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Intro-1

Let us begin by presenting a very brief view of the ’scenary’ in which our
work is situated.

To start with, let us say that we are interested in mathematical
models for describing different phenomena in solids and mainly
concerning their interaction with the electromagnetic fields.

In fact, we focus on phenomena at the atomic scale, as governed by
quantum physics and this is why the name of Felix Bloch appears.

The Solid

For the class of phenomena we are interested in, the solid is described as a
crystalline structure given by a regular lattice of atoms, or rather positive
ions having a certain effective charge ’visible’ at the scale we consider and
a gas of electrons moving around.
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Intro-2

As physicists always do, let us start with the 0-th approximation order and
consider the atoms as charged point particles fixed on the vertices of the
regular lattice and neglect the interaction between the different electrons
in the ’electron gas’ moving around.
Then our physical system is a family of independent electrons, also
considered as point particles, moving in the periodic field of the atoms on
the lattice and a possible ’external field’. Thus it is enough, for the
beginning to consider one such electron moving in the given fields.
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Intro-3

Each electron has its own:

well-defined physical characteris-
tics:

mass: m,

negative electric charge: e,

spin: 1/2

and a family of physical observables
through which we describe its
movement:

position: q,

momentum: p,

spin projections: σj ,

energy:
E = (1/2m)|p|2 + V (q),

angular momentum: l,

etc ...

For the moment we shall neglect the spin variations.

Radu Purice (IMAR) Isolated Bloch families in magnetic fields 16 Coll Franco-Roumain, 2024 4 / 45



Intro-4

The quantum principles imply that

There is a complex Hilbert space H such that:

The physical states are described by the rank 1 orthogonal projections
in H: P ∈ P(H),

The physical observables are described by (possibley unbounded)
self-adjoint operators on H: T = T ∗ : D(T )→ H.

σ(T ) = {the set of values of the observable T}.
Tr(PT ) measures the mean value of the observable T in the state P.

By ”quantization”, one replaces the abelian algebra of classical observables
(defined as functions on the phase space) with a non-abelian algebra of
operators in a complex Hilbert space.

Radu Purice (IMAR) Isolated Bloch families in magnetic fields 16 Coll Franco-Roumain, 2024 5 / 45



Intro-5

A pointwise particle of mass m in the d-dimensional Euclidean space X:

One has to fix an origin and a frame, so that X ∼= Rd .

H = L2(Rd),

P ∈ P(H) ∼→ ψ ∈ L2(Rd), ‖ψ‖2 =
∫
Rd dx |ψ(x)|2 = 1.

q ≡ {qj , 1 ≤ j ≤ d} ∼→ {Qj , 1 ≤ j ≤ d},(
Qj f
)
(x) := xj f (x), ∀x ∈ Rd , ∀f ∈ L2(Rd).

p ≡ {pj , 1 ≤ j ≤ d} ∼→ {Dj , 1 ≤ j ≤ d},
Dj : {f ∈ H, −i∂xj f ∈ L2(Rd)}.
E ∼→ H, Hf = −(1/2m)∆ f + V (Q)f
where:

◦ V : Rd → R is the potential energy,
◦
(
V (Q)f

)
(x) := V (x)f (x), ∀x ∈ Rd , ∀f ∈ L2(Rd).

The time evolution: ”the state P0 ∈ P(H) at t = 0
becomes Pt := e−itHP0e

itH ∈ P(H) at time t ∈ R.
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For d ≥ 2 we consider the d-dimensional real Euclidean space X ∼= Rd

and:

the dual X∗ with the canonical bilinear duality map:
< ·, · >: X∗ ×X → R;

the phase space defined by its cotangent bundle Ξ ∼= X ×X∗;

Let E := {ej}j∈d be the canonical linear basis of Rd .

Γ :=
{ ∑

1≤j≤d
γjej ∈X, γj ∈ Z, ∀j

}
∼= Zd - the regular lattice.

V : X → R will be a Γ-periodic function (the periodic potential).

Γ∗ :=
{ ∑

1≤j≤d
γ∗j e
∗
j ∈X∗ , < e∗j , ek >= 2πδj ,k , γ

∗
j ∈ Z, ∀j

}
∼= Zd

the dual lattice.

τv denotes translation by v ∈ V on any function space on a linear space V.
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Any Γ-periodic function may be considered as a function defined on X/Γ
that has a non-trivial topological structure.

Let us recall the quotient group: R /Z =: S ∼=
{
z ∈ C |z| = 1

}
with the canonical projection p1 : R〉→ S given by p1(x) := e−2πix .

Then:

X / Γ =: T ∼= [S]d , p := [p1]d : X〉→ T;

X∗ / Γ∗ =: T∗ ∼= [S]d , p∗ := [p1]d : X∗〉→ T∗.

We shall frequently use the sections:

s : T → E := {x ∈X, −1/2 ≤ xj < 1/2, 1 ≤ j ≤ d} ⊂X,
p ◦ s = IIdT, s ◦ p = IIdE;

s∗ : T∗ → B := {ξ ∈X∗, −1/2 ≤ ξj < 1/2, 1 ≤ j ≤ d} ⊂X∗,
p∗ ◦ s∗ = IIdT∗ , s∗ ◦ p∗ = IIdB.
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Intro-6

Considering the physical system we are interested in, we notice that we
have to work with ”Γ-periodic partial differential operators” or even more,
with ”Γ-periodic pseudo-differential operators.
As a consequence of the Schur lemma, a Γ-periodic operator H is
decomposable in the Fourier transformed representation as an
operator-valued function T∗ 3 θ 7→ Ĥ(θ).
Moreover, for the Hamiltonian operators we are dealing with, the ’fibre
operators’ Ĥ(θ) have compact resolvent and thus a discrete spectrum,
defining a family of real functions on T∗ the so-called Bloch levels, like in
the following picture.
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Intro-7

An essential feature concerning the above structure, comes from the spin
of the electrons: being half-integer, they are fermions and one of the
quantum principles does not allow for two fermions of the same type to be
in the same state P ∈ P(H). Thus, depending on its density, the particles
in the electron gas in the solid must occupy a number of Bloch levels up
to some energy, called the Fermi energy and its position with respect to
the different Bloch levels and the possible spectral gaps has very
significant consequences on its time evolution and interaction with other
external fields.

In this work, we shall be interested in the interaction of the electrons of
the solid, with an external magnetic field that is smooth and bounded
together with all its derivatives, but is not supposed to vanish at infinity.
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Let us now be more precise!
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Plan of the talk

1 The framework
The unperturbed Hamiltonian
The Bloch-Floquet theory

2 The Problem
The perturbed magnetic Hamiltonian.
The main results
Main lines of the proof

3 References
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The framework The unperturbed Hamiltonian

The Hörmander classes of symbols.

For p ∈ R and ρ ∈ [0, 1] we define:

Sp
ρ (X∗,X) :=

{
F ∈ C∞(Ξ) , νp,ρn,m(F ) <∞∀(n,m) ∈ N× N

}
,

νp,ρn,m(F ) := max
|α|≤n

max
|β|≤m

sup
(x ,ξ)∈Ξ

< ξ >−p+ρm
∣∣(∂αx ∂βξ F)(x , ξ)

∣∣.
Definition

A symbol F ∈ Sp
ρ (X∗,X) is called elliptic, when:

∃(C ,R) ∈ R+ × R+, |ξ| ≥ R ⇒
∣∣F (x , ξ)

∣∣ ≥ C < ξ >p .

Notation: (Γ-periodic symbols)

Sp
ρ (X∗,X)Γ :=

{
F ∈ Sp

ρ (X∗,X), F (x + γ) = F (x), ∀(x , γ) ∈X × Γ
}
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The framework The unperturbed Hamiltonian

Comments-1

As you know very well, we have the Weyl-Hörmander prescription (or
’quantization procedure’) to associate to these symbols some
operators S (X)→ S ′(X), in such a way that polynomials of order
p in the dual variable ξ ∈X∗ are taken into differential operators of
order p.

In collaboration with Viorel Iftimie and late Marius Măntoiu and

later on with Horia Cornean and Bernard Helffer, we have constructed
a ”twisted” Weyl-Hörmander calculus in which we embodied the
”magnetic field” by replacing the usual differential operators
Dj” = −i∂xj by some covariant derivations DA

j := −i∂xj − Aj(x)
associated to the 1-form A defining the magnetic field B = dA.

The main technical problem arises from the fact that without
imposing a vanishing condition on the magnetic field B, one has to
do with vector potentials A that grow (linearly) at infinity!
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The framework The unperturbed Hamiltonian

The magnetic field

Let us denote by:

Λp
bd(X) the real space of smooth p-forms on X

having components of class BC∞(X)

Λp
pol(X) the real space of smooth p-forms on X

having components with polynomial growth together with all their
derivatives

d : Λp
pol(X)→ Λ(p+1)

pol (X) the exterior differential that restricts to a

map Λp
bd(X)→ Λ(p+1)

bd (X)

The magnetic field: B ∈ Λ2
bd(X), dB = 0,

The vector potential:

There exists A ∈ Λ1
pol(X) such that B = dA.
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The framework The unperturbed Hamiltonian

The magnetic phase.

The magnetic phase.

ΛA(x , y) : = exp
(
− i

∫
[x ,y ]

A
)

= exp
(
− i

∫ 1

0
ds
〈
Aj

(
x + s(y − x)

)
, (y − x)

〉) (1)

defining the magnetic translations [UA(z)f ](x) := ΛA(x , x + z)f (x + z)
having as self-adjoint generators the covariant derivations
DA
j = −i∂xj − Aj(x).

This is the singular ’magnetic’ phase
put into evidence by H. Cornean and G. Nenciu.
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The framework The unperturbed Hamiltonian

Magnetic quantization.

We denote by L(V1;V2) the space of linear continuous operators between
the topological vector spaces V1 and V2 with its strong topology
(of uniform convergence on bounded sets).

Magnetic Weyl quantization:

OpA : S (Ξ)
∼−→ L

(
S ′(X); S (X)

)
:(

OpA(Φ)ψ
)
(x) := (2π)−d/2

∫
X

dy

∫
X∗
dη e i<η,x−y> ΛA(x , y) Φ

(
(x + y)/2, η

)
ψ(y)

∀ψ ∈ S (X)

By duality we get a map OpA : S ′(Ξ)
∼−→ L

(
S (X); S ′(X)

)
.

It is gauge covariant: if dA = dA′ = B, then ∃U ∈ U
(
L2(X)

)
such that

OpA
′
(Φ) = UOpA(Φ)U−1.
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The framework The unperturbed Hamiltonian

The ’unperturbed’ Hamiltonian:

The Hamiltonian function:

h ∈ Sp
1 (X∗,X)Γ, p > 0 h > 0, elliptic.

The ’residual’ periodic magnetic field:

B◦ ∈ Λ2
bd(X), such that: B◦(x + γ) = B◦(x) ∀(x , γ) ∈X × Γ,∫

ej∧ek
B◦ = 0.

∃A◦ ∈ Λ1
bd(X), A◦(x + γ) = A◦(x) ∀(x , γ) ∈X × Γ.

The free Hamiltonian:

HΓ := OpA◦(h).
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The framework The Bloch-Floquet theory

The Bloch-Floquet representation.

The space L2(X) with the unitary action of Rd ∼= X by translations
is unitary equivalent with the Hilbert direct integral:

F :=

∫ ⊕
T∗

dθFθ

where: Fθ :=
{
f ∈ L2

loc(X), τγf = e i<θ,γ>f , ∀γ ∈ Γ
} ∼= e i<θ,·>L2(T)

with the quadratic norm: ‖f ‖2
θ :=

∫
E
dx̂ |f (x̂)|2.

UΓ : L2(X)
∼→ F ,

(
UΓu

)
θ
(x) :=

∑
γ∈Γ

e−i<θ,γ>u(γ + x).

Let f ∈ C∞(X∗ ×X)) be defined by f(ξ, x) := e i<ξ,x> and G := f−1F .
In fact G with the induced action of X∗ ∼= Rd is isomorphic to the space
of sections of the vector bundle F〉→ T∗ associated to the principal bundle
X∗〉→ T∗ by the representation Û† : Γ∗ → U

(
L2(T)

)
:(

Û†(γ∗)φ
)
(ω) := e−i<γ

∗,ω>φ(ω).
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The framework The Bloch-Floquet theory

The Bloch-Floquet Theorem.

The Γ-periodicity of h ∈ Sp
1 (X∗,X)Γ and A◦ ∈ Λ1

bd(X)
implies the Floquet decomposability of HΓ and we may define:

H̃Γ(ξ) = f(ξ, ·)−1ĤΓ
p∗(ξ)f(ξ, ·) ∈ B

(
L2(T)

)
, ∀ξ ∈X∗.

Theorem A

For each ξ ∈X∗ the operator H̃Γ(ξ) is self-adjoint on the Sobolev
space H p(T), has compact resolvent and defines an analytic family
of type A, in the sense of Kato with respect to the variable ξ ∈X∗.

There exists a family of continuous functions T∗ 3 θ 7→ λj(θ) ∈ R
indexed by j ∈ N•, called the Bloch eigenvalues, such that

λj(θ) ≤ λj+1(θ), ∀(j , θ) ∈ N× T∗, σ
(
H̃Γ(ξ)

)
=
⋃
j∈N•

λj
(
p∗(ξ)

)
.
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The framework The Bloch-Floquet theory

image provenant de:

https://www.tf.uni-kiel.de/matwis/amat/td kin ii/index.html
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The framework The Bloch-Floquet theory

The Bloch Projections.

For each fixed θ ∈ T∗ we can define:

ν(k , θ) = inf{j ∈ N , λj(θ) = λk(θ)},
a closed contour Cn isolating λn(θ)

from the rest of the spectrum of ĤΓ(θ),

the Riesz spectral projections :

π̂k(θ) :=


1

2πi

∮
Ck (θ)

dz
(
Ĥ(θ)− z1l

)−1 ∈ B
(
Fθ

)
if ν(k , θ) = k ,

0 if ν(k , θ) < k ,

Theorem B

For any θ ∈ T∗ and any k ∈ N•:

π̂k(θ)Fθ ⊂ C∞(X)
⋂

Fθ =: F∞θ .
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The framework The Bloch-Floquet theory

The isolated Bloch family hypothesis.

We suppose fixed the Hamiltonian HΓ as above.

Hypothesis

Given the B-F decomposition of HΓ with Bloch eigenvalues {λk(θ)}k∈N• ,
there exist k0 ∈ N• and N ∈ N such that:

1 λk0−1(θ) < λk0(θ), λk0+N(θ) < λk0+N+1(θ), ∀θ ∈ Td
∗ , (where by

convention λ0 := −∞).

2 d0 := inf
θ∈T∗

λk0+N+1(θ)− sup
θ∈T∗

λk0−1(θ) > 0

so that we have the following non-void interval:

JB :=
[

sup
θ∈T∗

λk0−1(θ) , inf
θ∈T∗

λk0+N+1(θ)
]
≡ [E−,E+] ⊂ R,

We shall denote by: E ′− := inf
θ∈T∗

λk0(θ) and E ′+ := sup
θ∈T∗

λk0+N(θ).
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The framework The Bloch-Floquet theory

An isolated Bloch family.

spectral islands with
absolutely continuous
spectrum.

possible spectral gaps.

  

E

T
[ )
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1
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Γ
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The framework The Bloch-Floquet theory

Definition

We call isolated Bloch family for the Hamiltonian HΓ, a family of Bloch
levels B :=

{
λk : Td

∗ → R , k0 ≤ k ≤ k0 + N,
}

that satisfy the above
Hypothesis.

Let us emphasize that we do not assume the existence of any spectral gap
below or above the image of the isolated family B in the spectrum of HΓ,

i.e. we do not suppose satisfied the following

Spectral gap condition:

sup
θ∈T∗

λk0−1(θ) < inf
θ∈T∗

λk0(θ), and sup
θ∈T∗

λk0+N(θ) < inf
θ∈T∗

λk0+N+1(θ).

For some technical reasons that will become clear further, we shall choose
our energy scale in order to have:

inf
θ∈Td

∗

λ1(θ) =: E0 > 0 .
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The framework The Bloch-Floquet theory

The JB dynamics

Let us consider an interval J ⊂ J̊B and u ∈ EHΓ(JB)L2(X) with ‖u‖ = 1,

where

EHΓ(J) is the spectral projection of HΓ on the Borel subset J ⊂ R.

Then: HΓ u = HΓ EHΓ(J)u = HΓ
B u,

where:

HΓ
B = U −1

Γ

(∫ ⊕
T∗

dθ ĤΓ
B(θ)

)
UΓ ĤΓ

B(θ) :=
∑

k0≤k≤k0+N

λk(θ) π̂k(θ) ∈ B
(
L2(E)

)
.
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The Problem

The Problem

Our objective in this work is to analyze the influence of a perturbing
magnetic field on the dynamics associated to the isolated Bloch family B
of the unperturbed (magnetic, periodic) Hamiltonian HΓ.

We shall not impose to our perturbing magnetic field to vanish at infinity
and thus the perturbation it produces is not relatively bounded with
respect to the unperturbed Hamiltonian HΓ.

Radu Purice (IMAR) Isolated Bloch families in magnetic fields 16 Coll Franco-Roumain, 2024 28 / 45



The Problem The perturbed magnetic Hamiltonian.

The perturbing magnetic field

We perturb HΓ by adding a magnetic field Bε,c ∈ Λ2
bd(X) with dBε,c = 0,

controlled by two parameters (ε, c) ∈ [0, ε0]× [0, 1]
(for some ε0 > 0 usually small enough)

and having the form: Bε,c := εB• + cεBε ∈ Λ2
bd(X),

where:

B• is a constant magnetic field,

Bε ∈ Λ2
bd(X) with uniform estimates for ε ∈ [0, ε0].

Moreover we choose

A•k(x) := (1/2)
∑

1≤j≤d
B•j ,kxj ,

Aε ∈ Λ1
pol(X) such that Bε = dAε

and Bε,c = dAε,c for Aε,c(x) := εA•(x) + cεAε(x).
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The Problem The perturbed magnetic Hamiltonian.

The perturbed Hamiltonian

Let us emphasize that the total magnetic field of our problem is:

B := B◦ + Bε,c = B◦ + ε(B• + c Bε) = d(A◦ + Aε,c) ≡ dA.

The perturbed magnetic Hamiltonian is then defined by

Hε,c := OpA(h) on L2(X)

and has the domain H p
A (X) = H p

Aε,c ⊂ L2(X).

An important role will be played by the following two resolvents:

R◦z :=
(
HΓ − z1l

)−1
=: OpA

◦
(r◦z ) for z ∈ C \ σ(HΓ),

Rε,cz :=
(
Hε,c − z1l

)−1
=: OpA(rε,cz ) for z ∈ C \ σ(Hε,c).

The magnetic pseudo-differential calculus implies that both r◦z and rε,cz
belong to S−p1 (Ξ) with r◦z Γ-periodic.
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The Problem The main results

The main results

The Main Theorem

There exist ε0 > 0 and C > 0 such that for any pair (ε, c) ∈ [0, ε0]× [0, 1],
if we denote by ϑ(ε) := ε ln(ε−1)
and by JεB the interval

(
E− + Cϑ(ε) , E+ − Cϑ(ε)

)
,

there exists an orthonormal projection Pε,cB and
an effective magnetic Hamiltonian Hε,cB ∈ B

(
L2(X)

)
commuting with Pε,cB

and satisfying the following properties:

1 For any compact interval J ⊂ JεB:

dH

(
J ∩ σ(Hε,c) , J ∩ σ

(
Hε,cB

∣∣
Pε,cB L2(X)

))
≤ Cε2.

2 E ε,ch (J) ≤ Pε,cB and for any t ∈ R+ there exists C > 0 such that:

∀ v ∈ EJ(Hε,c)L2(X) :
∥∥e−itHε,cv−e−itHε,cB v

∥∥
L2(X)

≤ Ct3 ε2 ‖v‖L2(X).
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The Problem The main results

The main results

Let us consider

the unitary equivalence L2(X) ∼= `2
(
Γ; L2(E)

)
;

the orthonormal basis {eγ , γ ∈ Γ} of `2(Γ) defined by eγ(α) := δα,γ .

A Generalised Peierls-Onsager formula

There exist ε0 > 0 and C > 0 such that for any ε ∈ [0, ε0],
there exists a smooth map Ĥε : T∗ → B

(
L2(E)

)
, independent of Bε

verifying the estimations:

∀a ∈ Nd , ∃Ca > 0, sup
θ∈T∗

∥∥[∂aθ(ĤεB − ĤΓ
B

)]
(θ)
∥∥
B(L2(E))

≤ Caε,

∀c ∈ [0, 1] there exist an unitary operator Uε,c ∈ U
(
L2(X)

)
and some

C > 0 such that:∥∥∥(eα , Uε,cHε,cB [Uε,c]−1eα−γ
)
− Λε,c(α, γ)

(
FT∗Ĥ

ε
B

)
(γ)
∥∥∥

B(L2(E))

≤ C cε.
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The Problem Main lines of the proof

Main lines of the proof.
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The Problem Main lines of the proof

Orthogonal decomposition induced
by the isolated Bloch family

Given the isolated Bloch family B :=
{
λk : T∗ → R, k0 ≤ k ≤ k0 + N

}
,

let: n0 := [k0], nB := [k0 + N] \ [k0 − 1] and n∞ := N• \ [k0 + N]

and define the operators (with a ∈ {0,B,∞}):

Pa := U −1
Γ

( ∫ ⊕
T∗ dθ

∑
k∈na

π̂k(θ)
)
UΓ, P⊥ := P0 + P∞,

HΓ
a := U −1

Γ

( ∫ ⊕
T∗ dθ

∑
k∈na

λk(θ) π̂k(θ)
)
UΓ, HΓ

⊥ := HΓ
0 + HΓ

∞.

verifying the identities:

P0 ⊕ PB ⊕ P∞ = 1lL2(X),

HΓ
0 ⊕ HΓ

B ⊕ HΓ
∞ = HΓ,

σ(HΓ
0 ) ⊂ [E0,E−], σ(HΓ

B) ⊂ [E ′−,E
′
+], σ(HΓ

∞) ⊂ [E+,+∞)
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The Problem Main lines of the proof

Riesz formulae for the orthogonal decomposition

We can find a smooth curve CB(θ) ⊂ C diffeomorphic to a circle,
containing σB(θ) in its inner domain and remaining at a distance
greater than some d ∈

(
0, dB/2

)
from the spectrum of ĤΓ(θ).

Then we have the formula:

P̂B(θ) =
∑

k0≤k≤k0+N̂

πk(θ) = (2πi)−1

∫
CB(θ)

(
ĤΓ(θ)− z1l

)−1
dz.

For any θ̃ ∈ Td
∗ , we can find a small open neighbourhood Õ ⊂ Td

∗
such that we may take CB(θ) = C̃B constant for all θ ∈ Õ.

It follows that the following application is smooth:

Õ 3 θ 7→ (2πi)−1

∫
C̃B

(
ĤΓ(θ)− z1l

)−1
dz ∈ B(Fθ).
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The Problem Main lines of the proof

Regularity of the orthogonal decomnposition

Due to the above analysis and Theorems A & B:

∃pB ∈ S−∞(X∗,X)Γ, such that PB := U −1
Γ P̂BUΓ = OpA

◦
(pB).

Identical arguments imply that:

∃p0 ∈ S−∞(X∗,X)Γ, such that P0 := U −1
Γ P̂0UΓ = OpA

◦
(p0);

∃h0 ∈ S−∞(X∗,X)Γ, such that HΓ
0 := U −1

Γ ĤΓ
0 UΓ = OpA

◦
(h0);

∃hB ∈ S−∞(X∗,X)Γ, such that HB := U −1
Γ ĤΓ

BUΓ = OpA
◦
(hB).

It follows that:

p∞ := 1− (p0 + pB) ∈ S0
1 (X∗,X)Γ, p⊥ := 1− pB ∈ S0

1 (X∗,X)Γ,

h∞ := h − (h0 + hB) ∈ Sp
1 (X∗,X)Γ, h⊥ := h − hB ∈ S0

1 (X∗,X)Γ

h∞ and h⊥ are elliptic symbols.

HΓ
∞ = OpA

◦
(h∞), HΓ

⊥ = OpA
◦
(h⊥).
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The Problem Main lines of the proof

The perturbed isolated Bloch family

We notice that:

PB = Pker HΓ
⊥

= (2πi)−1

∫
CB

dz
(
HΓ
⊥ − z1l

)−1
.

where CB ⊂ C is a circle enclosing 0 ∈ C in its interior domain and having
a radius r0 := E0/2

Definition
Hε,c
a := OpA(ha) for a ∈ {0,B,∞}.

Pε,cB := (2πi)−1
∫
CB

dz
(
Hε,c
⊥ − z1l

)−1
with CB as above.

Hε,cB := Pε,cB Hε,c Pε,cB - the effective Hamiltonian of the isolated Bloch
family in magnetic field .
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The Problem Main lines of the proof

Perturbing the orthogonal decomposition

Our results on spectral regularity imply that:

If we denote by ϑ(ε) := ε ln(ε−1), there exists ε0 > 0 and c > 0 such that:

∀(ε, c) ∈ [0, ε0]× [0, 1] σ(Hε,c
0 ) ⊂ [E0 − cϑ(ε) , E− + cϑ(ε)],

σ(Hε,c
B ) ⊂ [E ′− − cϑ(ε) , E ′+ + cϑ(ε)],

σ(Hε,c
∞ ) ⊂ [E+ − cϑ(ε) , +∞).

Proposition P

With the above notations and hypothesis, there exists ε0 > 0 and C > 0
such that the interval JδB :=

(
E− + Cϑ(ε) , E+ − Cϑ(ε)

)
is not void and

for any pair (ε, c) ∈ [0, ε0]× [0, 1] and any closed interval J ⊂ JδB,
the spectral projection E ε,ch (J) of Hε,c associated with J satisfies

E ε,ch (J) ⊆ Pε,cB L2(X).
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The Problem Main lines of the proof

A Feshbach-Schur quotient argument.

Hypothesis

In a separable complex Hilbert space H

we consider a family of pairs (Hκ,Pκ) indexed by κ ∈ [0, κ0] for some
κ0 > 0, where for any κ ∈ [0, κ0]:

Hκ : D(Hκ)→ H is a lower-semibounded self-adjoint operator,

Πκ = Π∗κ = Π2
κ is an orthogonal projection, such that,

with Π⊥κ := 1l− Πκ, we have the properties:
1 ∃C > 0 such that for any κ ∈ [0, κ0] and any u ∈ H we have that

ΠκH ⊂ D(Hκ) and ‖Π⊥κHκΠκ‖B(H) ≤ C κ;
2 ∃J ⊂ R with non-void interior, such that ∀(κ, t) ∈ [0, κ0]× J,

the operator Π⊥κHκΠ⊥κ − tΠ⊥κ is invertible as operator in Π⊥κH
with the inverse R⊥κ (t) being uniformly bounded on J.

Under the above Hypothesis we have the estimate (for some C > 0):∥∥ΠκHκΠ⊥κ R
⊥
κ (t)Π⊥κHκΠκ

∥∥
B(H)

≤ Cκ2
∥∥Rκ(t)

∥∥
B(H)

.
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The Problem Main lines of the proof

Theorem C

Under the above Hypothesis we have that:

t ∈ J ∩ σ(H) if and only if t ∈ J ∩ σ
(
ΠκHκΠκ − ΠκHR

⊥
κ (t)HκΠκ

)
if we denote by R̊κ(t) :=

(
Πκ(Hκ − t)Πκ − ΠκHκR

⊥
κ (t)HκΠκ

)−1
as

operator in ΠκH, for any κ ∈ [0, κ0] we have the following block
structure with respect to the decomposition 1l = Πκ ⊕ Π⊥κ :(
Hκ − t1lH

)−1
=

(
Πκ(Hκ − t)Πκ ΠκHκΠ⊥κ

Π⊥κHκΠκ Π⊥κ (Hκ − t)Π⊥κ

)−1

=

(
R̊κ(t) −R̊κ(t)HR⊥κ (t)

−R⊥κ (t)HR̊κ(t) R⊥κ (t) + R⊥κ (t)HR̊κ(t)HR⊥κ (t)

)
.

The operator [Hκ] := ΠκHκΠκ is a bounded self-adjoint operator

and there exists C > 0 such that:

max

{
sup

λ∈J∩σ(Hκ)

dist
(
λ, σ

(
[Hκ]

))
, sup
λ∈J∩σ([Hκ])

dist
(
λ, σ(Hκ)

)}
≤ C κ2

∥∥R⊥κ (t)
∥∥
B(H)

.
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