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Abstract

In this paper we study some of the dynamical properties of non-invertible hyperbolic con-
formal maps. Non-invertibility is a very important factor which prevents one from using the
same methods as in the diffeomorphism case, and in fact generates new phenomena and exam-
ples. We will give in this paper several results about establishing hyperbolicity for skew product
maps, estimating Hausdorff dimension by using thermodynamical formalism, and investigating
the geometric structure of dynamically interesting sets using equilibrium states.
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1 Introduction

In dynamical systems, one of the most important directions is to study the invariant sets which
appear from the iteration of maps (or from a flow). Usually such sets have a very irregular (fractal)
structure and are not manifolds, except for special cases.

One is then compelled to investigate the structure of such sets and to study their Hausdorff
dimension, upper (lower) box dimension, capacity, measures which are supported on these sets, etc.
This can be done with the help of thermodynamical formalism.

There are however important differences between the invertible and non-invertible cases, and
simple examples show that the structure of fractal sets obtained from iterations of non-invertible
maps is different and in some cases, more difficult to understand than in the diffeomorphism case.

Our goal in Section 2 will be to estimate the Hausdorff dimension of fractal sets obtained
from non-invertible hyperbolic maps, and also to give information about the geometric structure
of stable/unstable manifolds. We will also give many examples of non-invertible maps.

First, let us give the definition of basic sets.

Definition 1. Let M be a compact Riemannian manifold and f : M → M be a smooth (for
example C1) map; we will say that a set Λ of M is f -invariant if f(Λ) = Λ.

Then we say that Λ is a basic set if f |Λ : Λ→ Λ is topologically transitive and there exists a
neighbourhood U of Λ such that Λ =

∞
∩

n=−∞
f−n(U).
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More general information about dynamical systems and ergodic theory definitions and basic
concepts (like Axiom A, hyperbolicity, transitivity, local stable/unstable manifolds, etc.), can be
found for example in [5], [18], [16].

We introduce now an important notion from thermodynamical formalism, which appeared as a
generalization of the topological entropy htop(f) of a transformation f : X → X ([18]).

Definition 2. Let f : X → X be a continuous map on a compact metric space and φ : X → R
continuous. For an integer n ≥ 1, let dn(x, y) := sup{d(f i(x), f i(y)), i = 0, . . . , n}.

We say that a set E ⊂ X is (n, ε)-separated if for all x, y ∈ E, x 6= y, we have dn(x, y) > ε.
Denote also Bn(x, ε) := {z ∈ X, dn(x, z) < ε}, which is called the Bowen ball for dn, centered in
x and of radius ε.

We say that a set F ⊂ X is (n, ε)-spanning for X if for any x ∈ X, there exists a point y ∈ F
such that x ∈ Bn(y, ε).

We shall denote in the sequel the consecutive sum φ(x) + φ(fx) + . . . + φ(fnx) by Snφ(x) for
any x ∈ X.

Definition 3. For a map f : X → X and a potential φ : X → R as above, let the quantities:

Pspan(φ, n, ε) := lim
n→∞

1
n

log inf{
∑
x∈Fn

eSnφ(x), Fn (n, ε)− spanning set for X} and

Psep(φ, n, ε) := lim
n→∞

1
n

log sup{
∑
x∈En

eSnφ(x), En (n, ε)− separated set in X}

Then it can be proved that the limit lim
ε→0

Pspan(φ, n, ε) exists and it is equal to lim
ε→0

Psep(φ, n, ε).
Their common value is called the topological pressure of φ with respect to f on X, denoted by
P (φ), or Pf (φ) when it is necessary to specify the map f as well.

Observation: When the potential φ ≡ 0, we obtain P (0) = htop(f), namely the topological
entropy of f on X.

We note also that the notion of topological pressure has been extended by Mihailescu and
Urbanski in a series of papers to several notions of inverse pressure, which are necessary for
dimension estimates purposes when working with a non-invertible map ([11], [12]).

Let us give now a classical and important result obtained by Manning and McCluskey [7], about
the relation between the Hausdorff dimension of intersections between stable/unstable manifolds
and basic sets on one hand, and the zeros of topological pressure on the other hand.

Theorem (Manning, McCluskey). Let Λ be a basic set for a C1 Axiom A diffeomorphism of a real
surface f : M →M , with a hyperbolic (1,1) splitting of the tangent bundle TΛM = Es⊕Eu. Define
also the negative function Φu(x) := − log |Df |Eu

x
|. Then the Hausdorff dimension of W u

r (x) ∩ Λ is
given by the unique zero tu of the pressure function t→ Pf |Λ(tΦu).

Thus, HD(W u
r (x)∩Λ) is independent of x ∈ Λ and depends continuously on f in the C1 topology

on diffeomorphisms.
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The same conclusion applies to HD(W s
r (x) ∩ Λ) which is equal to ts0, the unique zero of the

function t→ P (tΦs), where Φs : Λ→ R,Φs(x) := log |Df |Es
x
|, x ∈ Λ.

Corollary. For a C1 open dense subset of the C1 Axiom A no-cycle diffeomorphisms of a real
surface M , each basic set that is not an attractor has δu < 1, where δu := HD(W u

r (x) ∩ Λ), x ∈ Λ
(we saw in the previous theorem that HD(W u

r (x) ∩ Λ) does not depend on x).

Proof. The property is true for a C2 difeomorphism (Bowen, [3]). Then, by continuity, we still have
δu < 1 for a C1-neighbourhood of f .

Thus, the union of these neighbourhoods gives the required C1-open dense set.

Let us note however that there exists an example of a C1-diffeomorphism of a surface with a
horseshoe of positive measure, obtained as a product of sets with positive Lebesgue measure in
both stable and unstable manifolds ([2]).

2 Non-invertible dynamics of conformal maps

Our goal now is to extend some of these results to a non-invertible situation. In this case the
situation is different due to the number of preimages (which may or may not be constant along
the respective basic set). For example in [10] it has been noted that the stable dimension δs even
for a simple function as (z, w) → (z2 + c, w2), is not equal to the zero of the pressure function
t → P (tΦs). Indeed if the examples are perturbations of this map, the situation becomes even
more complicated, as it is not clear how many of the preimages of a point x ∈ Λ still belong to the
same basic set Λ.

The hyperbolicity condition is a cornerstone of the theory of dynamical systems, and in partic-
ular that of the metric properties of fractal sets; we shall give below the definition of hyperbolicity
for non-invertible maps.

Let us consider a smooth (for example C2) map f : M → M on a C2 compact Riemannian
manifold M ; take also a basic set Λ in M (the definition of basic sets for non-invertible maps
remains the same, namely we require f to be topologically transitive on Λ and that there exists a
neighbourhood U of Λ such that Λ =

∞
∩

n=−∞
f−n(U)).

For a compact invariant set Λ ⊂ M , define also the space of prehistories (or the natural
extension) Λ̂, as the set {x̂ = (x, x−1, x−2, . . .), x−i ∈ Λ, f(x−i) = x−i+1, i ≥ 0}. We endow this
set with the structure of a compact metric space by putting the metric d(x̂, ŷ) =

∑
m≥0

d(x−m,y−m)
2m .

On Λ̂ we have a natural homeomorphism, f̂(x̂) = (f(x), x, x−1, . . .), x̂ ∈ Λ̂, f̂ : Λ̂→ Λ̂.

Definition 4. ([16]) We will say that f is hyperbolic on a basic set Λ if there exists a continuous
invariant splitting of the tangent bundle over Λ̂, where TΛ̂M := {(x̂, v), v ∈ TxM}. Namely we
have the splitting

TΛ̂M = EsΛ ⊕ EuΛ̂,
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such that Df(Esx) ⊂ Esfx, Df−1(Eux̂) ⊂ Eu
f̂−1x̂

, and Df is uniformly contracting on Esx, respectively

uniformly expanding on Eux̂ , for every x̂ ∈ Λ̂.

If f is hyperbolic over Λ, then one can form local stable and unstable prehistories, but the latter
will depend in general on full prehistories.

Definition 5. If in the above setting, f is hyperbolic on a basic set Λ, then there exists a positive
number r so we can form local stable/unstable manifolds of size r, given by

W s
r (x) = {y ∈M,d(fkx, fky) < r, k ≥ 0}

W u
r (x̂) = {y ∈M,∃ŷ = (y, y−1, . . .) prehistory of y, s.t d(x−k, y−k) < r, k ≥ 0},

for all x̂ ∈ Λ̂.

In case M is a complex manifold and f : M → M is holomorphic, it follows from construction
that the local stable /unstable manifolds are complex submanifolds.

There is an abundance of examples of non-invertible hyperbolic maps, from which we will give
a few:

Examples:
1) Let f be a non-degenerate holomorphic map, f : P2C → P2C, on the complex projective

space of dimension 2. Suppose f can be written in homogeneous coordinates as

f [z : w : t] = [P (z, t) : Q(w, t) : td],

where P,Q are the homogenized versions of polynomials of degree d in one variable. Assume that
the critical points of P (z), Q(w) are in the basin of attraction of attracting cycles, i.e P,Q are
hyperbolic on their respective Julia sets JP , JQ.

The basic sets of unstable index 1 (i.e the basic sets where the local unstable manifolds have
complex dimension 1) are, in t = 1, the sets of the form {periodic sinks of P} × JQ and JP ×
{periodic sinks of Q}, and in t = 0, the basic set is the Julia set of the restriction of f , namely
f0 := [P (z, 0) : Q(w, 0)].

In this case, f is hyperbolic on all these basic sets and all unstable manifolds are contained in
complex lines. More general hyperbolic holomorphic maps on P2C have been studied in [4], where
the authors considered the currents and measures induced on the global unstable sets of these maps.

2) Let now Φ be the Segre map from P1C× P1C to P2C, Φ([z0 : z1], [w0 : w1]) = [z0w0 : z1w1 :
z0w1 +z1w0]. Consider f0 : P1C→ P1C holomorphic map of degree d ≥ 2. There is then a function
f holomorphic on P2, of degree d, such that Φ(f0, f0) = f ◦ Φ.

If f0 is hyperbolic, then f is also hyperbolic. The basic sets of unstable index 1 are of the form
Φ(periodic sink× J0) and the unstable manifolds are contained in algebraic varieties.

3) Horseshoes with overlappings.
Let Im+1 = I × Im be the (m+ 1)-dimensional unit cube in Rm+1,m ≥ 1. We will take k ≥ 2

mutually disjoint subintervals I1, . . . , Ik inside I and a C2 map f from a neighbourhood of the union
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I∗ := I1 ∪ . . . ∪ Ik to I, such that the restriction of f to each subinterval Ij is expanding onto I,
j = 1, . . . , k.

Now, for an arbitrary λ ∈ (0, 1), let a C0 function g : I1 ∪ . . . ∪ Ik → [0, 1 − λ]m, and form the
map

Fg(x, y) = (f(x), g(x) + λy), (x, y) ∈ I∗ × Im

When it is not necessary to emphasize g, we will write just F , instead of Fg. Due to the contraction
in y and the dilation in x, it can be shown that this map has a hyperbolic structure on a basic
set Λ, which is similar to the Smale horseshoe. However for certain choosings of the maps f, g, we
may have overlappings of the horseshoe, thus the unstable manifolds may depend on the way of
constructing the point in Λ and they may not form a foliation. This fact prevents one from using
the same methods as in the diffeomorphism case.

Examples where the map F is not injective on its attractor A :=
∞
∩
n=1

An, An := Fn({(x, y) ∈
I∗× Im, Fn(x, y) is defined}, n ≥ 1, have been given in [1]. Indeed Bothe proved that, if we denote
by G the space of C0 maps g : I∗ → [0, 1− λ]m (with the C0 topology), such that the restriction of
Fg to A ∩ (I∗ × Im) is not injective, then:

Theorem (Bothe, [1]). If m ≥ 3 is odd, and λ > 12k−2/(m−1), then G has interior points.

The class of examples can be considerably expanded by taking perturbations (for example of
the maps listed above). In this direction, we have an important theorem of conjugation between the
natural extensions (see for example [17] for the diffeomorphism case, and [13] for the endomorphism
case), which permits transferring some properties (but as we will see, not all), from the original
map to its perturbations.

Theorem (Conjugation Theorem). If f : M → M is C2 smooth on a compact C2 Riemanninan
manifold M , and f is hyperbolic on a basic set Λ, and if g is a perturbation of f (in the C2

topology on the space of smooth maps), then g will have also a basic set Λg, and there exists a
homeomorphism Φ̂(g) : Λ̂→ Λ̂g, such that ĝ ◦ Φ̂(g) = Φ̂(g) ◦ f̂ .

We will consider in the sequel a large class of maps, namely skew products with overlaps.
The main idea is the following:

Consider an integer k ≥ 2 and k mutually disjoint subintervals in the unit interval I; take also
a C2 map f from a neighbourhood of I∗ := I1 ∪ . . . Ik to I. Assume that f is expanding, i.e |f | > 1
on I∗, and f(Ij) = I, j = 1, . . . , k.

Then consider also a C2 map g : I∗×I → I, which is contracting on vertical lines, i.e ∂yg(x, y) <
1, (x, y) ∈ I∗ × I, where ∂yg represents the partial derivative of g with respect to the second
coordinate y ∈ R. Now construct the skew product:

F (x, y) = (f(x), g(x, y)), (x, y) ∈ I∗ × I

Denote by I∞ := {x ∈ I, fnx ∈ I∗, n ≥ 0}. Also, we will write gx for the map y → g(x, y) with g a
map as above.
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Denote by Λx the set of points obtained as the intersections of compact sets of decreasing
diameters, ∩

n≥0
gx−1 ◦ . . . ◦ gx−n(I), x ∈ I∞, where we consider these intersections for all prehistories

x̂ = (x, x−1, . . .) of x from I∗. We obtain thus Λx as a compact set, as can be easily checked, due
to the fact that the natural extension Î∗ of the restriction f |I∗ : I∗ → I∗, is compact.

Then let Λ := ∪
x∈I∞

Λx. We will denote Λ also by Λ(F ) when it will be necessary to emphasize

the relationship between F and Λ.
Let us notice that although it may appear at a first sight that F is expanding horizontally, the

calculation on derivative shows this to be false. Indeed, we have the derivative of F ,

DF (x, y) =

(
f ′(x) 0
∂xg(x, y) ∂yg(x, y)

)
,

where ∂xg(x, y) represents the partial derivative of g with respect to x at the point (x, y).

So, for a vector w̄ = (0, v) ∈ R × R, we get DF (x, y) · w̄ =

(
0

∂yg(x, y)v

)
, hence the vector

space {(0, v) ∈ R × R} is invariant and due to the uniform contraction of g on vertical lines, we
have that DF is contracting on vertical lines, which hence represent the stable tangent subspaces.

However, if we consider the horizontal vector ω̄ = (ζ, 0) ∈ R × R, then DF (x, y) · ω̄ =(
f ′(x) · ζ

∂xg(x, y) · ζ

)
, so the horizontal line {(ζ, 0), ζ ∈ R, 0 ∈ R} is not invariated by DF , and thus

the unstable spaces do not always have to be equal to this line.
In order to prove hyperbolicity we will use a generalization of a theorem of Newhouse ([14]);

this generalization treats the non-invertible case and it is proved similarly to the Newhouse result.

Theorem 1. Let f : M → M smooth, not necessarily invertible, suppose that Λ is a compact
f -invariant set in M and let Λ̂ the natural extension of the map f |Λ : Λ → Λ. Assume also that
there exists a field of cones in the tangent space, C = {Cẑ}ẑ∈Λ̂, so that the dimension of the core
linear space of Cẑ is constant on Λ̂ (the cone field C is not necessarily assumed to be Df -invariant).

Let us say that a function f is expanding and co-expanding on the cone field C, if, given
the notations:

mC,ẑ(f) := inf
v∈CIẑ\{0}

|Dfzv|
|v|

, and

m′C,ẑ(f) := inf
v/∈Cf̂ ẑ

|Df−1
fz v|
|v|

, ẑ ∈ Λ̂,

we have, by definition, that inf
ẑ∈Λ̂

mC,ẑ(fN ) > 1, and inf
ẑ∈Λ̂

m′C,ẑ(f
N ) > 1.

Assume that there exists an integer N ≥ 1 such that fN is expanding and co-expanding on C;
then it follows that f is hyperbolic on Λ.

We can prove consequently the following theorem of hyperbolicity for our skew product:

Theorem 2. In the above setting, i.e with f : I∗ → I expanding and g : I∗ × I → [0, 1 − λ]
contracting in the second coordinate over the invariant set Λ defined above (for m = 1), we have
that F (x, y) = (f(x), g(x, y)) is uniformly hyperbolic on Λ.
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Proof. We have defined the set Λ = Λ(F ) as the union of the fibers Λx, x ∈ I∞ and Λx as the set of
all points of the form ∩

n≥0
gx−1 ◦ . . .◦gx−n(I), for all prehistories x̂ = (x, x−1, . . . , x−n, . . .), x−i ∈ I∞.

Let a continuous positive function γ defined on Λ̂ and the cone Cuẑ := {(v, w) ∈ R2, |w| ≤
γ(ẑ) · |v|}, z = (x, y) ∈ Λ, ẑ ∈ Λ̂. The dimension of the core real linear space of this cone is 1.

Our cone field will be then Cu = {Cuẑ }ẑ∈Λ̂.

We have DFz(v, w) =

(
f ′(x) · v

∂xg(z) · v + ∂yg(z) · w

)
. So, in order to have an F -expanding field

of cones, it is enough to take
|f ′(x)|2 > 1 + γ2(ẑ), z ∈ Λ

If we assume |f ′(x)| > β > 1, x ∈ X, then it would be enough to have

0 < γ(ẑ) <
√
β2 − 1, or, 0 < γ(ẑ) <

√
β2N − 1, (1)

where the second inequality is needed if we work with fN instead of f . So in this last case, fN is
expanding on the cone field Cu.

Now we estimate the co-expansion coefficient.
If N ≥ 1 is an integer and if (v, w) /∈ Cu

F̂N ẑ
, then |w| > γ(F̂N ẑ) · |v|. Denote also FNz =

(fN (x), g(fN−1x, gN−1(x, y))), where we assumed that FN−1z = (fN−1(x), gN−1(x, y)). So

∂xgN (x, y) = ∂xg(fN−1x, gN−1(x, y)) · ∂xfN−1(x) + ∂yg(fN−1x, gN−1(x, y)) · ∂xgN−1(x, y) =

= ∂xg(fN−1x, gN−1(x, y)) · ∂xfN−1(x) + ∂yg(fN−1x, gN−1(x, y)) · ∂xg(fN−2x, gN−2(x, y)) · ∂xfN−2(x)+

∂yg(fN−1x, gN−1(x, y)) · ∂yg(fN−2x, gN−2(x, y)) · ∂xgN−2(x, y)
(2)

Denote by K := sup
Λ
|∂xg| and K ′ := K · 1

1−δ/β , where δ ∈ (0, 1) is such that |∂yg| < δ < 1 on Λ.

Hence by induction in ( 2) we will obtain

|∂xgN (x, y)| ≤ K · |(fN−1)′x|+ δK · |(fN−2)′x|+ . . . ≤ K ′ · |(fN−1)′x| (3)

But D(FN )−1
FNz

(
v

w

)
=

(
v

(fN )′(x)
−∂xgN (z)v

(fN )′(x)·∂ygN (z)
+ w

∂ygN (z)

)
.

Hence ||D(FN )−1
FNz

(
v

w

)
||2 ≥ v2

|(fN )′(x)|2

(
1 + |∂xgN |2(z)

|∂ygN |2(z)

)
+ w2

|∂ygN |2(z)
·
(

1− 2|∂xgN (z)|
|(fN )′(x)·γ(F̂N ẑ)|

)
,

for any N ≥ 1.
But then, since |∂xgN (z)| ≤ K ′ · |(fN−1)′(x)|, and K ′ depends only on f, g, there exists N

sufficiently large such that
∣∣∣∣2K′· 1

f ′(fN−1x)

γ(F̂N (ẑ))

∣∣∣∣ ≤ 2K′

β·
√
β2N−1

< 1
2 , if we take the map γ to be constant

and close to
√
β2N − 1 (although smaller than

√
β2N − 1).

Therefore

||D(FN )−1
FNz
||2 ≥ |w|2

2|∂ygN (z)|2
(4)

Recall that |w| > γ(F̂N ẑ) · |v| > |v|, so we get
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|w|2

2|∂ygN (z)|2
≥ |w|

2

2δ2N
>
|v|2 + |w|2

δ

Thus, inf
ẑ∈Λ̂

m′Cu,ẑ(F
N ) > 1 for some large integer N . This implies finally that FN is both

expanding and co-expanding on the cone field Cu over Λ, so the skew-product F is hyperbolic
according to Theorem 1.

Let us consider now the structure of the fiber sets Λx, x ∈ I∞. Any point x ∈ I∞ has an
uncountable number of prehistories x̂ = (x, x−1, . . .) ∈ I∞, due to the condition f(Ij) = I, j =
1, . . . , k. Also, if x−1, x

′
−1 are different preimages of x, we may have overlappings in fibers, i.e

gx−1(I)∩ gx′−1
(I) 6= ∅, in which case the map F may be non injective on Λ and the unstable spaces

depend in general on prehistories.
In order to better understand the overlapping mentioned above, we will define a notion first

introduced by Newhouse [15].
Let F be a Cantor set, i. e a compact, perfect and nowhere dense subset of R.
Assume that R \ F =

∞
∪

I=−2
Ui, Ui open bounded intervals for i ≥ 0, with possibly U−2, U−1

unbounded intervals. Denote by F0 the smallest closed interval containing F .
Let now Fi := F0 \ ∪

j<i
Uj ; then we obtain F as a decreasing intersection F =

∞
∩
i=0

Fi. The family

{Fi}i≥0 is called a defining sequence for the Cantor set F ; as can be easily noticed, defining
sequences are not unique for a given set F . The subinterval Ui divides the connected component
of Fi which contains Ui, into 2 subintervals, denoted by Cil, Cir.

Definition 6. In the above setting, let τ({Fi}i) := inf
i≥0

min{ l(Cil)
l(Ui)

, l(Cir)
l(Ui)
}, which is called the thick-

ness relative to the defining sequence {Fi}i of F .
Then τ(F ) := sup{τ({Fi}), {Fi}i≥0 defining sequence for F}, and τ(F ) is called the thickness

of F .

Cantor sets are compact but nowhere dense, so it is an interesting and important problem to
find out conditions assuring that the intersection of two Cantor sets F and G, is not empty.

Theorem (Newhouse [15]). Let F,G Cantor sets with τ(F )·τ(G) > 1, and none of F,G is contained
in a gap of the other. Then F ∩G 6= ∅.

Later, R. Kraft gave a more complete characterization of intersections of Cantor sets, in relation
to their thicknesses:

Theorem (Kraft, [6]). Let C,C ′ be a pair of interleaved Cantor sets (i.e neither of them is contained
in the closure of a gap of the other). Denote their thicknesses by τ, τ ′ respectively.

Assume that τ · τ ′ > 1 and that (τ, τ ′) ∈ {(τ, τ ′), τ > τ ′2+3τ ′+1
τ ′2 or τ ′ > τ2+3τ+1

τ2 } ∩ {(τ, τ ′), τ >
(1+2τ ′)2

(τ ′)3 or τ ′ > (1+2τ)2

τ3 }.
In this case, C ∩ C ′ contains a Cantor set itself, hence in particular C ∩ C ′ is uncountable.
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Now for the skew product F (x, y) = (f(x), g(x, y)) with k = 2 for example, we will have
that a point x ∈ I∞ has two preimages, x−1, x

′
−1, and hence in the fiber over x we will have

two subintervals, namely gx−1(I) and gx′−1
(I), which can be made to intersect if their lengths

are big enough. But the fibers Λx−1 ,Λx′−1
are themselves Cantor sets (unless they contain whole

subintervals, in which case the situation is even better). So we obtain the fiber Λx as a union of
images of fibers Λx−1 and Λx′−1

(one can assume that all maps gζ are injective from I to I, for
ζ ∈ I∞). It is then enough to find Cantor sets Λx−1 ,Λx′−1

of thicknesses τ, τ ′ respectively such that
the inequality conditions in Kraft’s Theorem above are satisfied. This will give uncountably many
points in Λx with two F -preimages in Λ.

In Theorem 2 we showed that the skew product F (x, y) = (f(x), g(x, y)) is uniformly hyperbolic
on the invariant set Λ = ∪

x∈I∞
Λx, where Λx was formed by taking intersections of iterates of I along

various prehistories of x.
We also noticed that the unstable space is not necessarily equal to the horizontal line {(v, 0), v ∈

R}. Thus we have a more intricate structure for the unstable spaces (and for the local unstable
manifolds). What can we say in general about these local unstable manifolds? The paper [13]
treated in detail the properties of unstable manifolds of a conformal hyperbolic map. One of the
theorems proved there was:

Theorem (Mihailescu, [13]). Let f : M →M be smooth, conformal on its local unstable manifolds
and consider Λ a basic set of saddle type (i.e with both stable and unstable directions in the tangent
bundle) so that htop(f |Λ) 6= 0; let also a small positive number r such that all local unstable manifolds
W u
r (x̂), x̂ ∈ Λ̂ are defined. Then the unstable dimension δu(x̂, r) := HD(W u

r (x̂)∩Λ) is equal to the
unique zero tu of the pressure function t→ Pf̂ |Λ̂

(tΦu),Φu(ŷ) := − log |Df |Eu
ŷ
|, ŷ ∈ Λ̂.

Hence the unstable manifolds of the skew product F , over Λ, have many intersections with
the Cantor set Λ, since it follows from the previous Theorem that δu is nonzero (indeed since
htop(f |Λ) 6= 0, we will obtain tu 6= 0 and then use the equality from the Theorem giving tu = δu).

Also in [13] it is proved that for a perturbation G of F , the conjugation map Φ(G) from Theorem
2 is Holder continuous when restricted to local unstable manifolds of F .

There exist also geometric measures on the intersections between local unstable manifolds of
F and its basic set Λ, which implies that the Hausdorff dimension of these sets is equal to their
(common) upper box dimension (for a proof, we refer to [13]).

Theorem (Mihailescu, [13]). In the same setting as in the previous Theorem, there exists a ge-
ometric measure on W u

r (x̂) ∩ Λ, of exponent tu, and thus the unstable dimension is equal to the
upper (and lower) box dimension of W u

r (x̂) ∩ Λ.

This geometric measure is obtained by considering first the equilibrium measure ([5]) of the
Holder potential tuΦu on Λ̂, then projecting on the local unstable set (in the Smale space structure)
V u
r (x̂) in Λ̂, and finally projecting again on W u

r (x̂) ∩ Λ.
These Theorems apply clearly for our hyperbolic skew product F .
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However we cannot say in general that the stable dimension of a point in Λ is given by a
Bowen type equation in the same way as the unstable dimension was given above; see [10] for
counter-examples.

In fact the stable dimension behaves very differently and quite surprisingly for non-invertible
maps as opposed to diffeomorphisms.

While in the case of diffeomorphisms, the stable and unstable dimensions over a hyperbolic
set behave real analytically with respect to parameters (i.e for perturbations of the original map),
for endomorphisms this situation is not true anymore. In [10], we gave an example of a large
class of non-invertible functions for which some of their perturbations are homeomorphisms on
their respective basic sets, namely the holomorphic maps on C2, fε(z, w) = (z2 + aεz + bεw +
c + dεzw + eεw2, w2), with b 6= 0, c 6= 0, |c| small and ε sufficiently small; fε are perturbations
of f0(z, w) = (z2 + c, w2) and they are homeomorphisms when restricted to their basic sets Λε
obtained from the Conjugation Theorem (Λε is close to {pc} × S1, where pc is the fixed attracting
point of z → z2 + c). These examples show that the stable dimension of hyperbolic basic sets of
endomorphisms does not even vary continuously, since for f0 the stable dimension is zero, while for
the homeomorphism fε, the stable dimension is larger than a fixed positive constant independent
of ε, as shown in [10].

Still we can use the results in [11], [12], in particular the properties of inverse pressure P− to
prove the following:

Theorem 3. Let a hyperbolic skew product F (x, y) = (f(x), g(x, y)) : I∗ × I → I2 as above (where
I∗ = I1∪. . .∪Ik), with f expanding on I∗ and gx contracting uniformly on I, for all x ∈ I∗; consider
also its basic set Λ(F ). Then for any x ∈ Λ(F ), we have ts(k′) ≤ HD(W s

r (x) ∩ Λ(F )) ≤ ts(k′′),
where ts(j) is the unique zero of the pressure function t→ PF |Λ(tΦs − log j), j = 1, . . . , k and each
point z ∈ Λ has at least k′′ F -preimages in Λ and at most k′ F -preimages in Λ.

Also, we have HD(W s
r (x) ∩ Λ(F )) ≤ t−s , where t−s is the unique zero of the inverse pressure

function t→ P−(tΦs).

Let us now consider briefly also the case of holomorphic maps f on the complex projective space
P2. One distinguishes the class of s-hyperbolic maps ([4]), namely those which have Axiom A,
and satisfy the following conditions:

(i) f−1(S2) = S2, where Si is defined as the subset of points with complex unstable index i

inside the nonwandering set Ω(f), i = 0, 1, 2;
(ii) there exists an algebraic variety A of dimension 1 such that A ∩ S1 = ∅;
(iii) there exists a neighbourhood U of S1 such that f−1(S1) ∩ U = S1.
In particular such a map is conformal on both its stable and unstable manifolds, and we can

replace (ii) by the fact that Λ does not intersect the critical set Cf of f .
Condition (iii) above can be replaced by the fact that the function d(x) := Card{y ∈ Λ, f(y) =

x} is constant on Λ.
Denote K− := S0∪W u(Ŝ1), where W u(Ŝ1) is the union of all iterates of local unstable manifolds

for all prehistories in Ŝ1; so K− is the union of the set S0 of periodic attracting points (S0 being
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finite) and the global unstable set W u(Ŝ1). Then we have :

Theorem (Fornaess, Sibony [4]). If f is s-hyperbolic, then the complement of K− in P2 is a domain
of holomorphy, hence K− is connected.

Moreover the interior of this set K− is empty as was showed by:

Theorem (Mihailescu [9]). If f is s-hyperbolic, then the interior of K− is empty.

In fact, estimates of the Hausdorff dimension of K− have been given in [8], and it was proved
that under mild conditions, not only the interior of K− is empty, but also HD(K−) < 4. The
structure of K− is related to the fractal structure and metric properties of W s

r (x) ∩ S1, since due
to s-hyperbolicity, Ω has local product structure ([5]).

As far as the structure of W u
r (x̂)∩S1 is concerned, one may apply again the theorems from [13]

to obtain equality between HD(W u
r (x̂)∩S1) and the zero tu of the pressure function t→ Pf̂ |Ŝ1

(tΦu);
the unstable dimension varies real analytically with respect to parameters.

Also, since f is holomorphic, we can give a precise form of the Holder exponent of the restriction
of the conjugation map Φ(g) to W u

r (x̂)∩S1 (according to Theorem 5 from [13]), for a holomorphic
perturbation g of f . Namely Φ(g)|Wu

r (x̂)∩Λ has Holder exponent α(g) =
log(λu−θdB(S1,2r)(f,g))

log λu
, where

λu := inf
x̂∈Λ̂
|Dfu(x̂)| and θ is a positive constant independent of g.

In the end, let us notice that condition (ii) in the definition of an s-hyperbolic map implies
that the number of preimages in S1, d(·) : S1 → N, is constant on connected components of S1.
This means that we can apply a theorem from [12] in order to obtain a formula also for the stable
dimension.

Theorem 4. Assume f : P2C → P2C is a holomorphic nondegenerate s-hyperbolic function, and
suppose that Λ is a connected f -invariant component of S1. Then there exists r > 0 giving the
uniform size of local stable manifolds, and HD(W s

r (x) ∩ Λ) = ts(d′), where d′ is the number of
f -preimages that any given point from Λ has in Λ, and ts(d′) is the unique zero of the pressure
function t→ Pf |Λ(tΦs − log d′).

There will exist again a geometric measure obtained by projections of an equilibrium measure
supported on the intersection W u

r (x̂) ∩ S1.
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