongs to U , hence y ∈ � since � is a basic set. So f −1� ∩ U = �.

We prove now the second part of the statement. Let a point x ∈ � and assume that it has
d f -preimages in �, denoted x1, . . . , xd . Consider also another point y ∈ � close to x. If y

is close enough to x and since Cf ∩ � = ∅, it follows that y also has exactly d f -preimages
in U , denoted by y1, . . . , yd . Since from the first part we know that f −1� ∩ U = �, we
obtain that y1, . . . , yd ∈ �. In conclusion the number of f -preimages in � of a point is
locally constant. If � is assumed to be connected, then the number of preimages belonging
to � of any point from �, must be constant. �

Let us denote by d(x) the number of f -preimages that the point x has in the repellor �.
Then from the above Proposition we know that d(·) is locally constant on �. Clearly there
exist only finitely many values that d(·) may take on �. We will assume in the sequel that the
number of preimages d(·) is constant on �. This happens for instance when � is connected
(from Proposition 1). We give the results in this setting (i.e. when � is connected), but in
fact all we need is that d(·) is constant.

We will work with uniformly hyperbolic endomorphisms on � ([1, 10, 11, 18], etc.)
The stable tangent spaces Es

x, x ∈ � depend Holder continuously on x (see [5, 10, 12]);
the unstable tangent spaces depend on whole prehistories, i.e. we have Eu

x̂
, x̂ ∈ �̂. Here

(�̂, f̂ ) is the natural extension ([15]), or inverse limit of the dynamical system (�,f );
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the space �̂ := {x̂ = (x, x−1, x−2, . . .), f (x−i ) = x−i+1, i ≥ 1, x0 := x} is the space of full
prehistories of points from � and the map f̂ : �̂ → �̂, f̂ (x̂) = (f x, x, x−1, x−2, . . .), x̂ ∈ �̂

is the shift homeomorphism. We denote also by π : �̂ → � the canonical projection given by
π(x̂) = x, x̂ ∈ �̂. The compact topological space �̂ can be endowed with a natural metric,
but it is not a manifold.

We shall denote Df |Es
x

by Dfs(x) and call it the stable derivative at x ∈ �; and
Dfu(x̂) := Df |Eu

x̂
is the unstable derivative at x̂ ∈ �̂. Similarly the local stable and un-

stable manifolds are denoted by Ws
r (x),Wu

r (x̂), x̂ ∈ �̂, for some small r > 0. We call stable
potential the function

�s(x) := log |Jac(Dfs(x))| = log |det(Dfs(x))|, x ∈ �.

One notices that there exists a bijection between the set M(f ) of f -invariant proba-
bility measures on � and the set M(f̂ ) of f̂ -invariant probability measures on the nat-
ural extension �̂, so that to any measure μ ∈ M(f ) we associate the unique measure
μ̂ ∈ M(f̂ ) satisfying the relation π∗(μ̂) = μ (for example Rokhlin, [15]). It is easy to show
that hμ̂(f̂ ) = hμ(f ) and that Pf̂ (φ ◦ π) = Pf (φ),∀φ ∈ C(�,R). Thus μ is an equilibrium

measure for a potential φ if and only if its unique f̂ -invariant lifting μ̂ is an equilibrium
measure for φ ◦ π on �̂. Next let us transpose to the setting of endomorphisms, some prop-
erties of equilibrium measures from the diffeomorphism case, by using liftings to the natural
extension.

In the sequel, given y ∈ �,n ≥ 1 and ε > 0, we denote by Bn(y, ε) := {z ∈ M,

d(f iz, f iy) < ε, i = 0, . . . , n − 1} a Bowen ball. For a continuous real function φ (defined
on the f -invariant set �) and for a positive integer n, we define the “consecutive sum” by:

Snφ(y) := φ(y) + φ(f (y)) + · · · + φ(f n−1(y)), y ∈ �.

Proposition 2 Let � be a hyperbolic basic set for a smooth endomorphism f : M → M ,
and let φ a Holder continuous function on �. Then there exists a unique equilibrium measure
μφ for φ on � such that for any ε > 0, there exist positive constants Aε,Bε so that for any
y ∈ �,n ≥ 1,

Aεe
Snφ(y)−nP (φ) ≤ μφ(Bn(y, ε)) ≤ Bεe

Snφ(y)−nP (φ).

Proof The shift f̂ : �̂ → �̂ is an expansive homeomorphism. The existence of a unique
equilibrium measure for the Holder potential φ ◦ π with respect to the homeomorphism f̂ :
�̂ → �̂ follows from the standard theory of expansive homeomorphisms (for example [5]);
let us denote it by μ̂φ . According to the discussion above there exists a unique probability
measure μφ with μφ := π∗μ̂φ , and μφ is the unique equilibrium measure for φ on �. The
uniqueness follows from the bijection between M(f ) and M(f̂ ) and from the fact that
φ̂ := φ ◦ π : �̂ → R is Holder continuous (as π : �̂ → � is Lipschitz and φ is Holder).
Now, there exists a k = k(ε) ≥ 1 such that f̂ k(π−1Bn(y, ε)) ⊂ Bn−k(f̂

kŷ,2ε) ⊂ �̂, for any
y ∈ �. On the other hand for any ŷ ∈ �̂, we have π(Bn(ŷ, ε)) ⊂ Bn(y, ε). The last two set
inclusions and the f̂ -invariance of μ̂φ , together with the estimates for the μ̂φ-measure of the
Bowen balls in �̂ (from [5]) imply that there exist positive constants Aε,Bε (depending on
ε > 0 and φ) such that the estimates from the statement hold. �

Next let us show that the notion of connected repellor is stable under perturbations; this
property is important when dealing with systems having a small level of random noise, as it
happens in most physical situations.
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Proposition 3 Let � be a connected repellor for a smooth map f : M → M so that f is
hyperbolic on �, and let a perturbation g which is C 1-close to f . Then g has a connected re-
pellor �g close to � such that g is hyperbolic on �g . In addition the number of g-preimages
belonging to �g of any point of �g , is the same as the number of f -preimages in � of a
point from �.

Proof Since � has a neighbourhood U so that Ū ⊂ f (U), it follows that for g close enough
to f , we will obtain Ū ⊂ g(U). If g is C 1-close to f , then we can take the set

�g :=
⋂

n∈Z

gn(U)

and it is quite standard that g is hyperbolic on �g (for example [10, 18], etc.). One can form
then the natural extension of the system (�g, g). We know that there exists a conjugating
homeomorphism H : �̂ → �̂g which commutes with f̂ and ĝ. The natural extension �̂ is
connected if � is connected, from the fact that the topology on �̂ is induced by the product
topology from �N. Hence �̂g is connected and thus �g itself is connected too. Moreover
we have that Ū ⊂ g(U) if g is close enough to f , thus �g is a connected repellor for g.

Now for the second part of the proof, assume that x ∈ � has d f -preimages in �. Then
if Cf ∩ � = ∅ and if g is C 1-close enough to f , it follows that the local inverse iterates
of g are close to the local inverse iterates of f near �. Thus any point y ∈ �g has exactly
d g-preimages in U , denoted by y1, . . . , yd . Any of these g-preimages from U has also a
g-preimage in U since Ū ⊂ g(U), and so on. This implies that yi ∈ �g = ⋂

n∈Z
gn(U), i =

1, . . . , d ; hence y has exactly d g-preimages belonging to �g . �

We will need in the sequel an estimate of the volume of a tubular unstable neighbourhood
f n(Bn(y, ε)), where Bn(y, ε) := {z ∈ M,d(f iz, f iy) < ε, i = 0, . . . , n−1} is a Bowen ball.
The set f n(Bn(y, ε)) is a neighbourhood in M of the local unstable manifold Wu

ε (f̂ ny),
for f̂ ny = (f ny,f n−1y, . . . , y, . . .). Such sets were used in the definition of the inverse
pressure, a notion developed in order to obtain estimates for the stable dimension in the
non-invertible case ([12]).

By the measure m(·) on M we understand the Lebesgue measure defined on the manifold
M . And by Snφ(y) we denote the consecutive sum φ(y) + · · · + φ(f n−1y) for y ∈ �,φ ∈
C(�,R).

Lemma 1 Let f : M → M be a smooth endomorphism and � be a basic set on which f

is hyperbolic. Then for some fixed small ε > 0 there exist positive constants A,B > 0 such
that for any n ≥ 1 we have:

AeSn�s(y) ≤ m(f nBn(y, ε)) ≤ BeSn�s(y).

Proof First of all let us notice that Sn�
s(y) = log |det(Df n

s (y))|, y ∈ �,n ≥ 1. From [5]
we know that the stable spaces depend Holder continuously on their base point. Thus �s

is a Holder function on �, as Cf ∩ � = ∅. Thus as in Proposition 1.6 from [12], we ob-
tain a Bounded Distortion Lemma, saying that there exist positive constants Ã, B̃ such that

Ã ≤ eSn�s (z)

eSn�s (y) ≤ B̃, n ≥ 1, z ∈ Bn(y, ε). Then using this Bounded Distortion Lemma, the con-
clusion follows similarly as in [2]. �
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Theorem 1 Consider � to be a connected hyperbolic repellor for the smooth endomor-
phism f : M → M ; let us assume that the constant number of f -preimages belonging to �,
of any point from �, is equal to d . Then P (�s − logd) = 0.

Proof As we have seen in Proposition 1 if � is a connected repellor, then the number of
preimages belonging to � of any point from � is constant and equal to some integer d >

0. In fact if the neighbourhood V of � is close enough to �, then we can assume that
any point y ∈ V has exactly d f -preimages belonging to U . We want to show that there
exists a neighbourhood V of � such that any point from V has exactly dn n-preimages
belonging to U , for any n ≥ 1. First let us assume that the metric around � is adapted to the
hyperbolic structure on �, i.e. there is λ ∈ (0,1) so that if z ∈ Wu

r (ŷ) and ẑ = (z, z−1, . . .) is
the prehistory of z r-shadowing the prehistory ŷ, then

d(y, z) ≥ d(y−1, z−1) · 1

λ
≥ d(y−2, z−2) · 1

λ2
≥ · · · . (1)

Now consider a point y ∈ V and some preimage y−1 ∈ f −1(y) ∩ U . If y is close enough
to �, then y−1 ∈ U , and let us assume that we can continue this prehistory until we reach
level m. In other words (y, y−1, . . . , y−m) is a finite prehistory of y with y−1, . . . , y−m ∈ U ,
but there exists a preimage ỹ−m−1 of y−m which escapes U , so that y−m has less than d

preimages in U . From the definition of repellor we know that Ū ⊂ f (U), thus there exists
some preimage y−m−1 ∈ U ∩f −1(y−m). Then this preimage y−m−1 will have a full prehistory
in U . Since � is a basic set and y−m has a full prehistory in U , it follows that there exists a
prehistory ξ̂ ∈ �̂ such that y−m ∈ Wu

r (ξ̂ ), if U is close enough to � ([5, 18]).
Consequently y ∈ Wu

r (f̂ mξ̂ ); but from (1) we have d(y−m,�) ≤ d(y−m, ξ) ≤
λmd(y,f mξ) ≤ λmd(y,�). Recall however that a preimage of y−m escapes U , thus
d(y−m,�) must be larger than some positive fixed constant χ0. Therefore if V is close
enough to � (and hence m is large enough) we obtain a contradiction, since we know from
above that d(y−m,�) ≤ λm · d(y,�).

Hence there must exist a neighbourhood V of � such that any point from V has exactly
dn n-preimages belonging to U , for any n ≥ 1.

Let us take now an (n, ε)-separated set of maximal cardinality in � and denote it by
Fn(ε). Hence Bn(y, ε/2) ∩ Bn(z, ε/2) = ∅,∀y, z ∈ Fn(ε). From the maximality condition
it follows also that � ⊂ ⋂

y∈Fn(ε) Bn(y,2ε). Now from the fact that Cf ∩ � = ∅, it follows
that there exists a positive constant ε0 such that if y, z ∈ f −1x ∩U,y �= z, then d(y, z) > ε0.
This implies that if y, z ∈ f −nx ∩ �,y �= z, then we cannot have z ∈ Bn(y,4ε) for small
enough ε.

So for a point y ∈ V , we know that any two of its different n-preimages must be-
long to distinct balls of type Bn(ζ,2ε), ζ ∈ Fn(ε); and y must have dn n-preimages in
U . If y−n is an n-preimage in U of y, then there exists ξ̂ ∈ �̂ so that y ∈ Wu

ε (ξ̂ ) and
thus y−n ∈ Bn(ξ−n, ε) for some ξ−n ∈ �. But since Fn(ε) is a maximal (n, ε)-separated
set in �, it follows that ξ−n ∈ Bn(z,2ε) for some z ∈ Fn(ε). Hence y−n ∈ Bn(z,3ε) and
y ∈ f n(Bn(z,3ε)) for some z ∈ Fn(ε). Thus we have the following geometric picture of the
dynamics on the basin V of the repellor: through every point y ∈ V there pass dn tubu-
lar neighbourhoods of type f nBn(zi,3ε), zi ∈ Fn(ε), i = 1, . . . , dn. Let us denote such an
intersection by Vn(z1, . . . , zdn).

Therefore from Lemma 1 it follows that, if we add the volumes of all sets f n(Bn(z,3ε)),
z ∈ Fn(ε), we obtain that each piece Vn(z1, . . . , zdn) is repeated at least dn times, hence

dnm(V ) ≤
∑

z∈Fn(ε)

eSn�s(z).
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Thus since this happens for any maximal (n, ε)-separated set Fn(ε),

m(V ) ≤ Pn(�
s − logd, ε), (2)

where Pn(ψ, ε) denotes in general the quantity inf{∑z∈F eSnψ(z),F (n, ε)− separated in �},
for ψ a continuous real function on �.

Since V is a neighbourhood of � and thus m(V ) > 0, we obtain that

P (�s − logd) ≥ 0.

We prove now the opposite inequality. Indeed let us take some maximal (n, ε)-separated
set Fn(ε) in � (with respect to f ). Let a point y ∈ V , where the neighbourhood V of � was
constructed earlier in the proof. Then similar to the above proof of the first inequality, each
n-preimage yi−n of y must belong to some Bowen ball Bn(z

i,3ε), zi ∈ Fn(ε), i = 1, . . . , dn;
hence y belongs to the (open) intersection of dn tubular unstable neighbourhoods centered
at points f n(zi), z1, . . . , zdn ∈ Fn(ε), i.e. y ∈ ⋂

1≤i≤dn f n(Bn(zi,3ε)). If y would belong
also to some additional tubular unstable neighbourhood f n(Bn(ω,3ε)) for some ω ∈ Fn(ε),
besides the dn neighbourhoods f n(Bn(zi,3ε)), i = 1, . . . , dn, then it would follow that y

has an additional n-preimage ydn+1
−n ∈ Bn(ω,3ε). Thus since Bn(ω,3ε) ⊂ U for small ε > 0

and for ω ∈ �, we would get a contradiction since y has at most dn n-preimages in U ; here
we used again that � does not intersect the critical set of f . So any y ∈ V belongs to only
dn tubular unstable neighbourhoods of type f n(Bn(z

i,3ε)), i = 1, . . . , dn.
Now, as we see from Lemma 1, the Lebesgue measure of a tubular unstable neighbour-

hood f n(Bn(z,3ε)), z ∈ � is comparable to eSn�s(z) (where by comparable we mean that
the ratio of the two quantities is bounded below and above by positive constants which are
independent of z,n). Hence we showed that by taking

∑
z∈Fn(ε) e

Sn�s(z) we cover in fact a
combined volume which is less than Cdn ·m(U) (for some positive constant C independent
of n). From this observation it follows that

P (�s − logd) ≤ inf
n

1

n
m(U) = 0.

Combining the two inequalities proved above, we obtain that P (�s − logd) = 0. �

We are now ready to prove the main result of the paper, namely the existence of a physical
measure for the local inverse iterates in the neighbourhood V of the hyperbolic repellor �.
We recall that the endomorphism f is not assumed to be expanding on �, instead it has
both stable and unstable directions on �. As seen earlier, we can restrict without loss of
generality to connected repellors. Recall also that we assumed that the critical set of f does
not intersect �.

Theorem 2 Let � be a connected hyperbolic repellor for a smooth endomorphism f : M →
M . There exists a neighbourhood V of �, V ⊂ U such that if we denote by

μz
n := 1

n

∑

y∈f −nz∩U

1

d(f (y)) · · · · · d(f n(y))

n∑

i=1

δf iy, z ∈ V,

where d(y) is the number of f -preimages belonging to U of a point y ∈ V , then for any
continuous function g ∈ C(U,R) we have

∫

V

|μz
n(g) − μs(g)|dm(z) →

n→∞ 0,
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where μs is the equilibrium measure of the stable potential �s(x) := log |det(Dfs(x))|,
x ∈ �.

Proof We assume that U is the neighbourhood of � from Definition 1, i.e. such that Ū ⊂
f (U). As we proved in Proposition 1, if � is a connected hyperbolic repellor, then any point
from � has exactly d f -preimages belonging to � for some positive integer d . Moreover
as was shown in the beginning of the proof of Theorem 1, there exists a neighbourhood V

of � such that any point from V has dn n-preimages in U , for n ≥ 1.
If � is a hyperbolic repellor we have that all local stable manifolds must be contained

in �. Indeed, otherwise there may exist small local stable manifolds which are not entirely
contained in �. Let Ws

r (x), x ∈ � one such stable manifold, with a point y ∈ Ws
r (x) \ �; in

this case since y ∈ U (for small r) and since Ū ⊂ f (U), it follows that y has a full prehistory
ŷ in U , and from the fact that � is a basic set, we obtain that y ∈ Wu

r (ξ̂ ) for some ξ̂ ∈ �̂.
But then y = Ws

r (x) ∩ Wu
r (ξ̂ ), hence y ∈ � from the local product structure of � (since �

is a basic set, see for example [5]); this gives a contradiction to our assumption. Hence there
exists a small r > 0 such that all stable manifolds of size r are contained in �.

We shall denote by C(U) the space of real continuous functions on U . Let us fix now a
Holder continuous function g ∈ C(U). We will apply the L1 Birkhoff Ergodic Theorem ([8])
on �̂ for the homeomorphism f̂ −1, in order to obtain an estimate for the measure of the set
of prehistories which are badly behaved. Similarly as in [5] or [12] we know that the stable
distribution is Holder continuous, hence the stable potential on �̂ is Holder too. This means
that there exists a unique equilibrium measure for this potential on �̂; so from the bijection
between M(f ) and M(f̂ ) it follows that there exists a unique equilibrium measure for �s

on � denoted by μs . This measure is ergodic and we can apply the L1 Birkhoff Ergodic
Theorem to the function g ◦ π on �̂:

∥∥∥∥
1

n
(g(x) + g ◦ π(f̂ −1(x̂)) + · · · + g ◦ π(f̂ −n+1(x̂)) −

∫

�

g ◦ πdμ̂s

∥∥∥∥
L1(�̂,μ̂s )

→
n→∞ 0. (3)

We make now the general observation that if f : � → � is a continuous map on a com-
pact metric space �, μ is an f -invariant Borelian probability measure on � and μ̂ is the
unique f̂ -invariant probability measure on �̂ with π∗(μ̂) = μ, then for an arbitrary closed
set F̂ ⊂ �̂, we have that

μ̂(F̂ ) = lim
n

μ({x−n,∃x̂ = (x, . . . , x−n, . . .) ∈ F̂ }). (4)

Let us prove (4): first denote F̂n := f̂ −nF̂ , n ≥ 1; next notice that μ̂(F̂n) = μ̂(F̂ ) since
μ̂ is f̂ -invariant. Let also Ĝn := π−1(π(F̂n)), n ≥ 1. We have F̂ ⊂ f̂ n(Ĝn), n ≥ 0. Let
now a prehistory ẑ ∈ ⋂

n≥0 f̂ nĜn; then if ẑ = (z, z−1, . . . , z−n, . . .), we obtain that z−n ∈
πF̂n,∀n ≥ 0, hence ẑ ∈ F̂ since F̂ is assumed closed. Thus we obtain F̂ = ⋂

n≥0 f̂ n(Ĝn).

Now the above intersection is decreasing, since f̂ n+1Ĝn+1 ⊂ f̂ nĜn, n ≥ 0. Since the
above intersection is decreasing, we get that μ̂(F̂ ) = limn μ̂(f̂ nĜn) = limn μ̂(Ĝn) =
limn μ̂(π−1(π(F̂n))) = limn μ(π(F̂n)) = limn μ(π ◦ f̂ −nF̂ ), since μ̂ is f̂ -invariant. There-
fore we obtain (4).

For a positive integer n, a continuous real function g defined on the neighbourhood U of
�, and a point y so that y,f (y), . . . , f n−1(y) are all in U , let us denote by

�n(g, y) := g(y) + · · · + g(f n−1y)

n
−

∫
gdμs, n ≥ 1, y ∈ �.
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Now from the convergence in L1(�̂, μ̂s) norm established in (3), it follows the convergence
in μ̂s -measure; i.e. if we consider for a small η > 0 and an integer n > 1 the closed set:

F̂n(η) = {x̂ = (x, x−1, x−2, . . .) ∈ �̂, |�n(g, x−n)| ≥ η},
then we have the convergence

μ̂s(F̂n(η)) →
n→∞ 0, ∀η > 0. (5)

Thus from (5), (4) and the f -invariance of μs , we obtain that for any small η > 0, χ > 0
there exists an integer N(η,χ) ≥ 1 so that:

μs(x−n′ ∈ � ∩ f −n′+n(x−n), |�n(g, x−n)| ≥ η) = μs(x−n ∈ �, |�n(g, x−n)| ≥ η) < χ, (6)

for n′ > n > N(η,χ).
Let us consider now some small ε > 0. Recall that for n ≥ 1 and y ∈ �, the Bowen

ball Bn(y, ε) := {z ∈ M,d(f iy, f iz) < ε, i = 0, . . . , n − 1}. We shall prove that if y ∈ �

and z ∈ Bn(y, ε) for n large enough, then the behaviour of �n(g, z) is similar to that of
�n(g, y). More precisely, assume that η > 0 and that y ∈ � satisfies |�n(g, y)| ≥ η. Then
we will show that there exists N(η) ≥ 1 so that

|�n(g, z)| ≥ η

2
, ∀z ∈ Bn(y, ε), n > N(η). (7)

Since g was assumed Holder, let us assume that it has a Holder exponent equal to α, i.e.

|g(x) − g(y)| ≤ C · d(x, y)α, ∀x, y ∈ U,

where d(x, y) is the Riemannian distance (from M) between x and y and C > 0 is a con-
stant. The idea now is that, if z ∈ Bn(y, ε), then for some time the iterates of z follow the
iterates of y close to stable manifolds, and afterwards they follow the iterates of y closer
and closer to unstable manifolds. We have in both cases an exponential growth of distances
between iterates, and thus we can use the Holder continuity of g on U .

If z ∈ Bn(y, ε), y ∈ � then we either have z ∈ Ws
ε (y) ⊂ � or there exists a positive

distance between z and the local stable manifold Ws
ε (y). In the first case there exists some

λs ∈ (0,1) such that d(f iz, f iy) < λi
sε, i = 0, . . . , n−1. This implies that, in the case when

z ∈ Ws
ε (y), for some N0 ≥ 1 we have:

|g(f N0y) + · · · + g(f n−1y) − g(f N0z) − · · · − g(f n−1z)| ≤ λαN0
s · C0, (8)

for some constant C0 > 0 independent of n. If z ∈ Bn(y, ε) but z is not necessarily on Ws
ε (y),

then the iterates of z will approach exponentially some local unstable manifolds at the cor-
responding iterates of y and their “projections” on these unstable manifolds increases expo-
nentially, up to a maximum value less than ε (reached at level n). More precisely there ex-
ists some N0,N1 ≥ 1 and some λ ∈ (λs,1) such that d(f iz, f iy) ≤ λi, i = N0, . . . ,N1 − 1;
notice that N0,N1, λ are independent of y, z,n. Now if the iterate f N1z becomes much
closer to Wu

ε (f N1y) than to Ws
ε (f N1y), it follows that all the higher order iterates will ap-

proach asymptotically the local unstable manifolds and d(f jy, f j z) increases exponen-
tially. We assume that N1 has been taken such that for some λu ∈ ( 1

inf� |Dfu| ,1), we have

d(f j z, f jy) ≤ λu · d(f j+1z, f j+1y), j = N1, . . . , n − 2. So the maximum such distance is
d(f n−1y,f n−1z) and we know that d(f n−1y,f n−1z) < ε since z ∈ Bn(y, ε). Hence

d(f j z, f jy) ≤ ελn−j−1
u , j = N1, . . . , n − 1.
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Let us take now some N2 ≥ 1 such that n − N2 > N1; N2 will be determined later. Thus
from the Holder continuity of g on U we obtain (for some positive constant C) that:

|g(f N0z) + · · · + g(f N1−1z) + g(f N1z) + · · · + g(f n−N2z) + · · · + g(f n−1z)

− g(f N0y) − · · · − g(f N1−1y) − g(f N1y) − · · · − g(f n−N2y) − · · · − g(f n−1y)|
≤ C(λαN0 + λαN2

u ) + 2N2‖g‖. (9)

Thus from (8) and (9) we obtain that, if z ∈ Bn(y, ε) then:

|�n(g, y) − �n(g, z)| ≤ 1

n

[
2N0‖g‖ + C(λαN0 + λαN2

u ) + 2N2‖g‖] . (10)

From above, N0,N2 do not depend on n,y, z. Therefore we can choose some large N(η)

so that

1

n
(2N0‖g‖ + C(λαN0 + λαN2

u ) + 2N2‖g‖) < η/2, for n > N(η).

This means that the relation from (7) holds. Let us denote now by:

In(g, x) := 1

dn

∑

y∈f −n(x)∩U

|�n(g, y)|, (11)

for a continuous real function g : U → R, and x ∈ V . Recall that V is the neighbourhood
of �, � ⊂ V ⊂ U , constructed in the proof of Theorem 2 so that every point x ∈ V has dn

n-preimages in U for n ≥ 1. For a fixed Holder continuous function g and a small η > 0,
we will work with n > N(η), where N(η) was found above. From (10) and the discussion
afterwards, we know that |�n(g, z) − �n(g, y)| ≤ η/2 if z ∈ Bn(y, ε) and y ∈ �.

Let us consider now an (n, ε)-separated set with maximal cardinality in �, denoted by
Fn(ε). As in the proof of Theorem 1 it follows that any point y ∈ V belongs to dn tubular
neighbourhoods, i.e. f n(Bn(yi,3ε)), yi ∈ Fn(ε) for 1 ≤ i ≤ dn. Let us denote as before
Vn(y1, . . . , ydn) := ⋂

1≤i≤dn f nBn(yi,3ε). Thus in the integral
∫

V
In(g, x)dm(x), we can

decompose V into the smaller pieces Vn(y1, . . . , ydn), for different choices of y1, . . . , ydn ∈
Fn(ε).

We can use now relation (10) in order to replace in
∫

V
In(g, x)dm(x), the term |�n(g, y)|

with |�n(g, ζ )|, where x ∈ V is arbitrary, y ∈ f −nx ∩ U and y ∈ Bn(ζ,3ε) for some ζ ∈
Fn(ε). Indeed let us fix some arbitrary small η > 0. Then we prove similarly as in (10) that
if n > N(η), then |�n(g, y)| ≤ |�n(g, ζ )| + η/2, if y ∈ Bn(ζ,3ε) and ζ ∈ Fn(ε) (N(η) can
be assumed to be the same as in (10) without loss of generality).

So up to a small error of η/2 we can replace each of the terms |�n(g, y)| with the cor-
responding |�n(g, ζ )|. This implies that in the integral

∫
V

In(g, x)dm(x), on each piece
of type Vn(y1, . . . , ydn) in f n(Bn(yj ,3ε)) for yj ∈ Fn(ε), we integrate in fact |�n(g, yj )|,
modulo an error of η/2. Then we will obtain that

∫

V

In(g, x)dm(x) ≤ 1

dn

∑

z1,...,zdn∈Fn(ε)

∫

Vn(z1,...,zdn )

n∑

i=1

|�n(g, zi)|dm + η

2
· m(V )

≤ 1

dn

∑

z∈Fn(ε)

|�n(g, z)| ·
∑

z∈{z1,...,zdn }
m(Vn(z1, . . . , zdn)) + m(V )η/2
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≤ 1

dn

∑

z∈Fn(ε)

|�n(g, z)| · m(f nBn(z,3ε)) + m(V )η/2.

So what we did is, we replaced |�n(g, y)| with |�n(g, z)| for all y ∈ f −nx ∩ U , where
y ∈ Bn(z,3ε), z ∈ Fn(ε), then we integrated the respective sums of |�n(g, z)|, z ∈ Fn(ε)

on small pieces of tubular overlap Vn(z1, . . . , zdn ); lastly, we kept |�n(g, z)| fixed for an
arbitrary z ∈ Fn(ε) and added the measures of all intersections of f nBn(z,3ε) with other
tubular sets of type f nBn(w,3ε),w ∈ Fn(ε). Thus by adding the measures of these overlaps,
we recover m(f nBn(z,3ε)). In conclusion we obtain:

∫

V

In(g, x)dm(x) ≤ C ·
∑

y∈Fn(ε)

|�n(g, y)| · m(f n(Bn(y,3ε))

dn
+ η

2
· m(V ). (12)

We recall now from Lemma 1, that m(f n(Bn(y,3ε))) is comparable to eSn�s(y), indepen-
dently of n,y ∈ �. And from Theorem 1 we know that P (�s) = logd . Hence from Proposi-
tion 2 we have that, if μs denotes the unique equilibrium measure of �s , then μs(Bn(y, ε/2))

is comparable to eSn�s (y)

dn , independently of n,y. Therefore combining with (12) we obtain
that there exists a constant C1 > 0 s.t:

∫

V

In(g, x)dm(x) ≤ C1

⎛

⎝
∑

y∈Fn(ε)

|�n(g, y)|μs(Bn(y, ε/2)) + η

⎞

⎠ , (13)

for n > N(η). We will split now the points of Fn(ε) in two disjoint subsets denoted by
G1(n, ε) and G2(n, ε), defined as follows:

G1(n, ε) := {y ∈ Fn(ε), |�n(g, y)| < η} and G2(n, ε) := {z ∈ Fn(ε), |�n(g, z)| ≥ η}.

Recall that the Bowen balls Bn(y, ε/2), y ∈ Fn(ε) are mutually disjointed since Fn(ε)

is (n, ε)-separated. Also if y ∈ G2(n, ε) and z ∈ Bn(y, ε/2), we have |�n(g, z)| ≥ η/2
(from (7)); hence Bn(y, ε/2) ∩ � ⊂ {z ∈ �, |�n(g, z)| ≥ η/2}. Consequently for a constant
Cε > 0,

∑

y∈Fn(ε)

|�n(g, y)|μs(Bn(y, ε/2))

=
∑

y∈G1(n,ε)

|�n(g, y)|μs(Bn(y, ε/2)) +
∑

y∈G2(n,ε)

|�n(g, y)|μs(Bn(y, ε/2))

≤ η
∑

y∈G1(n,ε)

μs(Bn(y, ε/2)) + 2‖g‖μs

(
z ∈ �, |�n(g, z)| ≥ η

2

)
· Cε.

But since the balls Bn(y, ε/2), y ∈ Fn(ε) are mutually disjoint, we have∑
y∈G1(n,ε) μs(Bn(y, ε/2)) ≤ 1. Also μs(z ∈ �, |�n(g, z)| ≥ η/2) < χ for n > N(η/2, χ),

as follows from (6). Thus by using (13) we obtain for n > sup{N(η),N(η,χ)}
∫

V

In(g, x)dm(x) ≤ C1(η + η + Cε · 2‖g‖χ) = 2C1(η + χ · Cε‖g‖).
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Since η,χ > 0 were taken arbitrarily, and by recalling the formula for In(g, x) from (11)
and the definition of μz

n, we obtain that:

∫

V

|μz
n(g) − μs(g)|dm(z) →

n→∞ 0.

Since Holder continuous functions g are dense in the uniform norm on C(U), we obtain the
conclusion of the Theorem for all g ∈ C(U). �

Corollary 1 In the same setting as in Theorem 2, it follows that there exists a Borelian set
A ⊂ V with m(V \ A) = 0 and a subsequence (nk)k such that μz

nk
→k→∞ μs (as measures

on U ), for any point z ∈ A.

Proof Let us fix g ∈ C(U). From the convergence in Lebesgue measure of the sequence
of functions z → μz

n(g), n ≥ 1, z ∈ V obtained from Theorem 2, it follows that there
exists a Borelian set A(g) with m(V \ A(g)) = 0 and a subsequence (np)p so that
μz

np
(g)→p μs(g), z ∈ A(g). Let us consider now a sequence of functions (gm)m≥1 dense

in C(U). By applying a diagonal sequence procedure we obtain a subsequence (nk)k so that
μz

nk
(gm)→k μs(gm),∀z ∈ ⋂

m A(gm),∀m ≥ 1. We have also m(V \ ⋂
m A(gm)) = 0, since

m(V \ A(gm)) = 0,m ≥ 1. However any real continuous function g ∈ C(U) can be approx-
imated in the uniform norm by functions gm, hence it follows that μz

nk
(g)→k μs(g),∀z ∈

A := ⋂
m A(gm). But we showed above that m(V \A) = 0. So we obtain that μz

nk
→k μs for

all points z ∈ A, where A has full Lebesgue measure in V . �

3 Ergodic Properties of the Inverse SRB Measure. Examples

In this section we will pursue further ergodic properties of the inverse physical measure con-
structed in Theorem 2 and give also examples. Let us first remind the notion of the Jacobian
of an endomorphism, relative to an invariant probability measure, from Parry’s book ([14]).
Let f : (X, B,μ) → (X, B,μ) a measure preserving endomorphism on a Lebesgue proba-
bility space. Assume that the fibers of f are countable, i.e. f −1x is countable for μ-almost
all x ∈ X. It can be proved ([14]) that in this case f is positively non-singular, i.e. μ(A) = 0
implies μ(f (A)) = 0 for an arbitrary measurable set A ⊂ X. Also there exists a measurable
partition α = (A0,A1, . . .) of X such that f |Ai

is injective. Then using the absolute continu-
ity of μ ◦ f with respect to μ, we define the Jacobian Jf,μ on each set Ai , to be equal to the
Radon-Nikodym derivative dμ◦f

dμ
. So:

Jf,μ(x) = dμ ◦ f

dμ
(x), x ∈ Ai, i ≥ 0.

This is a well defined measurable function, which is larger or equal than 1 everywhere (due
to the f -invariance of μ). Also it is easy to see that Jf,μ(·) is independent of the partition
α and that it satisfies a Chain Rule, namely Jf ◦g,μ = Jf,μ · Jg,μ if f,g : X → X and both
preserve μ. From Lemma 10.5 of [14] we also know that

logJf,μ(x) = I (ε/f −1ε)(x),
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for μ-almost every x ∈ X, where ε is the partition of X into single points, and I (ε/f −1ε)(·)
is the conditional information function of ε given the partition f −1ε. Also from the defini-
tion of the Jacobian we see ([7]) that:

μ(f A) =
∫

A

Jf,μ(x)dμ(x), (14)

for all special sets A, i.e. measurable sets such that f |A : A → f (A) is injective. Recall
that by Definition 1, f does not have any critical points in �. Before proving the main
result of this Section, we remind the notion of measurable partitions subordinated to local
stable manifolds; for background on measurable partitions, Lebesgue spaces and conditional
measures, one can use [15].

Let f : M → M be a smooth endomorphism defined on a Riemannian manifold M which
is endowed with its Borelian σ -algebra B. Let also a probability Borelian measure μ on M

which is f -invariant. If ξ is a measurable partition of M , then we denote by ξ(x) the unique
subset of ξ containing x ∈ X; also by (M/ξ,μξ ) we denote the factor space relative to ξ . To
any measurable partition ξ on (M, B,μ) one can attach an essentially unique collection of
conditional measures {μC}C∈ξ satisfying two conditions (see [15]):

(i) (C,μC) is a Lebesgue space
(ii) for any measurable set B ⊂ M , the set B ∩ C is measurable in C for almost all points

C ∈ M/ξ of the factor space, and the function C → μC(B ∩ C) is measurable on M/ξ

and μ(B) = ∫
M/ξ

μC(B ∩ C)dμξ .

Similar to the case of partitions subordinated to unstable manifolds ([21]) we can say (as
in [7]), that a measurable partition ξ of (M, B,μ) is subordinate to local stable manifolds
if for μ-almost all x ∈ M one has ξ(x) ⊂ Ws

r (x) and if ξ(x) contains an open neighbour-
hood of x inside Ws

r (x) (where r > 0 is sufficiently small). We can define now the absolute
continuity of conditional measures on stable manifolds as in [7]:

Definition 2 In the above setting, we say that μ has absolutely continuous conditional mea-
sures on local stable manifolds if for every measurable partition ξ subordinated to local
stable manifolds, we have for μ almost all x ∈ M that μξ

x � ms
x , where μξ

x is the condi-
tional measure of μ on ξ(x) and ms

x denotes the induced Lebesgue measure on Ws
r (x).

By the result of Liu ([7]), we know that there exists at least one measurable partition
subordinated to local stable manifolds.

Now, by Oseledec Theorem ([8]) we have that for any f -invariant Borel probability
measure μ on M , and for μ-almost every point x ∈ M there exists a finite collection of
numbers, called Lyapunov exponents of f at x with respect to μ, −∞ ≤ λ1(x) < λ2(x) <

· · · < λq(x)(x) < ∞, and a unique collection of tangent subspaces of TxM , V1(x) ⊂ · · · ⊂
Vq(x)(x) = TxM so that

lim
n

1

n
log |Df n

x (v)| = λi(x), ∀v ∈ Vi(x) \ Vi−1(x),1 ≤ i ≤ q(x), |v| = 1.

We also denote by mi(x) := dimVi(x) − dimVi−1(x) the multiplicity of λi(x). As we saw
before, if � is a connected repellor for f then f |� is constant-to-1. We are now ready to
prove the following:
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Theorem 3 Let � be a connected hyperbolic repellor for a smooth endomorphism f : M →
M on a Riemannian manifold M ; assume that f is d-to-1 on �. Then there exists a unique
f -invariant probability measure μ− on � satisfying an inverse Pesin entropy formula:

hμ−(f ) = logd −
∫

�

∑

i,λi (x)<0

λi(x)mi(x)dμ−(x).

In addition the measure μ− has absolutely continuous conditional measures on local stable
manifolds.

Proof Notice that from the above properties of Lyapunov exponents, the derivative Df n
s,x for

large n, takes into consideration all the vectors v ∈ Vi(x) for those i for which λi(x) < 0,
i.e. for which we have contraction in the long run. Thus if μ is an f -invariant probability
measure supported on �, we have by the Chain Rule and Birkhoff Theorem that

∫

�

�sdμ =
∫

�

lim
n

1

n

n−1∑

i=0

�s(f ix)dμ(x)

=
∫

�

lim
n

1

n
log |det(Df n

s,x)|dμ(x) =
∫

�

∑

i,λi (x)<0

λi(x)mi(x)dμ(x). (15)

It follows that the inverse Pesin entropy formula from the statement of the Theorem is
satisfied for μ = μs since μs is the equilibrium measure of �s and we showed in Theorem 1
that P (�s − logd) = 0. If the inverse Pesin entropy formula would be satisfied for another
invariant measure μ, then we would have hμ(f ) = logd − ∫

�

∑
i,λi (x)<0 λi(x)mi(x)dμ(x),

hence:

P (�s − logd) ≥ hμ − logd +
∫

�

�sdμ = 0.

However again from Theorem 1 we know that P (�s − logd) = 0, thus μ is an equi-
librium measure for �s . But �s is Holder continuous and thus it has a unique equilibrium
measure. Therefore if μ− := μs , we have

μ = μs = μ−.

We want now to show the absolute continuity of conditional measures of μ− on local sta-
ble manifolds. For this we will use Corollary 1 and results from [7]. Indeed we know that �

is a connected hyperbolic repelor and thus f is d-to-1 for some integer d ≥ 1 in a neighbour-
hood V of �. We constructed the measures μz

n, z ∈ V,n ≥ 1,μz
n := 1

dn

∑
y∈f −nz

1
n

∑n

i=1 δf iy ;
and we showed in Corollary 1 that there exists a subset A ⊂ V , having full Lebesgue mea-
sure and a subsequence (μz

nk
)k converging weakly towards μ− := μs for every z ∈ A. Now

in (14) we can take only special sets whose boundaries have μ−-measure equal to zero.
For such a set B we have that μnk

(B)→k→∞ μ−(B). But then from the definition of μz
n it

follows that μ−(f (B)) = dμ−(B) for any such special set with boundary of measure zero.
As these sets form a sufficient collection ([5]), we obtain that the Jacobian Jf,μ− is con-
stant μ−-almost everywhere and equal to d . Hence from Lemma 10.5 of [14], if ε denotes
the partition of M into single points, we deduce that the conditional information function
I (ε/f −1ε)(x) = logJf,μ−(x) = logd for μ−-almost all x ∈ �; thus

Hμ−(ε/f −1ε) =
∫

I (ε/f −1ε)(x)dμ−(x) = logd.
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Then since hμ− = logd − ∫
�

∑
λi (x)<0 λi(x)dμ−(x), it follows that

hμ− = Hμ−(ε/f −1ε) −
∫

�

∑

i,λi (x)<0

λi(x)mi(x)dμ−(x).

Hence from [7] we obtain that μ− has absolutely continuous conditional measures on local
stable manifolds. �

We study now whether the measure-preserving endomorphism (�,f |�, B(�),μ−) is
isomorphic to a 1-sided Bernoulli transformation. For definitions and properties of 1-sided
Bernoulli maps, see for example [2, 3, 15], etc. The question of whether a dynamical system
with an invariant probability measure is Bernoulli (1-sided or 2-sided) is very important and
was solved in a number of cases ([3, 8]). It gives a coding of the system from the point
of view of the measure. For example for diffeomorphisms, it was shown that a hyperbolic
attractor with its unique SRB measure is 2-sided Bernoulli ([2, 8, 20]). Also, for expanding
maps on a space X, there exist Markov partitions ([19]); this implies that X, together with
the equilibrium measure of any Holder potential, is measure-isomorphic to a 1-sided Markov
chain ([17, 19]). However in our non-invertible non-expanding case we will see that this is
not true anymore and that (�,f |�, B(�),μ−) is not 1-sided Bernoulli. Here B(�) denotes
the σ -algebra of Borelian sets in �.

Theorem 4 Let f as above and � a connected repellor as in Theorem 3 so that f is not
invertible on �. Then (�,f |�, B(�),μ−) cannot be one-sided Bernoulli.

Proof Let (�+
m,σm, Bm,μp) a one-sided Bernoulli shift on m symbols ([8]), where Bm de-

notes the σ -algebra of sets generated by cylinders in �+
m , σm is the shift map, and μp is the

σm-invariant measure associated to a probability vector p = (p1, . . . , pm).
We know from Proposition 1 that if � is connected, then the number of f -preimages be-

longing to � is constant, and denote it by d ; we assumed that d > 1. If (�,f |�, B(�),μ−)

would be isomorphic to a one-sided Bernoulli system (�+
m,σm, Bm,μp), then d = m since

the number of preimages is constant everywhere, for both systems. But then from the Vari-
ational Principle for entropy, we would obtain:

hμ− = hμp ≤ htop(σm) = logm = logd. (16)

On the other hand since μ− satisfies the Pesin formula on �, we get that hμ− =
logd − ∫

�sdμ−. But �s < 0 and Cf ∩ � = ∅, hence hμ− > logd . This gives a contra-
diction to (16). �

We prove now that, in spite of not being 1-sided Bernoulli, the inverse SRB measure μ−
has strong mixing properties on the repellor �.

Given a transformation f : M → M we say that an f -invariant probability μ has Expo-
nential Decay of Correlations on Holder potentials ([2]) if there exists some λ ∈ (0,1) such
that for every n ≥ 1:

∣∣∣∣
∫

φ · ψ ◦ f ndμ −
∫

φdμ ·
∫

ψdμ

∣∣∣∣ ≤ C(φ,ψ)λn,

for any Holder maps φ,ψ ∈ C(M,R), where C(φ,ψ) depends only on the potentials φ,ψ .



816 E. Mihailescu

Given now a Lebesgue space X and an endomorphism f : X → X preserving a proba-
bility measure μ, we say that (X,f, B(X),μ) is an exact endomorphism ([8, 15, 16]) if

⋂

n≥0

f −nB(X) = N ,

where N is the σ -algebra containing only sets of μ-measure 0 or 1. Exact endomorphisms
are important in ergodic theory and were first studied by Rohlin in [15, 16]. For instance he
proved that (X,f, B(X),μ) is exact if and only if for any measurable set of positive measure
A ⊂ X, we have limn→∞ μ(f nA) = 1.

Now consider m-tuples of positive integers � = (k1, . . . , km) and denote by �(�) :=
inf |ki − kj |,1 ≤ i < j ≤ m. We say that (X,f, B(X),μ) is mixing of order m if for
any arbitrary measurable sets A1, . . . ,Am and for any sequences of m-tuples �1 =
(k1

1, . . . , k
1
m),�2 = (k2

1, . . . , k
2
m), . . ., with limn→∞ �(�n) = ∞, we have

lim
n→∞μ

(
m⋂

i=1

f −kn
i Ai

)
=

m∏

i=1

μ(Ai).

If m = 2 we obtain the usual notion of mixing measure. An exact endomorphism is
mixing of any order, as shown in [16].

Theorem 5 Let a repellor � for a smooth endomorphism as in Theorem 2 and let μ− be
the unique inverse SRB measure associated. Then

(i) μ− has Exponential Decay of Correlations on Holder potentials;
(ii) (�,μ−) is exact, and thus it is mixing of any order.

Proof Since we have a uniformly hyperbolic structure for the endomorphism f on �, we
can associate to it a Smale space structure on the natural extension �̂ ([17]). Therefore
on �̂ there exist Markov partitions of arbitrarily small diameter ([17]). Now these Markov
partitions imply the existence of a semi-conjugacy h with a 2-sided mixing Markov chain
�A. We have therefore the Lipschitz continuous maps

h : �A → �̂, and π : �̂ → �

such that π ◦ f̂ = f ◦ π,h ◦ σA = f̂ ◦ h, where σA is the shift homeomorphism.
Now, since the stable potential �s on � is Holder continuous, it follows that �s :=

�s ◦ π ◦ h : �A → R is Holder continuous and to the unique equilibrium measure μs of �s

it corresponds the unique equilibrium measure ν of �s on �A, s.t μs = (π ◦ h)∗ν. We have
that Pf (�s) = PσA

(�s) and hμs (f ) = hν(σA). Also notice that

∫

�

φdμs =
∫

�A

φ ◦ π ◦ hdν, φ ∈ C(�).

Now we do have Exponential Decay of Correlations for Holder potentials for (�A, ν) (for
example [2]); so the same holds for f |� and the equilibrium measure μs . Recalling that we
denoted μ− := μs , we obtain (i).

For (ii) we shall use that (�,f |�, B(�),μ−) is exact if and only if its natural extension
is a K-automorphism ([16]). But its natural extension is (�̂, f̂ , B(�̂), μ̂s), which is isomor-
phic to (�A,σA, B(�A), ν) from the discussion above. We know that Markov chains with
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equilibrium measures of Holder potentials are K-automorphisms ([15]), hence the natural
extension of (�,μ−) is a K-automorphism. Thus (�,f |�, B(�),μ−) is exact, and thus it is
mixing of any order by the result in [16]. �

Examples
1. Toral endomorphisms. Let us take an integer valued m × m matrix A with det(A) �= 1.

This matrix induces a toral endomorphism fA : T
m → T

m. This toral endomorphism trans-
forms the unit square into a parallelogram in R

m of area (Lebesgue measure) equal to
|det(A)|, and whose corners are points having only integer coordinates. Thus when we
project to T

m, we obtain that fA is |det(A)|-to-1. If all eigenvalues of A have absolute
values different from 1, then fA is hyperbolic on the whole torus T

m.
Theorem 2 can be applied in this case, since T

m is a connected hyperbolic repellor for
fA, and we obtain a physical measure for the multivalued inverse iterates of fA. In this case
the inverse SRB measure μ− is in fact the Haar measure on T

m since the stable potential is
constant. Also from Theorem 3, we obtain that a Pesin type formula holds for the negative
Lyapunov exponents.

2. Anosov endomorphisms. Theorems 2 and 3 can be applied also in the case of Anosov
endomorphisms on a Riemannian manifold M , since M can be viewed as a hyperbolic re-
pellor. In general the stable potential is not constant and μ− is not necessarily absolutely
continuous with respect to the Lebesgue measure on M . We obtain again that the asymp-
totic distribution of preimages for Lebesgue almost every point in M is equal to the equi-
librium measure μ− = μs , and that the inverse SRB measure μ− has absolutely continuous
conditional measures on local stable manifolds.

3. Non-Anosov hyperbolic non-expanding repellors for products. Let us take for instance
f : PC

1 → PC
1, f ([z0 : z1]) = [z2

0 : z2
1], and g : T

2 → T
2, g being induced by the matrix

A =( 2 2
2 3

)
. We see easily that A has one eigenvalue in (0,1) and another larger than 1, so g

is hyperbolic. We take the product

F : PC
1 ×T

2 → PC
1 ×T

2, F ([z0 : z1], (x, y)) = (f ([z0 : z1]), g(x, y)) and � := S1 ×T
2.

Then � is a connected hyperbolic non-Anosov repellor for the smooth endomorphism F

and we can apply Theorems 2 and 3.
4. Perturbations. According to Proposition 3, if f is hyperbolic on a connected repellor

� and if an endomorphism g is a C 1 perturbation of f , then g has a connected hyperbolic
repellor denoted �g which is close to �. We can form then a large class of examples by
perturbing known examples, like the ones above. Then since g is hyperbolic on �g we
can again apply Theorems 2 and 3, this time for inverse SRB measures which might be
more complicated than in the original (unperturbed) example. For instance, let us take F :
PC

1 × T
2 → PC

1 × T
2 given by

F([z0 : z1], (x, y)) = ([z2
0 : z2

1], fA(x, y)),

where fA is the toral endomorphism induced by the matrix A = ( 2 1
2 2

)
. As can be seen, F

has a connected hyperbolic repellor � := S1 × T
2. Consider the following perturbation of

F , Fε : PC
1 × T

2 → PC
1 × T

2 given by:

Fε([z0 : z1], (x, y))

= ([z2
0 + εz2

1 · e2πi(2x+y) : z2
1], (2x + y + ε sin(2π(x + y)),2x + 2y + ε cos2(4πx))

)
.
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It can be seen that Fε is well defined as a smooth endomorphism on PC
1 × T

2 and that it
is a C 1 perturbation of F . It follows from Proposition 3 that Fε has a connected hyperbolic
repellor �ε (on which Fε has both stable as well as unstable directions), and that �ε is
close to �. However �ε is different from �, and it has a complicated structure with self-
intersections; its projection on the second coordinate is T

2. For this repellor �ε we can apply
Theorem 2 to get a physical measure μ−

ε for the local inverse iterates of Fε . This physical
measure μ−

ε is the equilibrium measure of the non-constant stable potential

�s
ε([z0 : z1], (x, y)) := log |det(DFε)s([z0 : z1], (x, y))|, for ([z0 : z1], (x, y)) ∈ �ε.

We know from Theorem 3 that the conditional measures of the inverse SRB measure μ−
ε on

the local stable manifolds (which are contained in the repellor �ε), are absolutely continuous
with respect to the induced Lebesgue measures.

Also a Pesin type formula is true for the measure-theoretic entropy hμ−
ε

of μ−
ε , and the

negative Lyapunov exponents (which are non-constant if ε �= 0).

Similarly one can perturb other connected hyperbolic repellors to obtain new dynamical
systems for which Theorems 2 and 3, as well as Corollary 1 can be applied.

Another observation is that one can form repellors quite easily. We need only the exis-
tence of families of stable/unstable cones in some open set U and the topological condi-
tion Ū ⊂ f (U). Then one can form the basic set � := ⋂

n∈Z
f n(U), on which we have a

hyperbolic structure. The inverse SRB measure μ− supported on � can be approximated
Lebesgue almost everywhere on U , like in Theorem 2, and will have good ergodic proper-
ties as found in Theorem 5. However it may be difficult to describe this measure explicitly,
especially in the non-Anosov case, since (�,μ−) is not 1-sided Bernoulli.
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