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Abstract

Recently, we introduced a mathematical framework for the quantization of a particle in a variable mag-

netic field. It consists in a modified form of the Weyl pseudodifferential calculus and a C
∗-algebraic setting,

these two points of view being isomorphic in a suitable sense. In the present paper we leave Planck’s constant

vary, showing that one gets a strict deformation quantization in the sense of Rieffel. In the limit ~ → 0 one

recovers a Poisson algebra induced by a symplectic form defined in terms of the magnetic field.
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Introduction

The present article treats the semiclassical limit of the mathematical formalism describing a quantum, non-
relativistic particle without internal structure, placed in a variable magnetic field. The limit is considered in
the precise sense of Rieffel’s axioms (cf. [19], [20], [7]), involving C∗-algebras. This setting is widely called strict
quantization, to distinguish it from the version in terms of formal series (see [1] for example). It consists of
several ingredients, which we outline here very briefly, refering to Section 1 for a detailed discussion:
1. One needs first a natural family of classical observables. It is admitted that this should form a Poisson
algebra A, which is roughly a real associative and commutative algebra endowed with a compatible Poisson
bracket. This structure describes the classical physical system.
2. For non-null values of Planck’s constant ~, one has to define C∗-algebras of quantum observables C~.
3. It must be shown that for ~ → 0 “the quantum structure converges to the classical one”. This is described
precisely by Rieffel’s system of axioms or some of its versions.
If a certain extra technical condition is verified, allowing to define on classical observables a family of “deformed
products” indexed by ~, one speaks of strict deformation quantization.
In our case, a particle without spin moving in the N -dimensional configuration space RN and placed under the
influence of an external variable magnetic field, the natural Poisson algebra is well-known. The observables are
smooth functions defined on the phase space Ξ := R2N , the associative product is defined pointwise and the
Poisson bracket is induced by the canonical symplectic form on Ξ, to which we add a magnetic contribution
([5], [14]). This is described in Section 2.
Quite surprisingly, the algebras of quantum observables for this system were defined and developed only recently.
One reason could be that the canonical variables in the magnetic case (the components of the position and those
of the magnetic momentum) satisfy complicated commutation relations, that have to be taken into account when
defining more general observables as functions of these basic ones. The intensive use of constant magnetic fields
and (or) special observables that are quadratic with respect to the momenta have also played a certain role. The
setting which is correct (at least in our opinion) appeared in [5], [11] and [6] (a pseudodifferential point of view)
and in [10] and [12] (C∗-algebras). The right attitude can also be found in [9], but undeveloped and stated for
a very particular case; it seems that it has been largely unnoticed. The critical point is gauge invariance: when
several equivalent vector potentials corresponding to a given magnetic field are used in defining observables, the
results should be connected by simple unitary equivalences. But to achieve this, one has to be very careful in
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defining the precise form of the observables as well as the composition laws to which they are submitted. We
shall explain all these in Section 3.
In Section 4 we state our Main Theorem. It asserts that under certain hypothesis, to a magnetic field and to an
abelian algebra of “configurational observables” one can associate naturally a strict deformation quantization.
Sections 5, 6 and 7 are devoted to the proof of the Main Result. The three non-trivial axioms are verified
separately. Two of them are treated directly, by using developments and L1-estimates. The third (the topic of
Section 5) is shown to follow easily from results of [17] and [15].
This article is addressed also to people that have not deformation quantization as their main skill. The system
we treat has a certain physical interest (this is not always the case in this field). Thus we decided to avoid
technical complications and to leave more general situations to subsequent works. In particular, we hope to
be able to say something on strict deformation quantization by twisted groupoids (see [7], [8] and references
therein for the untwisted case), which should include the present work as a particular instance. A pure state
quantization would also be an interesting topic.
Both in classical and in quantum theory one works with “real” observables. For any space E of complex functions
we denote by ER the subspace of R-valued elements in E . For instance, C∞(P )R will be the family of real C∞

functions on the smooth manifold P . If C is a C∗-algebra, we set CR for the set of self-adjoint elements of C.
Some other notations: If Y is a locally compact group we denote by C(Y ) the ∗-algebra of all continuous
complex functions on Y . BC(Y ), BCu(Y ), C0(Y ) mean respectively “bounded and continuous”, “bounded and
uniformly continuous” and “continuous and small at infinity”. If H is a Hilbert space, K(H) will be the set of
all compact operators in H, forming an ideal in the C∗-algebra B(H) of all the linear, bounded operators on
H. The unitary operators form the group U(H).
Acknowledgements: A large part of this work has been completed while the authors visited the University
of Geneva and we express our gratitude to Prof. Werner Amrein for his kind hospitality and the stimulating
discusions. We also acknowledge the partial support from the EURROMMAT Programme (contract no. ICA1-
CT-2000-70022) and from the CERES Programme (contract no. 3-28/2003). We are greatful to Frédéric Cadet
for a useful discussion and to Serge Richard for a critical reading of the manuscript.

1 The axioms

We describe here Rieffel’s framework for strict quantization. There are several versions of his axioms; we choose
to work with the system of axioms which appears in [7], to which we also refer for many other details. The
starting point is a “classical algebra of observables” described by a Poisson algebra.

Definition 1.1 A Poisson algebra is a triple (A, ◦, {·, ·}), where A is a real vector space, ◦, {·, ·} are bilinear
maps : A × A → A such that ◦ is associative and commutative, {·, ·} is antisymmetric and for each ϕ ∈ A,
{ϕ, ·} is a derivation both with respect to ◦ and to {·, ·}. Thus, aside bilinearity, the two maps satisfy for all
ϕ, ψ, ρ ∈ A:
(i) ψ ◦ ϕ = ϕ ◦ ψ, (ψ ◦ ϕ) ◦ ρ = ψ ◦ (ϕ ◦ ρ),
(ii) {ψ, ϕ} = −{ϕ, ψ},
(iii) {ϕ, ψ ◦ ρ} = ψ ◦ {ϕ, ρ}+ {ϕ, ψ} ◦ ρ (Leibnitz rule),
(iv) {ϕ, {ψ, ρ}} = {{ϕ, ψ}, ρ}+ {ψ, {ϕ, ρ}} (Jacobi’s identity).

The elements of A are interpreted as observables of a classical description of a physical system. For each ϕ ∈ A

and each value ~ 6= 0 of Planck’s constant, one would like to have an object Q~(ϕ) representing the same
observable in a quantum description of the system. One also hopes that the algebraic structure of the quantum
observables should converge to the classical picture described by the Poisson algebra, in some suitable norm
‖ · ‖~ depending continuously of ~. This might be seen as a precise mathematical form of Bohr’s correspondence
principle.
A systematic justification of the next definitions may be found in [7]. Note that usually in A many classical
observables are “unbounded”; the use of norms forces us to apply quantization only to certain subfamilies A0

of A.

Definition 1.2 Let A0 be a Poisson algebra which is densely contained in the self-adjoint part C0
R

of an abelian
C∗-algebra C0 (with the same associative product). A strict quantization of the Poisson algebra (A0, ◦, {·, ·}) is
a family of maps

(

Q~ : A0 → C~

R

)

~∈I
, where

(i) I is a subset of the real axis, for which the origin is an accumulation point contained in I,
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(ii) C~ is a C∗-algebra, with product and norm denoted respectively by ]~ and ‖ · ‖~. For ϕ~, ψ~ ∈ C~

R

(the self-adjoint part of C~) we set ϕ~ ?~ ψ~ := 1
2

(

ϕ~]~ψ~ + ψ~]~ϕ~
)

(a Jordan product) and {ϕ~, ψ~}~ :=
1
i~

(

ϕ~]~ψ~ − ψ~]~ϕ~
)

.
(iii) Q~ : A0 → C~

R
is R-linear for each ~ and Q0 is just the inclusion map,

and the following axioms are fulfilled:
(a) RIEFFEL’S CONDITION: For each ϕ ∈ A0, the map I 3 ~ →‖ Q~(ϕ) ‖~ ∈ R+ is continuous.
(b) VON NEUMANN CONDITION: For each ϕ, ψ ∈ A0, ‖ Q~(ϕ) ?~ Q~(ψ) −Q~(ϕ ◦ ψ) ‖~→ 0 when ~ → 0.
(c) DIRAC’S CONDITION: For each ϕ, ψ ∈ A0, ‖ {Q~(ϕ),Q~(ψ)}~ −Q~ ({ϕ, ψ}) ‖~→ 0 when ~ → 0.
(e) COMPLETENESS: Q~(A0) is dense in C~

R
for all ~ ∈ I.

The word “strict” was coined by Rieffel in order to distinguish his framework from the (deformation) quantization
defined in terms of formal series. Usually Poisson algebras are function spaces:

Definition 1.3 We call Poisson manifold a smooth manifold P so that on C∞(P )R a bracket {·, ·} is given
such that, denoting by ◦ the pointwise multiplication, the triple (C∞(P )R, ◦, {·, ·}) is a Poisson algebra.

When P is not compact, C∞(P )R is a very large, unnormed space. In quantization one deals with suitable
families of smooth bounded observables:

Definition 1.4 A strict quantization of the Poisson manifold P means the choice of a Poisson subalgebra A0

of C∞(P )R composed of bounded functions and a strict quantization of this Poisson subalgebra.

One should be aware that the linear maps Q~ tend to behave as morphisms only in the asymptotic limit ~ → 0.
But under favorable circumstances (fulfilled rather often, but by no means always) they may serve to define
modified products on C0. In this case, one really is allowed to think in terms of “deformed products”.

Definition 1.5 A strict quantization
(

Q~ : A0 → C~

R

)

~∈I
is called a strict deformation quantization if for each

~, Q~ (A0) is a subalgebra of C~

R
and Q~ is injective.

In such a case, for any ~, one defines ]~ : A0×A0 → A0 such that Q~(ϕ]~ψ) = Q~(ϕ)]~Q~(ψ) for all ϕ, ψ ∈ A0.
The notational ambiguity is deliberate.

2 The magnetic Poisson algebra

For the convenience of the reader, we start by recalling briefly the way a symplectic manifold aquires a canonical
Poisson structure. For a differentiable manifold M we denote by C∞(M) the vector space of smooth real
functions on M , by X (M) the C∞(M)-module of vector fields on M and by Ωk(M) the C∞(M)-module of
k-forms on M (i.e. C∞ sections of the fibre bundle of antisymetric k-linear forms Λk

mM on TmM , the tangent
space of M at m ∈ M). One has Ω0(M) = C∞(M). We denote by d : Ωk(M) → Ωk+1(M) the exterior
differential. A symplectic form on M is just a closed nondegenerate 2-form Σ ∈ Ω2(M).
It follows easily from the axioms that the bracket {·, ·} of any Poisson manifold M is given by a Poisson bivector.
This means that one has {f, g} = w(df, dg) for all f, g ∈ C∞(M), where w : Ω1(M) × Ω1(M) → C∞(M) is
bilinear, antisymmetric and satisfies an extra condition connected to the Jacobi identity (see [7] or [21] for
details). The symplectic form will lead to such a Poisson bivector in a specific way: First, by using Σ, one
identifies canonically Ω1(M) and X (M) by means of a C∞(M)-linear isomorphism β : Ω1(M) → X (M). Then
one defines

{f, g}Σ := Σ [β(df), β(dg)] , (1)

so in this case the Poisson bivector is given by wΣ = Σ◦ (β×β). One checks easily that, in this way, M becomes
a Poisson manifold and we denote by P0(M) the algebra C∞(M)R endowed with the pointwise multiplication
and the above canonical Poisson bracket.
We come back to our specific situation. The configuration space of our particle without internal structure is
the space X := RN , with elements q, x, y, z. The subsequent presence of a magnetic field demands N ≥ 2. We
denote by X? the dual of the vector space X , with elements p, k, l and by (x, p) 7→ x · p the duality between X
and X?.
The phase-space of the system is the cotangent bundle T

∗X of X , often denoted by Ξ and identified with the
direct sum X×X? (by identifying all the fibres with X?, using the action through translations). Typical vectors
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in Ξ are ξ = (q, p) or η = (x, k). All the tangent spaces Tξ(Ξ) will be identified with Ξ and all the cotangent
spaces T

∗
ξ(Ξ) will be viewed as Ξ? and, furthermore, as X? × X . On Ξ we have the canonical (constant)

symplectic form defined by

σ : Ξ × Ξ → R, σ[(x, k), (y, l)] := y · k − x · l.

This structure is adequate for the description of the particle whith no magnetic field. When a magnetic field is
present, this can be taken into account by a change in the symplectic structure, cf. [14].
We thus consider a special class of flat symplectic manifolds, representing ’perturbations’ of the above symplectic
space and associated to a general (regular) magnetic field on X . In fact such a magnetic field is described by a
closed 2-form B ∈ Ω2(X). Starting with the canonical projection π : Ξ ∼= X ×X? → X , we define canonically
an injection π̃2 : Ω2(X) → Ω2(Ξ). Thus we get a new symplectic form σB on Ξ as the sum σB := σ + π̃2B, i.e.

(σB)(q,p) [(x, k), (y, l)] := σ[(x, k), (y, l)] + (π̃2B)(q,p)[(x, k), (y, l)] =

= y · k − x · l +Bq(x, y).

Being the sum of two closed forms, this 2-form is closed. It is also nondegenerate, thus it is a symplectic form
on Ξ. Then (1) gives

{f, g}B ≡ {f, g}σB
= σB [β(df), β(dg)] ,

so we badly need an explicit formula for β. Let us denote by 〈·, ·〉 the duality between Ξ and Ξ?. The inverse
β−1

ξ : Ξ → Ξ? is defined by

(σB)(q,p)[(x, k), (y, l)] ≡ y · k − x · l + x ·Bqy =
〈

(x, k), β−1
(q,p)(y, l)

〉

, ξ = (q, p), η = (x, k), ζ = (y, l) ∈ Ξ,

where Bq : X → X? is the linear, antisymmetric operator defined by Bq(x, y) = x · Bqy, ∀x, y ∈ X . It follows
easily that β−1 can be put in matrix-form

β−1
ξ =

(

Bq −1X∗

1X 0

)

: X ×X? → X? ×X,

which leads to the next matrix-form of βξ:

βξ =

(

0 1X

−1X∗ Bq

)

: X? ×X → X ×X?.

Thus, writting dξh =
(

dX
ξ h, d

X?

ξ h
)

, one gets

{f, g}B(ξ) = dX
ξ f · dX?

ξ g − dX
ξ g · d

X?

ξ f +Bq

(

dX
ξ f, d

X
ξ g

)

.

Using coordinates, one has dX
ξ h =

∑N
j=1

(

∂pj
h
)

(ξ) dpj and dX?

ξ h =
∑N

j=1

(

∂qj
h
)

(ξ) dqj (recall that dpj ∈

(X?)? ≡ X). We get finally

{f, g}B =

N
∑

j=1

(

∂pj
f ∂qj

g − ∂qj
f ∂pj

g
)

+

N
∑

j,k=1

Bjk(·) ∂pj
f ∂pk

g. (2)

We shall denote by PB(Ξ) the Poisson algebra C∞(Ξ)R endowed with the pointwise multiplication and the
Poisson bracket {·, ·}B given in (2). The different descriptions of the quantum observable algebras in the next
Section asks also for a partial Fourier transformed version of this Poisson algebra. This will be explained in
Section 4 under favorable circumstances.
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3 The quantum magnetic observables; the C∗-algebras for ~ 6= 0

We are placed in the framework of the previous Section, but for most of the constructions the smoothness
assumption on B will be useless. We assume for the moment only that B is continuous.
We present first a pseudodifferential approach to the magnetic quantum system, following [11], [5] and [6]. No
C∗-algebras are in sight for the moment. We choose some vector potential A corresponding to the magnetic
field B (dA = B). It also can be chosen continuous; think of the transversal gauge for example. The vector
potential is used to define a representation of some explicitely gauge invariant structure. Only this one will be
used in the process of quantization.
Let us fix some value ~ 6= 0 for the Planck constant. We would like to justify the construction of a correspondence
f 7→ Op~

A(f) between (suitable) complex functions defined on the phase space Ξ and operators. To the function
(q, p) 7→ qj one wants to assign the operator Qj of multiplication with qj and to (q, p) 7→ pj we associate the
first-order differential operator Π~

A,j := ~Pj − Aj(Q) = −i~∂j − Aj . The difficulty of defining a functional

calculus f 7→ Op~

A(f) ≡ f(Q,Π~

A) for these 2N operators comes from their high degree of non-commutativity:

i[Qj , Qk] = 0, i[Π~

A,j , Qk] = ~δj,k, i[Π~

A,j ,Π
~

A,k] = ~Bkj(Q), j, k = 1, . . . , N.

A convenient global form of these canonical commutation relations may be given in terms of the magnetic
Weyl system. Recall the unitary group

(

eiQ·p
)

p∈X? of the position as well as the magnetic translations
(

U~

A(q) := eiq·Π~

A

)

q∈X
, given explicitely in the Hilbert space H := L2(X) by

U~

A(q) = e−(i/~)ΓA([Q,Q+~q])eiq·~P , (3)

where ΓA([q′, q′ + ~q]) :=
∫

[q′,q′+~q]
A is the circulation of the vector potential A along the segment

[q′, q′ + ~q] := {q′ + t~q | t ∈ [0, 1]}.

The family
(

U~

A(q)
)

q∈X
satisfies

U~

A(q)U~

A(q′) = ω~

B(Q; q, q′)U~

A(q + q′), q, q′ ∈ X,

where we set

ω~

B(q0; q, q
′) := e−(i/~)ΓB(<q0,q0+~q,q0+~q+~q′>)

and

ΓB(< q0, x, y >) :=

∫

<q0,x,y>

B

is the flux of B through the triangle < q0, x, y > defined by the points q0, x and y.
Now the magnetic Weyl system is the family

(

W ~

A(q, p)
)

(q,p)∈Ξ
of unitary operators in H given by

W ~

A(q, p) := e−iσ((q,p),(Q,Π~

A)) = e−i(Q+(~/2)q)·pe−(i/~)ΓA([Q,Q+~q])eiq·~P

and it satisfies for all (q, p), (q′, p′) ∈ Ξ

W ~

A(q, p)W ~

A(q′, p′) = e(i/2)σ((q,p),(q′,p′))ω~

B(Q; q, q′)W ~

A(q + q′, p+ p′).

To construct Op~

A(f) ≡ f(Q,Π~

A)) one does not dispose of a spectral theorem. Having the functional calculus
with a C0-group in mind and having faith in the ability of the magnetic Weyl system to take into account the
way (Q1, · · · , QN ; Π~

A,1, · · · ,Π
~

A,N ) fail to commute, one proposes

Op~

A(f) :=

∫

Ξ

dξ (FΞf) (ξ)W ~

A(ξ),

where by FΞ we denote the symplectic Fourier transform

(FΞf) (ξ) :=

∫

Ξ

dη e−iσ(ξ,η)f(η).

A suitable choice of the Haar measures on X , X? and Ξ leads to the exact form of the formulae above, with no
numerical factors in front of the integrals.
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Some simple replacements lead to the following expression for the action of these operators on vectors u ∈ L2(X):

[

Op~

A(f)u
]

(x) = ~
−N

∫

X

∫

X?

dy dk e(i/~)(x−y)·ke−(i/~)ΓA([x,y])f

(

x+ y

2
, k

)

u(y). (4)

To have Op~

A(f)Op~

A(g) = Op~

A(f ◦~ g) and Op~

A(f)∗ = Op~

A(f◦
~

), one sets f◦
~

(q, p) := f(q, p) (independent
of ~ or B) and

(f ◦~ g)(ξ) := (2/~)2N

∫

Ξ

dη

∫

Ξ

dζ e−2(i/~)σ(ξ−η,ξ−ζ)e−(i/~)ΓB(<q−y+x,x−q+y,y−x+q>)f(η)g(ζ). (5)

The composition law ◦~ ≡ ◦~

B depends only on the magnetic field and not on the choice of some vector potential.
Obviously, for B = 0 and A = 0 the above formulae reproduce the well-known formulae of the pseudodifferential
calculus in Weyl form. In [11] they are studied in detail, their gauge-invariance is underlined and a rigorous
meaning of them and of some of their extensions are outlined. See also [5], [6] for other developments and for
nice geometrical interpretations. We shall come back to this magnetic Weyl calculus after an excursion into
twisted crossed product algebras.
The input for a crossed product is a locally compact group X acting on a C∗-algebra A. One constructs a
larger C∗-algebra AoX containing both A and a unitary representation of X , with a prescribed commutation
rule between elements of these two sets. When a 2-cocycle of the group (with values in the unitary group of
the algebra) is also given and when “unitary representation” is replaced by “projective representation” in some
suitable generalized sense, then one gets a twisted crossed product. We shall be pragmatic and introduce only
the object of strict interest for our situation in a somewhat ad hoc manner. In [10] and especially in [12] we
give a more detailed description. The abstract theory of twisted crossed products was developed in [4], [16] and
[17].
So, let us start by remarking that X = RN is indeed a locally compact second countable group. We shall call
admissible any separable C∗-algebra A composed of bounded, uniformly continuous complex functions on X
which contains C0(X) and is invariant under translations: a ∈ A, x ∈ X imply a(· + x) ∈ A. Thus, for any
~ 6= 0, one can define the continuous action of X by automorphisms of A:

θ~ : X → Aut(A),
[

θ~

x(a)
]

(y) := a(y + ~x).

θ~ is a group morphism and the maps X 3 x 7→ θ~
x(a) ∈ A, a ∈ A are all continuous. Let us recall the

function

(q, x, y) 7→ ω~

B(q;x, y) := e−(i/~)ΓB(<q,q+~x,q+~x+~y>),

which governs the multiplication property of the magnetic translations. It can be interpreted as a map

ω~

B : X ×X → C(X ; T),
[

ω~

B(x, y)
]

(q) := ω~

B(q;x, y)

with values in the set of continuous functions on X taking values in the 1-torus T := {z ∈ C | |z| = 1}. It is
easy to see that ω~

B satisfies the 2-cocycle condition

ω~

B(x, y)ω~

B(x+ y, z) = θ~

x

[

ω~

B(y, z)
]

ω~

B(x, y + z), ∀x, y, z ∈ X,

easy to check with Stokes’ Theorem, since dB = 0. It is also normalized, i.e.

ω~

B(x, 0) = 1 = ω~

B(0, x), ∀x ∈ X.

We have shown in [12] how to impose conditions on B in order to have a good connection between ω~

B and the
admissible C∗-algebra A. Let us denote by SA the Gelfand spectrum of A (the space of characters with the
pointwise convergence topology). Our assumptions on A imply that X can be identified with a dense subset of
the locally compact, second countable space SA. We say that a continuous function onX is of class A if it extends
to a continuous function on SA. The C∗-algebra A is unital iff SA is compact (thus a compactification of X) and
in this case “continuous” means also “bounded”; in the non-unital case many unbounded functions are allowed.
If the components Bjk of the magnetic field are of class A the mapping X×X 3 (x, y) 7→ ω~

B(·;x, y) ∈ C(SA; T)
is well-defined and continuous with respect to the topology of uniform convergence on compact subsets of SA.
(Note that C(SA; T) is exactly the unitary group UM(A) of the multiplier algebra of A.) These are the needed
conditions to call

(

θ~, ω~

B

)

a twisted action of X on A and to make the quadruplet
(

A, θ~, ω~

B , X
)

a particular
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case of a twisted C∗-dynamical system. These are also conditions under which one can perform the construction
of the twisted crossed product C∗-algebra that we now explain.
Consider first the Banach space L1(X ;A) with the norm ‖ ϕ ‖1:=

∫

X
dx ‖ ϕ ‖A. As a rule, its elements will

be considered as functions of two variables: [ϕ(x)](q) ≡ ϕ(q;x), thus ‖ ϕ ‖1=
∫

X dx supq∈X |ϕ(q;x)|. We can

introduce an involution by ϕ�(q;x) := ϕ(q;−x) and a composition law

(

ϕ �~ ψ
)

(q;x) :=

∫

X

dy ϕ

(

q −
~

2
(x− y); y)

)

ψ

(

q +
~

2
y;x− y

)

e−(i/~)ΓB(〈q− ~

2
x,q− ~

2
x+~y,q+ ~

2
x,〉) (6)

(we leave to the reader the task of suppressing the variable q and introducing the objects θ~ and ω~

B in the
right places to get a more abstract version of this formula). Endowed with this structure L1(X ;A) is a Banach
∗-algebra.
Its envelopping C∗-algebra will be called the twisted crossed product of A by the twisted action

(

θ~, ω~

B

)

of

X . A comprehensive but awkward notation would be A o
ω~

B

θ~ X , which we abbreviate to C~

A, insisting on its

dependence on ~ and A, the magnetic field B being fixed. We recall that C~

A is the completion of L1(X ;A)
under the C∗-norm

‖ ϕ ‖~:= sup{‖ π(ϕ) ‖B(H) | π : L1(X ;A) → B(H) representation}.

The main reason for C~

A to exist is the fact that its non-degenerate representations are in a one-to-one corre-
spondence with covariant representations of the twisted C∗-dynamical system

(

A, θ~, ω~

B , X
)

, i.e with triples
(H, r, U), where H is a Hilbert space, r is a non-degenerate representation of A and U is a strongly continuous
map from X to the family of unitary operators on H satisfying for all x, y ∈ X and a ∈ A

U(x)U(y) = r
[

ω~

B(x, y)
]

U(x+ y) and U(x)r(a)U(x)∗ = r
[

θ~

x(a)
]

. (7)

We shall use this for a single case, that of the Schrödinger covariant representation
(

L2(X), r, U~

A

)

associated to
the vector potential A (with dA = B). Here r : A → B[L2(X)] is the usual representation of functions in A by
multiplication operators (r(a) ≡ a(Q) by a previous notation) and U ~

B has been introduced at (3). It is easy in
this case to check (7) and to view it as another way to codify the commutation relations between positions and
magnetic momenta. In fact this is the root of the close connection (see below) between C~

A and the magnetic
pseudodifferential calculus sketched above. The representation of C~

A corresponding to
(

L2(X), r, U~

A

)

is given
(by abstract principles) by

Rep~

A(ϕ) :=

∫

X

dx r
[

θ~

x/2(ϕ(x))
]

U~

A(x),

which gives for ϕ ∈ L1(X ;A) and u ∈ L2(X)

[

Rep~

A(ϕ)u
]

(x) = ~
−N

∫

X

dy e
i
~
ΓA([x,y])ϕ

(

x+ y

2
,
y − x

~

)

u(y). (8)

By comparing (8) with (4) one sees that, at least formally, Rep~

A and Op~

A are connected to each other by a partial
Fourier transformation: Op~

A(f) = Rep~

A [F(f)], with F := 1 ⊗ F and (Fb)(x) :=
∫

X? dk e
−ix·kb(k) whenever it

makes sense. It follows that the composition laws ◦~ and �~ are intertwined by F, i.e. f◦~g = F−1
[

(Ff) �~ (Fg)
]

,
as can also be checked by a direct calculation. We send to [12] for details on the rigorous meaning of these
connections in non-trivial cases. We don’t need it here since actually all our verifications in Sections 5, 6 and
7 are done in the setting of twisted crossed products. One defines the C∗-algebra B~

A := F−1C~

A. On suitable
dense subsets of B~

A we are entitled to use (5) as it stands.

4 The main result

In Section 2, assuming that the components of our magnetic field B are C∞ functions on X = RN , we endowed
the space C∞(Ξ)R of real smooth functions on the phase-space Ξ = X×X? with a B-dependent Poisson algebra
structure, called PB(Ξ).
On the other hand, in Section 3 we constructed for each ~ ∈ (0, 1] a C∗-algebra B~

A, which is the partial Fourier
transform of the twisted crossed product C∗-algebra C~

A defined by the twisted action
(

θ~, ω~

B

)

of X on the
admissible C∗-algebra A; we had to use the assumption that the components Bjk are functions of class A.
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In order to construct now a strict deformation quantization we have to study the conditions to be imposed to
the magnetic field in connection with the choice of the Poisson subalgebra A0 of PB(Ξ) .
We recall that C~

A is a C∗-completion of the Banach ∗-algebra L1(X ;A); the structure depends on ~ and B.
Then for any subspace A0 of A and any subspace S of L1(X), the algebraic tensor product A0 � S (finite
combination of simple tensors) is a subspace of L1(X ;A), thus also of C~

A. The partial Fourier transformed
version F−1 [A0 � S] = A0 � F−1S will be a subspace of F−1

[

L1(X ;A)
]

and, therefore, a subspace of B~

A.
Note that A0 �F−1S is also contained in A�C0(X

?), thus it is composed of complex functions defined on the
phase space Ξ. If one also requires that A0 ⊂ C∞(X) and F−1S ⊂ C∞(X?), then A0 � F−1S ⊂ C∞(Ξ) and
both the classical and the quantum formalisms hold on A0 � F−1S. In fact several choices for A0 and S are
available, their success hanging on the assumptions we impose on the magnetic field. With severe contraints on
B one hopes to quantize larger classes of classical symbols. We shall study a simple, convenient situation; the
reader could work out other cases for himself. We define A∞ := {a ∈ A ∩ C∞(X) | ∂αa ∈ A, ∀α ∈ NN}; it is
a subspace of A ∩ BC∞(X). Take A0 = A∞ and S = S(X), the Schwartz space of functions on X which have
rapidly decaying derivatives of any order. Then F−1S = S(X?) is the Schwartz space defined on X?.
We also consider S(X?;A∞), the space of functions X? 3 p 7→ f(p) ∈ A∞ such that for any l,m ∈ N

‖f‖l,m := max{ sup
p∈X?

‖pα(∂βf)(p)‖A | |α| ≤ l, |β| ≤ m} <∞.

We remark that
S(X?;A∞) ⊂ C∞(Ξ) ∩ F

−1{L1(X ;A)}.

Then we have the following evident

Proposition 4.1 Suppose that the components of the magnetic field B belong to A∞. Then S(X?;A∞)R is a
Poisson subalgebra of PB(Ξ) and a dense subset of the self-adjoint part of the abelian C∗-algebra A⊗ C0(X

?).

We can now state

Theorem 4.2 (Main result) Assume that the components of the magnetic field B belong to A∞. Then the
family of injections

(

S(X?;A∞)R ↪→ B~

A

)

~∈[0,1]
is a strict deformation quantization.

As seen in Section 3, one may say that B~

A is a C∗-algebra of (magnetic) pseudodifferential symbols and its

represented versions Op~

A

(

B~

A

)

⊂ B(L2(X)) are C∗-algebras of magnetic pseudodifferential operators. It will
be more convenient to work in the other realization, that of twisted crossed products. There are two reasons:
1. There exist results of [17] and [15] on continuous fields of twisted crossed products which lead almost
immediately to Rieffel’s condition.
2. In the twisted crossed product formalism one disposes of the simple norm ‖ · ‖1, which will be very convenient
in checking the axioms of von Neumann and Dirac.
Thus we state now a variant of Theorem 4.2; these two results are equivalent by the isomorphisms defined by the
partial Fourier transformation. We need first to rewrite the magnetic Poisson structure. On S(X ;A) (obvious
definition) we set by transport of structure

ϕ �0 ψ := F
[

(F−1ϕ)(F−1ψ)
]

and {ϕ, ψ}B := F
[

{F
−1ϕ,F−1ψ}B

]

, ϕ, ψ ∈ S(X ;A).

A simple direct calculation gives

(ϕ �0 ψ)(q;x) =

∫

X

dy ϕ(q; y)ψ(q;x − y); (9)

�0 is poinwise multiplication in the first variable and convolution in the second. Slightly more effort is needed
to prove that

{ϕ, ψ}B = −i

N
∑

j=1

[

(Q
(2)
j ϕ) �0 (∂

(1)
j ψ) − (∂

(1)
j ϕ) �0 (Q

(2)
j ψ)

]

−

N
∑

j,k=1

Bjk(·)(Q
(2)
j ϕ) �0 (Q

(2)
k ψ), (10)

where
(

Q
(2)
j ρ

)

(q;x) := xjρ(q;x) and (∂
(1)
j ρ)(q;x) = ∂

∂qj
ρ(q;x).

Let us denote by C∗(X) the group C∗-algebra of X ; it is the envelopping C∗-algebra of L1(X), the convolution
Banach ∗-algebra of X . It is isomorphic to C0(X

?) by an extension of the Fourier transformation; thus the

spectrum of C∗(X) is homeomorphic to X?. Note that the twisted crossed product C~

A = Ao
ω~

B

θ~ X collapses to
A⊗ C∗(X) for ~ = 0.
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Proposition 4.3 Suppose that the components of the magnetic field B belong to A∞; then the vector space
S(X ;A∞)R = F [S(X?;A∞)] is a Poisson algebra for the composition laws (9) and (10). It is also dense in the
self-adjoint part of the abelian C∗-algebra A⊗ C∗(X).

The partial Fourier transformed version of our Main Result reads

Theorem 4.4 Assume that the components of the magnetic field B belong to A∞; then the family of injections
(

S(X ;A∞)R ↪→ (C~

A)R

)

~∈[0,1]
is a strict deformation quantization.

The completeness condition is obvious: S(X ;A∞) is dense in
(

L1(X ;A), ‖ · ‖1

)

, L1(X ;A) is dense in
(

C~

A, ‖ · ‖~

)

and one has ‖ · ‖1 ≤ ‖ · ‖~. The conditions of Definition 1.5 are also clearly satisfied. We still have to verify
the conditions (a), (b) and (c) of Definition 1.2. This will be done in the next sections.
Remark. It would be in the spirit of many works in strict deformation quantization to consider only the case
A = C0(X). Since in this case C~

C0(X) is isomorphic to K
[

L2(X)
]

, the C∗-algebra of all compact operators

on L2(X) (cf. [12], Proposition 2.17 (b)), in fact one works with a field of C∗-algebras with two types of
fibers: C0(Ξ) for ~ = 0 and K

[

L2(X)
]

for ~ 6= 0. We think that both the twisted crossed product C~

A and
the pseudodifferential formalism are useful for arbitrary, admissible A. In [13] it is shown how to calculate the
essential spectrum and how to get localization results for generalized Schrödinger operators with anisotropic
potentials and magnetic fields. The anisotropy is taken into account by the abelian algebra A and exploiting
the structure of its spectrum is the key of the proofs.
Remark. Let us point out that if the spectrum of A is compact (and that is always the case in the applications
to quantum Hamiltonians, where we expect A to have a unity), then the components of the magnetic field
B being of type A evidently imply that they are bounded and uniformly continuous. Thus, in this case the
requirement that the components of B are of class A∞ (i.e. they are of class C∞(X) and together with all their
derivatives admit continuous extensions to the spectrum of A) is rather optimal. If we allow the spectrum of
A to be noncompact, then we can allow unbounded magnetic fields with components of class A but we have
to replace A∞ with A∞

c the subalgebra of elements of A∞ that have compact support (with respect to the
spectrum of A).

5 Rieffel’s condition

To verify the continuity condition contained in Rieffel’s axiom we need a result saying roughly that, under
certain conditions, the twisted crossed product of a group with the sectional algebra of a C∗-bundle is the
sectional algebra of a C∗-bundle of twisted crossed products. This can be found in [17] and [15]; techniques of
[18] and [3] are also relevant here. For us the most convenient reference is [15], from which we quote slightly
reformulated the definition and the result below.

Definition 5.1 A continuous C∗-bundle is a triple A =
(

I, {A~}~∈I ,Γ0(A)
)

, where I is a Hausdorff, locally
compact space, A~ is a C∗-algebra with norm ‖ · ‖~ and Γ0(A) a C∗-algebra of sections such that:
(i) For any ~ ∈ I, {F (~) | F ∈ Γ0(A)} = A~.
(ii) For any F ∈ Γ0(A), the map ~ 7→‖ F ‖~ belongs to C0(I).
(iii) Γ0(A) is a C0(I)-module: if F ∈ Γ0(A) and ν ∈ C0(I), then νF (defined pointwise) also belongs to Γ0(A).

Theorem 5.2 Let A be a continuous C∗-bundle such that Γ0(A) is separable. Let (Θ,Ω) be a twisted action of
an amenable, second countable locally compact group X on Γ0(A) by C0(I)-automorphisms. Then there exists
a continuous C∗-bundle C =

(

I, {C~}~∈I ,Γ0(C)
)

such that:

(i) For any ~ ∈ I, C~ = A~ ow~

th X, where t~x : X → Aut(A~), t~x[F (~)] := [Θx(F )](~), ∀x ∈ X, ∀F ∈ Γ0(A)
and w~ : X ×X → UM

(

A~
)

, w~(x, y) := [Ω(x, y)](~), ∀x, y ∈ X.
(ii) There exists an isomorphism χ : Γ0(A) oΩ

Θ X → Γ0(C) such that for every Φ ∈ L1(X ; Γ0(A)) one has
(χΦ)(~) ∈ L1(X ;A~) and [(χΦ)(~)] (x) = [Φ(x)](~), ∀~ ∈ I, x ∈ X.

Proof of Rieffel’s condition. We are placed in the framework of Section 3. We start by constructing a
twisted action on a large C∗-algebra, consisting of functions depending both on the variables ~ ∈ [0, 1] and
q ∈ X ≡ RN . The same strategy has been used in [2] for the rotation algebras (which are also twisted crossed
products) in order to explore the regularity of the spectrum of certain finite-difference operators, the parameter
~ being replaced there by the strength of a (discrete) magnetic field.
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We consider first the C∗-bundle A =
(

I, {A~}~∈I ,Γ0(A)
)

, where I := [0, 1] is compact, A~ := A (our admissible
C∗-algebra) for all ~ and Γ0(A) := C(I ;A). One checks easily that A is indeed a continuous C∗-bundle. Note
that the Gelfand spectrum of the C∗-algebra C(I ;A) is homeomorphic to I × SA, where SA is the spectrum
of A. Recalling the twisted actions {

(

θ~, ω~

B

)

| ~ ∈ I} of Section 3, one defines for all ~ ∈ I , q, x, y ∈ X and
F ∈ C(I ;A):

Θ : X → Aut[C(I ;A)], (ΘxF ) (~) := θ~

x[F (~)], (11)

ΩB : X ×X → C(I × SA; T), [ΩB(x, y)] (~, q) := ω~

B(q;x, y). (12)

By using notations as [F (~)](q) ≡ F (~, q) (the elements of C(I ;A) ∼= C(I × SA) may be seen as functions on
I ×X), (11) can be rewritten (ΘxF ) (~, q) = F (~, q + ~x).
The group X = R

N , being abelian, is amenable. It is easy to verify that (C(I ;A),Θ,ΩB , X) is a twisted
C∗-dynamical system and that Θx(νF ) = νΘx(F ) for all x ∈ X , ν ∈ C(I) and F ∈ C(I ;A), as required by
Theorem 5.2.
To apply Theorem 5.2, one must compute first the twisted actions {

(

t~, w~
)

| ~ ∈ I} associated to (Θ,ΩB). It
easily comes out that t~ = θ~ and w~ = ω~

B ; just use the explicit formulae. Thus the C∗-algebras C~, the fibers
of the continuous C∗-bundle C, coincide (respectively) with the C∗-algebras C~

A defined in Section 3. To show
that the map ~ 7→‖ ϕ ‖~ is continuous for any ϕ ∈ A∞ � S(X), by the axiom (ii) of a continuous C∗-bundle,
one has just to prove that any element ϕ ∈ S(X ;A∞) defines a (constant) section belonging to Γ0(C). This is
obvious even for ϕ ∈ L1(X ;A), since the isomorphism χ just intertwins the variables ~ and x.
The proof is finished. �

6 The von Neumann condition

We have to show that, for fixed ϕ, ψ ∈ S(X ;A∞)R, one has

lim
~→0

‖
1

2

(

ϕ �~ ψ + ψ �~ ϕ
)

− ϕ �0 ψ ‖~= 0.

The operations �~ and �0 are defined, respectively, at (6) and (9). Taking into account that ‖ · ‖~ ≤ ‖ · ‖1 and
by the triangle inequality, it is enough to prove

lim
~→0

‖ ϕ �~ ψ − ϕ �0 ψ ‖1= 0. (13)

We begin by studying the exponent of the cocycle appearing in the definition of �~.

−
i

~
ΓB(< q −

~

2
x, q −

~

2
x+ ~y, q +

~

2
x >) = −

i

~

∫

<q− ~

2
x,q− ~

2
x+~y,q+ ~

2
x>

B.

Let us consider a two variables parametrization for the triangle < q − ~

2x, q −
~

2x+ ~y, q + ~

2x >:

< q −
~

2
x, q −

~

2
x+ ~y, q +

~

2
x > = κq,(x,y)[∆2]

where ∆2 := {(t, s) ∈ R2 | 0 ≤ t ≤ 1, 0 ≤ s ≤ t} and

κq,(x,y)(t, s) := q −
~

2
x+ t~y + s~(x− y) = q + (s−

1

2
)~x+ (t− s)~y.

Thus, by denoting et and es the tangent vectors corresponding to the two coordinate functions of R2, we have

∫

κ[∆2]

B =

∫

∆2

κ∗B =

∫ 1

0

dt

∫ t

0

ds (κ∗B) (et, es).

An obvious calculation gives

(κ∗B)(et, es) =
∑

j,k

B
(

κq,(x,y)(t, s)
) ∂κj

∂t

∂κk

∂s
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and thus we have

−
i

~
ΓB(κq,(x,y)[∆2]) = −i~

∑

j,k

yj(x− y)k

∫ 1

0

dt

∫ t

0

dsBjk

[

q + (s−
1

2
)~x+ (t− s)~y

]

=: −i~ΩB(q, x, y; ~).

(14)
Now let us come back to (13) and estimate

‖ ϕ �~ ψ − ϕ �0 ψ ‖1≤

≤

∫

X

dx

∫

X

dy sup
q∈X

∣

∣

∣

∣

ϕ

(

q −
~

2
(x− y); y

)

ψ

(

q +
~

2
y;x− y

)

e−i~ΩB(q,x,y;~) − ϕ(q; y)ψ(q;x− y)

∣

∣

∣

∣

. (15)

It is easy to see that the integral is bounded by the expression

2

(

sup
q∈X

sup
y∈X

< y >m ϕ(q; y)

) (

sup
q∈X

sup
x∈X

< x >m ψ(q;x)

) (
∫

X

dx < x >−m

)2

,

that is finite and not depending of ~ for any m > N . On the other hand the integrand in (15) is convergent
pointwise to zero when ~ goes to 0, as can be seen after writing the inequality

sup
q∈X

∣

∣

∣

∣

ϕ

(

q −
~

2
(x− y); y

)

ψ

(

q +
~

2
y;x− y

)

e−i~ΩB(q,x,y;~) − ϕ(q; y)ψ(q;x − y)

∣

∣

∣

∣

≤

≤

(

sup
q∈X

∣

∣

∣

∣

ϕ

(

q −
~

2
(x− y); y

)

− ϕ(q; y)

∣

∣

∣

∣

) (

sup
q∈X

∣

∣

∣

∣

ψ

(

q +
~

2
y;x− y

)∣

∣

∣

∣

)

+

+

(

sup
q∈X

|ϕ(q; y)|

) (

sup
q∈X

∣

∣

∣

∣

ψ

(

q +
~

2
y;x− y

)

− ψ(q;x− y)

∣

∣

∣

∣

)

+

+

(

sup
q∈X

|ϕ(q; y)ψ(q;x − y)|

) (

sup
q∈X

∣

∣

∣
e−i~ΩB(q,x,y;~) − 1

∣

∣

∣

)

.

For the first two lines we use the fact that ϕ and ψ belong to S(X ;A∞) ⊂ BC∞(X×X). For the third one, the
hypothesis that the components of the magnetic field are in A∞ ⊂ BC∞(X) implies that for any (x, y) ∈ X2

we have sup
q∈X

|ΩB(q, x, y; ~)| ≤ C(x, y) uniformly in ~. Thus sup
q∈X

| exp{−i~Ω(q, x, y; ~)} − 1| converges to 0 for

~ → 0.

7 The Dirac condition

We need only to prove that the following convergence holds:

∥

∥

∥

∥

1

i~

(

ϕ �~ ψ − ψ �~ ϕ
)

− {ϕ, ψ}B

∥

∥

∥

∥

1

−→
~→0

0. (16)

For that we shall need the exact form of the first order term in ~ of ϕ�~ψ−ψ�~ϕ. We use Taylor developments

ϕ

(

q −
~

2
(x− y); y

)

= ϕ(q; y) −
~

2

N
∑

j=1

(xj − yj)

∫ 1

0

ds
(

∂
(1)
j ϕ

)

(

q − s
~

2
(x− y); y

)

and

ψ

(

q +
~

2
y;x− y

)

= ψ(q;x− y) +
~

2

N
∑

j=1

yj

∫ 1

0

ds
(

∂
(1)
j ψ

)

(

q + s
~

2
y;x− y

)

.

For ρ ∈ S(X ;A∞), z ∈ X and (q, x) ∈ X2 we shall use the notation ∇(1)ρ for the gradient with respect to the
first variable in X ×X and set

(L±
z ρ)(q;x) :=

1

2
z ·

∫ 1

0

ds
(

∇(1)ρ
)

(

q ± s
~

2
z;x

)

. (17)
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Note that we have

lim
~→0

(L±
z ϕ)(q;x) =

1

2
z ·

(

∇(1)ϕ
)

(q;x). (18)

Then the Taylor developments above read

ϕ

(

q −
~

2
(x − y); y

)

= ϕ(q; y) − ~(L−
x−yϕ)(q; y)

and

ψ

(

q +
~

2
y;x− y

)

= ψ(q;x − y) + ~(L+
y ϕ)(q;x− y).

Moreover, the assumption that Bjk ∈ A∞ ⊂ BC∞(X) implies that for any x, y ∈ X , the function X × [0, 1] 3
(q, ~) 7→ ΩB(q, x, y; ~) ∈ R is bounded and uniformly continuous. Thus, if we denote

RB(q, x, y; ~) :=
1

~

(

e−i~ΩB(q,x,y;~) − e−i~ΩB(q,x,y,0)
)

, (19)

we get lim
~→0

|RB(q, x, y; ~)| = 0.

Puting everything together we obtain
(

ϕ �~ ψ − ψ �~ ϕ
)

(q;x) =

=

∫

X

dy
[

(1 − ~L−
x−y)ϕ

]

(q; y)
[

(1 + ~L+
y )ψ

]

(q;x− y)
[

e−i~ΩB(q,x,y;0) + ~RB(q, x, y; ~)
]

−

−

∫

X

dy
[

(1 − ~L−
x−y)ψ

]

(q; y)
[

(1 + ~L+
y )ϕ

]

(q;x − y)
[

e−i~ΩB(q,x,y;0) + ~RB(q, x, y; ~)
]

=

=

∫

X

dy ϕ(q, y)ψ(q;x − y)
[

e−i~ΩB(q,x,y;0) − e−i~ΩB(q,x,x−y;0)
]

+

+~

∫

X

dy ϕ(q; y)
[

(L+
y + L−

y )ψ
]

(q;x− y) − ~

∫

X

dy
[

(L+
x−y + L−

x−y)ϕ
]

(q; y)ψ(q;x− y) + o(~)

where, for obtaining the second identity, we have changed an integration variable from y to x − y. By using
(18) and some simple arguments we get

(

ϕ �~ ψ − ψ �~ ϕ
)

(q;x) =

= −i~
∑

j,k

Bjk(q)

∫

X

dy yjϕ(q; y) (x− y)kψ(q;x− y)+

+~

∫

X

dy
[

yϕ(q; y) · (∇(1)ψ)(q;x− y) − (∇(1)ϕ)(q; y) · (x− y)ψ(q;x− y)
]

+ o(~),

The result is now straightforward by the explicit form of the bracket {·, ·}B and of the composition law �0.
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