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Abstract. We consider anisotropic Schrödinger operators H = −∆+V in L2(Rn).
To certain asymptotic regions F we assign asymptotic Hamiltonians HF such that (a)
σ(HF ) ⊂ σess(H), (b) states with energies not belonging to σ(HF ) do not propagate
into a neighbourhood of F under the evolution group defined by H. The proof relies
on C*-algebra techniques. We can treat in particular potentials that tend asymptoti-
cally to different periodic functions in different cones, potentials with oscillation that
decays at infinity, as well as some examples considered before by Davies and Simon
in [4].

1. Introduction

This paper is concerned with propagation properties of scattering states of self-
adjoint n-dimensional Schrödinger operators H = −∆+V with potentials V having
different asymptotics in different directions. We recall that the scattering states of
H are defined by the property that, as the time t tends to ±∞, they propagate
away from each bounded region of the configuration space Rn (at least in some
time average [2]). In many situations, in particular if V is a bounded function, they
can be identified with the states in the continuous spectral subspace of H. If the
potential V tends to zero (or to some other constant) sufficiently rapidly at infinity,
standard scattering theory provides a description of the behaviour of e−itHf for a
scattering state f at large times t. In more complicated situations, in particular
if the asymptotic behaviour of V is highly anisotropic, little is known about the
propagation of the scattering states. One may expect that certain asymptotic
regions of configuration space should be inaccessible to states of certain energies,
as illustrated by the following two examples.

(1) In one dimension (n = 1), assume that V (x) → V± as x → ±∞, with
V+ 6= V−. If for example V+ > V−, a state in the continuous spectral subspace of H
with spectral support in the interval (V−, V+) will not propagate to the right. (2)
In higher dimension (n ≥ 2) consider a potential V approaching a periodic function
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V0 as the argument x tends to infinity inside some cone C ⊂ Rn. In addition to the
Hamiltonian H = −∆ + V one may introduce the periodic Schrödinger operator
H0 = −∆ + V0. Bearing in mind some hypothetical scattering theory (e−itH0

should furnish a suitable comparison dynamics for the propagation inside C), one
could expect that scattering states of H with energy disjoint from the continuous
spectrum of H0 will not be able to propagate into C (such states may exist: the
spectrum of H0 has a band structure, whereas the continuous spectrum of H will
depend also on the behaviour of V outside the cone C and thus could intersect some
gap in the band spectrum of H0).

Detailed results about the propagation and non-propagation of states for one-
dimensional Schrödinger operators with different spatial asymptotics at ±∞ (in
particular for the first example above) and for multi-dimensional operators peri-
odic in all but one dimension have been obtained by Davies and Simon [4]. The
investigation of these authors includes a careful spectral analysis of the Hamiltoni-
ans under study. We propose here a different method for obtaining non-propagation
properties, based on a relatively recent approach to spectral theory in the framework
of C*-algebras and without invoking any scattering theory. We shall in particular
obtain the non-propagation result stated in the second example above. Below we
give a brief non-technical description of this method.

Typically the potential V to be considered is an element of a C*-algebra A of
bounded, continuous functions on Rn. The functions in A are characterized by a
specific asymptotic behaviour (for example asymptotic periodicity in certain cones).
Then, by invoking the Neumann series for (H − z)−1 (which is convergent for =z
large enough), one finds that the resolvent of the operator H = −∆+V belongs to
a C*-algebra CA generated by products of elements of A (viewed as multiplication
operators in L2(Rn)) and suitable functions of momentum. We shall say that H is
affiliated to CA. A central concept is that of the spectrum of H relative to an ideal
K of CA of the form K = CK, where K is an ideal of A and CK is defined similarly
to CA (just replace A by K in the definition of CA). Let us denote this spectrum
by σK(H) and call it the essential spectrum associated with the ideal K, (a precise
definition is given in Section 2). For K = {0}, σK(H) is the usual spectrum of H;
for K = C0(Rn) (the space of continuous functions converging to zero at infinity),
K will be the ideal of compact operators and σK(H) the essential spectrum σess(H)
of H. For an ideal K of A such that C0(Rn) ⊂ K, σK(H) is a subset of σess(H). A
typical non-propagation result will assert that scattering states of H with spectral
support disjoint from σK(H) will essentially never be localized in certain spatial
domains W determined by K. Using the essential spectrum associated with such
ideals to characterize some geometric properties for quantum Hamiltonians seems
to be new, although in the literature ideals have been used in connection with
spectral theory and we thank the referee for pointing out the references [3] and [5]
to us.

In these considerations the ideal K will be given in terms of the asymptotic be-
haviour of the elements of A in some neighbourhood of infinity, and the theory will
apply if the spatial domains W associated with K cover or intersect this neighbour-
hood of infinity. In the second example mentioned at the beginning K could be
the set of functions in A that are asymptotically periodic in the cone C and tend
to zero in directions not belonging to C, W could be the intersection of C with the
complement of a compact set and σK(H) would be the spectrum of H0.

Our treatment consists in the introduction of a compactification X of Rn related
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to the algebra A (in fact X will be the character space of A). The ideal K is
determined by some closed subset F of the frontier X \ Rn of Rn in X and W is a
subset of Rn which is sufficiently close to F . In the cited example one may think,
intuitively, of F as the part of the compactification attached at infinity to the cone
C.

In this context the behaviour of various objects under translations is important.
The algebraA is assumed to be invariant under translations; then the natural action
of the translation group in Rn has a continuous extension to the compactification X
of Rn and F must be invariant under this extension in order to allow the application
of a result from the theory of crossed products of C*-algebras to determine the
spectrum σK(H).

In Section 2 we present some of the C*-algebraic concepts that are useful in
the spectral theory of self-adjoint operators. In Section 3 we discuss some algebras
A of continuous functions on Rn, the associated compactifications of Rn and the
continuous extension of the translation group to these compactifications. Section 4
contains a few remarks on crossed product algebras, and in Section 5 we give the
proof of an abstract theorem on non-propagation. An application of this theorem to
Schrödinger Hamiltonians that are asymptotically periodic in several cones is stud-
ied in detail in Section 6, and in Section 7 we mention other classes of Hamiltonians
that can be treated in a similar way.

We use the terminology and results of [12] for the theory of C*-algebras. We shall
not try to discuss the various applications of C∗-algebraic methods in the study of
quantum Hamiltonians, in the literature there exists several excellent reviews on
these problems. Nevertheless we refer to Chapter 8 of [1] for a presentation of the
algebraic approach to spectral theory that we shall use. The algebras CA and CK
mentioned above have the structure of a crossed product; Reference [6] contains
a description of such algebras that is well adapted to our applications in spectral
theory.

Finally we point out that various generalizations of our results are possible with
almost no extra effort (cf. also [1], [6], [10] and [11]). Local singularities of the
potential can easily be taken into account. The kinetic energy −∆ can be replaced
by h(P ), an arbitrary continuous function of momentum satisfying |h(p)| → ∞
when |p| → ∞. Instead of the configuration space Rn, one can work with any
abelian locally compact group X. The case X = Zn leads to finite difference
operators.

2. C*-Algebras and Generalized Essential Spectra

If H is a self-adjoint operator in a Hilbert space H, the spectral theorem allows
one to associate an operator η(H) to a large class of functions η : R → C. We
shall be here concerned with the set C0(R) consisting of all continuous functions
η : R → C that vanish at infinity (i.e. satifying limx→±∞η(x) = 0). Some parts
of the spectrum of H can easily be characterized in terms of these functions: (i) a
number λ ∈ R belongs to the spectrum σ(H) of H if η(H) 6= 0 whenever η ∈ C0(R)
and η(λ) 6= 0, (ii) λ belongs to the essential spectrum σess(H) of H if η(H) is a
non-compact operator whenever η ∈ C0(R) and η(λ) 6= 0.

If C is a C*-algebra of bounded operators in H such that η(H) ∈ C for each
η ∈ C0(R), then H is said to be affiliated to C. A sufficient condition for H to be
affiliated to C is the requirement that (H − z)−1 ∈ C for some complex number



4 W.O. AMREIN, M. MĂNTOIU AND R. PURICE

z /∈ σ(H).
The preceding situation can be viewed as a special case of the following abstract

definition:

Definition 1. (a) An observable affiliated to a C*-algebra C is a ∗-homomorphism
from the C*-algebra C0(R) to C (i.e. a linear mapping Φ : C0(R) → C satisfying
Φ(ξη) = Φ(ξ)Φ(η) and Φ(η)∗ = Φ(η) if ξ, η ∈ C0(R)).

(b) The spectrum σ(Φ) of the observable Φ is defined as the set of real numbers
λ such that Φ(η) 6= 0 whenever η(λ) 6= 0. σ(Φ) is a closed subset of R.

Now let K be a (closed, self-adjoint, bilateral) ideal in C. We denote by Ĉ ≡ C/K
the associated quotient C*-algebra and by Π the canonical ∗-homomorphism of C

onto Ĉ. If Φ is an observable affiliated to C, then clearly Π ◦ Φ determines an
observable affiliated to Ĉ.

Definition 2. The spectrum σ(Π◦Φ) of the observable Π◦Φ (relative to Ĉ) is called
the K-essential spectrum of Φ and will be denoted by σK(Φ): σK(Φ) ≡ σ(Π ◦ Φ).
Equivalently, a real number λ belongs to σK(Φ) if and only if Φ(η) /∈ K whenever
η ∈ C0(R) is such that η(λ) 6= 0.

To motivate the present terminology, let us consider the situation introduced
at the beginning, where C is a C*-subalgebra of B(H) and ΦH is the observable
determined by a self-adjoint operator H affiliated to C (so ΦH(η) = η(H)). Assume
that C contains the ideal K(H) of all compact operators in H. Then σK(H)(ΦH) is
just the essential spectrum σess(H) of the self-adjoint operator H.

Now let us observe that, if K1 and K2 are two ideals in C satisfying K1 ⊂ K2, then
σK2(Φ) ⊂ σK1(Φ) ⊂ σ(Φ). In particular, if H is a self-adjoint operator affiliated
to a C*-subalgebra C of B(H) and if K is an ideal in C with K(H) ⊂ K, then
σK(ΦH) ⊂ σess(H).

One of the interesting aspects of the preceding framework in the study of self-
adjoint operators in a Hilbert space H is as follows. Let C be a C*-subalgebra of
B(H) and consider a class Θ of self-adjoint operators H affiliated to C such that, for
some ideal K of C, the ∗-homomorphisms Π◦ΦH do not depend on H. So all mem-
bers H of Θ have the same K-essential spectrum σK. In some situations it is rather
easy to determine σK: although the quotient C*-algebra Ĉ will not be identifiable
with a subalgebra of B(H), it may be possible to specify a faithful representation of
Ĉ in a Hilbert space Ĥ (an injective ∗-homomorphism π : Ĉ → B(Ĥ)) and a simple
self-adjoint operator Ĥ in Ĥ affiliated to π(Ĉ) such that π [Π(η(H))] = η(Ĥ) for
all η ∈ C0(R) and all H ∈ Θ. Then σK is just the spectrum of the (presumably
simple) operator Ĥ. Examples will be considered in Sections 6 and 7.

The following result will be used in Section 5:

Lemma 1. Let K be an ideal in a C*-algebra C and Φ an observable affiliated to
C. If η ∈ C0(R) is such that η(µ) = 0 for all µ ∈ σK(Φ), then Φ(η) ∈ K.

Proof. (i) Let λ ∈ R \ σK(Φ). There are a number ε > 0 and a function θ ∈ C0(R)
such that |θ(µ)| > ε for all µ ∈ (λ−ε, λ+ε) and Φ(θ) ∈ K. Now let ξ ∈ C0(R) be such
that suppξ ⊂ (λ−ε, λ+ε). Since ξ/θ ∈ C0(R), we have Φ(ξ) = Φ(θ)Φ(ξ/θ) ∈ K. In
conclusion: each λ in R \ σK(Φ) has an open neighbourhood Vλ with the property
that Φ(ξ) ∈ K for each ξ ∈ C0(R) having support in Vλ.

(ii) Since K is norm-closed, it is enough to establish the conclusion of the lemma
under the additional assumption that η has compact support in R \σK(Φ). Choose
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a finite collection of numbers λ1, . . . , λM ∈ suppη such that suppη ⊂ ∪kVλk
and a

corresponding partition of unity on suppη, i.e. a collection of functions ξk in C0(R)
such that suppξk ⊂ Vλk

and
∑M

k=1 ξk(λ) = 1 for all λ ∈ suppη. Since Φ(ξk) ∈ K by
(i), we get Φ(η) =

∑M
k=1 Φ(η)Φ(ξk) ∈ K. ¤

3. Some Abelian C*-Algebras

If Y is a locally compact, Hausdorff space, we denote by Cb(Y ) the abelian
C*-algebra of all bounded, continuous complex functions defined on Y . If G is a
closed subset of Y , we set CG(Y ) = {ϕ ∈ Cb(Y ) | ϕ(y) = 0, ∀y ∈ G}. Certain C*-
subalgebras of Cb(Y ) will be important further on, in particular the algebras Cu

b (Y )
and C0(Y ) consisting respectively of all bounded, uniformly continuous functions
and of all continuous functions vanishing at infinity. In fact C0(Y ) is an ideal of
Cb(Y ).

Throughout this paper we set X = Rn. Let Y be as above and assume that X
acts on Y as a group of homeomorphisms: so if αx denotes the homeomorphism in Y
associated with the element x ∈ X, we have αx◦αx′ = αx+x′ . The mappingX×Y 3
(x, y) 7→ αx(y) ∈ Y is assumed continuous. Then α induces a representation of the
group X by ∗-automorphisms of Cb(Y ) as well as of various C*-subalgebras of
Cb(Y ): for ϕ ∈ Cb(Y ) and x ∈ X, define ax(ϕ) ∈ Cb(Y ) by [ax(ϕ)](y) = ϕ(αx(y))
(y ∈ Y ). We observe that a C*-subalgebra of the form CG(Y ) is invariant under
this automorphism group (i.e. ax

[
CG(Y )

] ⊂ CG(Y )) if and only if the closed set
G is invariant under each αx.

Let A be a unital C*-subalgebra of Cb(X) containing C0(X). We denote its
character space Ω(A) by X and we recall that X is a compactification of X, i.e.
X is a compact topological space and there is a homeomorphism i from X to a
dense subset of X (see e.g. §8.1 of [8]). For x ∈ X, the character i(x) is given by
the formula [i(x)](ϕ) = ϕ(x), for ϕ ∈ A. We write Z = X \ i(X) and call it the
frontier of X in X . By the Gelfand Theorem, A is isomorphic to the C*-algebra
C(X ) of continuous functions on Ω(A). We shall use the notation G : C[Ω(A)] → A
for the inverse of the Gelfand isomorphism. The C*-subalgebra CZ(X ) (consisting
of continuous functions on X that vanish on the frontier Z of X ) can be naturally
identified with C0(X), more precisely C0(X) = GCZ [Ω(A)]. There is a one-to-one
correspondence between (self-adjoint, closed) ideals K of A and closed subsets G of
X , given by K = GCG(X ) (Theorem 3.4.1. of [9]). In particular each closed subset
F of the frontier Z determines an ideal KF in A, viz. KF = GCF (X ). It is clear
that such an ideal contains C0(X).

Suppose now that the C*-algebra A considered above is contained in Cu
b (X) and

invariant under translations, i.e. such that axA ⊂ A for all x ∈ X, with [ax(ϕ)](y) =
ϕ(x + y). Since A ⊂ Cu

b (X), the mapping x 7→ ax(ϕ) is norm continuous for each
ϕ ∈ A. Furthermore the action of X on itself (given as αx(y) = x + y) induces
a continuous representation ρ of X by homeomorphisms of the character space
X = Ω(A): for τ ∈ X the character ρxτ is defined as [ρxτ ](ϕ) = τ [ax(ϕ)]. For
y ∈ X, set τy = i(y); then ρxτy = τx+y (x ∈ X).

We end this section with a result which will be useful in the examples presented
further on. Let τ ∈ X be a character of A. A neighbourhood base of τ in X is given
by the collection {VF,ε(τ)}, where ε varies over (0,∞) and F over all finite families
{ϕ1, . . . , ϕm} of elements of A and where VF,ε(τ) = {τ ′ ∈ X | |τ ′(ϕi) − τ(ϕi)| <
ε for each ϕi ∈ F}.
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Lemma 2. Let A be a unital C*-subalgebra of Cb(X). Let F be a closed subset
of Ω(A) and W a neighbourhood of F . Then there exist ε > 0 and a finite family
F = {ϕ1, . . . , ϕm} of elements of A such that F ⊂ ∪τ∈FVF,ε(τ) ⊂ W.

Proof. Let τ ∈ F . Then W is a neighbourhood of τ , hence there are a finite fam-
ily F(τ) of elements of A and a number ε(τ) > 0 such that VF(τ),ε(τ)(τ) ⊂ W.
Since F is compact, there are a finite number of points τ1, . . . , τM in F such that
F ⊂ ∪M

j=1VF(τj),ε(τj)/2(τj). Let F = ∪M
j=1F(τj) and ε = 1

2 min{ε(τ1), . . . , ε(τM )}.
The result of the lemma is true if we can show that, for each τ ∈ F , there is
j ∈ {1, . . . ,M} such that VF,ε(τ) ⊂ VF(τj),ε(τj)(τj). Since clearly VF,ε(τ) ⊂
VF(τj),ε(τ) ⊂ VF(τj),ε(τj)/2(τ) for each j, it is enough to show that for some
j ∈ {1, . . . ,M} one has VF(τj),ε(τj)/2(τ) ⊂ VF(τj),ε(τj)(τj).

To prove this last inclusion, observe that τ belongs to VF(τj),ε(τj)/2(τj) for at
least one value of j. Choose one of these values of j and let τ ′ ∈ VF(τj),ε(τj)/2(τ).
By the triangle inequality one has for each ϕ ∈ A:

|τj(ϕ)− τ ′(ϕ)| ≤ |τj(ϕ)− τ(ϕ)|+ |τ(ϕ)− τ ′(ϕ)|.

For every ϕ ∈ F(τj) each term on the r.h.s. is less than ε(τj)/2. Hence τ ′ belongs
to VF(τj),ε(τj)(τj). ¤

4. Some Crossed Product C*-Algebras

We consider some C*-subalgebras of the space B(H) of all bounded, linear op-
erators in the Hilbert space H = L2(X). If ϕ : X → C is a bounded, measurable
function, we denote by ϕ(Q) the operator of multiplication by ϕ in H and by
ϕ(P ) the operator F∗ϕ(Q)F (the operator of multiplication by ϕ in the momentum
space), where F is the Fourier transformation. A C*-subalgebra A of Cu

b (X) will
be identified with the subalgebra of B(H) consisting of all multiplication operators
ϕ(Q) with ϕ ∈ A.

If A is a C*-subalgebra of Cb
u(X), we write CA for the norm closure in B(H) of

the set of finite sums of the form ϕ1(Q)ψ1(P ) + · · · + ϕN (Q)ψN (P ) with ϕk ∈ A
and ψk ∈ C0(X). We mention the fact that, if A = C0(X), then CA is the ideal of
all compact operators in L2(X).

If A is invariant under translations, then CA is a C*-algebra isomorphic to the
crossed product algebra A o X defined in terms of the action ax of X on A. In
the proof of Lemma 6 we shall use the following result from the theory of crossed
products: If K is an ideal in A that is invariant under translations, then the quotient
C*-algebra CA/CK is isomorphic to [A/K]oX. The point is that the general theory
allows us to define the crossed product [A/K] o X only by using the continuous
action of X by ∗-automorphisms of A/K (the quotient action); the fact that A/K
is not a C*-subalgebra of B(H) does not matter.

Remark. If V ∈ A, where A is a unital C*-subalgebra of Cu
b (X), then the

self-adjoint operator H = −∆ + V is affiliated to CA. This is easily seen from the
fact that the Neumann series [H − z]−1 =

∑∞
k=0(P

2 − z)−1
(−V (Q)[P 2 − z]−1

)k

converges in the norm of B(H) if =z is sufficiently large.

5. A Non-propagation Theorem

For our principal theorem and its corollary we consider the following
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Framework. A is a unital C*-subalgebra of Cu
b (X), invariant under translations

and such that C0(X) ⊂ A, and CA is the associated C*-subalgebra of B(H) in-
troduced in §4 (with H = L2(X)). X = Ω(A) is the character space of A, F a
translation invariant, closed subset of Z = X \ i(X) and CF (X ) the ideal in C(X )
determined by F . We set KF ≡ GCF (X ), which is a translation invariant ideal in
A. Then KF ≡ CKF is an ideal in CA that contains all the compact operators in H.

We shall work with families WWW of subsets of X such that their images through
i in X are close to F . WWW will have the structure of a filter base, i.e. a non-void
collection of non-void subsets of X such that for any W1,W2 ∈WWW there is a W ∈WWW
with W ⊂W1∩W2. IfWWW is a filter base in X, then the family {i(W ) |W ∈WWW} is a
filter base in X and we say that WWW is adjacent to F if all cluster points in X of this
family {i(W ) | W ∈ WWW} belong to F , i.e. if ∩W∈WWW i(W ) ⊂ F , where the closures
are taken in X . We observe that the set of these cluster points is non-empty since
X is a compact space. In the majority of situations considered further on it will
suffice to take for WWW the family {W = i−1[W ∩ i(X) | W ∈ W]}, where W is a
neighbourhood base of F in X (since i(X) is dense in X , each of these sets W is
non-void).

If WWW is a filter base adjacent to F and ϕ ∈ C(X ) is such that ϕ|F = 0, then
given any ε > 0, there is some W ∈WWW such that | ϕ(τ) |< ε for all τ ∈ i(W ). In
the sequel we shall denote by χW the characteristic function of W .

Theorem. Let A and F be as in the Framework and let WWW a filter base in X that
is adjacent to F . Let H be a self-adjoint operator in H affiliated to CA. Let ε > 0
and η ∈ C0(R) with suppη ∩ σKF (ΦH) = ∅. Then there is a W ∈WWW such that

(1) ‖ χW (Q)η(H) ‖≤ ε.

Proof. (i) We use the notation τ for characters in Ω(A) and observe that

KF = G{ϕ ∈ C(X ) | ϕ|F = 0} = {ϕ ∈ A | τ(ϕ) = 0 ∀τ ∈ F}.
So if ϕ belongs to KF , then for each δ > 0 there exists W ∈WWW such that |τ(ϕ)| ≤ δ
∀τ ∈ i(W ). Thus, if ϕ ∈ KF , we have | ϕ(x) |≤ δ for all x ∈W .

(ii) By the hypothesis on the support of η we have η(H) ∈ KF (see Lemma 1).
So there are a finite number of functions ϕ1, . . . , ϕN ∈ KF and ψ1, . . . , ψN ∈ C0(X)
such that

‖ η(H)−
N∑

k=1

ϕk(Q)ψk(P ) ‖≤ ε/2.

We also have

‖ χW (Q)η(H) ‖≤
N∑

k=1

‖ ϕk ‖L∞(W )‖ ψk ‖L∞(X) +

+ ‖ η(H)−
N∑

k=1

ϕk(Q)ψk(P ) ‖ .(2)

The first term in the r.h.s. of (2) can be made less than ε/2 by using the result of
(i) with δ =

[
N · supk=1,...,N ‖ ψk ‖L∞(X)

]−1 · ε/2, so the proof is finished ¤
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Corollary. Let A, F , WWW and H be as in the Theorem. Then for each ε > 0 and
each η ∈ C0(R) with suppη ⊂ R \ σKF (ΦH), there exists W ∈WWW such that

(3) ‖ χW (Q)e−itHη(H)f ‖≤ ε ‖ f ‖

for all t ∈ R and all f ∈ L2(X).

(3) is a straightforward consequence of (1). Note the obvious fact that one
may replace in the corollary {e−itH} by any bounded family of bounded operators
commuting with H.

Remark. The corollary gives the precise meaning, in our framework, of the
notion of non-propagation described in the Introduction. To be more specific, let
us denote by suppH(f) the spectral support with respect to H of the vector f ∈ H,
defined as follows in terms of the spectral measure EH of H:

λ /∈ suppH(f) ⇔ ∃ε > 0 such that EH(λ− ε, λ+ ε)f = 0.

suppH(f) is the smallest closed set J ⊂ R such that EH(J)f = f . Then it follows
easily that, under the hypotheses of the corollary, for each ε > 0 and each closed
subset L of R \ σKF (ΦH) there exists an element W of WWW such that

‖ χW (Q)e−itHf ‖≤ ε ‖ f ‖

for all t ∈ R and all f ∈ L2(X) with suppH(f) ⊂ L.
In the situation just described, let us take for H a self-adjoint Schrödinger op-

erator affiliated to CA. Then, if f is a unit vector with suppH(f) ⊂ L, one has
‖ χW (Q)e−itHf ‖≤ ε for all t ∈ R. In physical terms: the probability of finding
f localized in W is less than ε2 at all times. If K is a compact subset of X and
if the preceding vector f belongs to the absolutely continuous subspace of H, then
there is t0 ∈ R such that ‖ χK(Q)e−itHf ‖≤ ε for all t > t0 [2]. It follows that
‖ χKc∩W c(Q)e−itHf ‖2≥ 1−2ε2 for all t > t0, which (for small ε) essentially means
that f describes a state that will propagate into the complement (K ∪W )c of the
set K ∪W . If f belongs to the singularly continuous subspace of H, a similar con-
clusion is true, except that some averaging over time may be necessary [2]: there
are 0 < t0 < t1 such that (t− t0)−1

∫ t

t0
‖ χKc∩W c(Q)e−iτHf ‖2 dτ ≥ 1− 3ε2 for all

t > t1.

6. Example: Non-propagation in Multicrystalline Systems

As an application we present in some detail the situation where the potential
V of a Schrödinger Hamiltonian becomes asymptotically periodic, with different
periodic limit functions in different cones (the more general case in which the limit
functions are only almost periodic can be treated analogously). More precisely V
will belong to the C*-algebra A introduced below, so that H = −∆ + V will be
affiliated to CA.

Let S be the unit sphere in X = Rn. For j = 1, . . . , N let Γj a periodic lattice in
X and Σj a non-empty open subset of S, with Σj ∩Σk = ∅ if j 6= k. We denote by
Cj(X) the C*-algebra Cj(X) = {ϕ ∈ Cu

b (X) | ϕ(x+ γ) = ϕ(x) ∀x ∈ X, ∀γ ∈ Γj}
and we define A as the set of bounded, uniformly continuous complex functions
ϕ on X such that for each j ∈ {1, . . . , N} there exists ϕj ∈ Cj(X) such that
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limr→∞ |ϕ(rω)−ϕj(rω)| = 0 for all ω ∈ Σj , uniformly in ω on each compact subset
of Σj . The (uniquely determined) collection {ϕj | j = 1, . . . , N} corresponding to
ϕ ∈ A will be called the asymptotic functions of ϕ. If Σ is some subset of Σj and
R > 0, let WR

j (Σ) be the subset {rω | r > R, ω ∈ Σ} of X.
The application of the results of Section 5 leads to the following non-propagation

property into the cone subtended by Σj :

Proposition 1. Let V ∈ A be real and denote its asymptotic functions by {Vj}.
Set H = −∆ + V . Fix a number j ∈ {1, . . . , N} and choose η ∈ C0(R) with suppη
disjoint from the spectrum of the periodic Schrödinger operator −∆ + Vj. Then,
given a compact subset K of Σj and ε > 0, there is R ∈ (0,∞) such that for each
f ∈ L2(X) we have

(4) sup
t∈R

‖ χW R
j (K)(Q)e−itHη(H)f ‖≤ ε ‖ f ‖ .

The proof will be given in a series of lemmas. The validity of (4) is obtained by
combining the last two lemmas (Lemma 5 and Lemma 6) with the Corollary given
in Section 5 and with the Remark at the end of Section 4. The estimate (4) gives a
precise meaning to the statement made in the second example of the Introduction
that states with spectral support away from certain subsets of R will not propagate
into the asymptotic part of the cone Cj subtended by Σj .

We shall use the following notations: WR
j ≡ WR

j (Σj) = {rω | r > R > 0, ω ∈
Σj} ⊂ X, and Tj = X/Γj (the class of z ∈ X in Tj , denoted by ζ, is given as
ζ = {x ∈ X | x = z + γ, γ ∈ Γj}). We observe that Cj(X) is isomorphic to C(Tj)
and that the correspondence ϕ 7→ ϕj defines a ∗-homomorphism Ψj from A to
Cj(X).

Lemma 3. (a) A is a unital C*-algebra containing C0(X) and invariant under
translations.

(b) The ∗-homomorphism Ψj : A → Cj(X) is surjective.

Proof. (a) It is clear that A contains C0(X) and the constants. To see that A is
closed, let {ϕ(k)} be a Cauchy sequence in A, denote by ϕ ∈ Cu

b (X) its limit and
by ϕ(k)

j (j = 1, . . . , N) the asymptotic functions of ϕ(k). Let us show that, for fixed

j, {ϕ(k)
j | k ∈ N} is Cauchy in the norm of Cu

b (X). We have for any γ ∈ Γj :

|ϕ(k)
j (x)−ϕ(l)

j (x)| = |ϕ(k)
j (x+ γ)− ϕ

(l)
j (x+ γ)| ≤ |ϕ(k)

j (x+ γ)− ϕ(k)(x+ γ)|+
+ |ϕ(k)(x+ γ)− ϕ(l)(x+ γ)|+ |ϕ(l)(x+ γ)− ϕ

(l)
j (x+ γ)|.

Fix ε > 0. The second term on the r.h.s. is less than ε/3 for all x and all γ if
k, l > L for some L ∈ N. For fixed k and l the first and the third term are less than
ε/3 in the sup norm (with respect to x) since for each fixed x ∈ X and any R > 0
one may find γ ∈ Γj such that x+ γ ∈WR

j (K) if K is a compact subset of Σj with
non-empty interior.

Now define ϕj = limk→∞ ϕ
(k)
j and observe that ϕj ∈ Cj(X). By another ε/3

type argument one then finds that these functions ϕj are asymptotic functions of
ϕ.
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Let us show that A is invariant under translations. If x ∈ X and ϕ ∈ A with
asymptotic functions {ϕj}, then the collection {ax(ϕj)} are asymptotic functions
of ax(ϕ), hence ax(ϕ) ∈ A:

|ax(ϕ)(rω)− ax(ϕj)(rω)| =
∣∣∣ϕ

[
r
(
ω +

x

r

)]
− ϕj

[
r
(
ω +

x

r

)]∣∣∣ → 0 as r →∞,

uniformly in ω belonging to compact subsets of Σj .
(b) Let ψ ∈ Cj(X). Let ϕ = θψ, where θ is a function in Cu

b (X) that is
homogeneous of degree zero outside the unit ball of X and satisfies θ(x) = 1 on
W 1

j and θ(x) = 0 on W 1
k if k 6= j. Then ϕ ∈ A, with asymptotic functions ϕj = ψ,

ϕk = 0 for k 6= j. ¤

We next show that there is a canonical identification of Tj with a closed subset
Tj of Z = X \ i(X), where X = Ω(A) as before. This is a direct consequence of
the fact that there is a surjective ∗-homomorphism Φj : C(Z) → C(Tj), deduced
from Ψj : A → Cj(X), which is a surjective ∗-homomorphism with kernel including
C0(X), and from the natural isomorphisms A/C0(X) ∼= C(Z) and Cj(X) ∼= C(Tj).
Below we shall make the construction as explicit as possible.

For this we introduce a mapping ij : Tj → X that associates to ζ ∈ Tj the
character ij(ζ) ≡ τ

(j)
ζ ∈ X given as τ (j)

ζ (ϕ) = ϕj(z), where ϕj is the j-th asymptotic

function of ϕ and z is any representative of the class ζ. In other terms τ (j)
ζ = τz◦Ψj ,

where τz is interpreted as a character of C(Tj). We set Tj = ij(Tj).

Lemma 4. (a) Tj is contained in X \ i(X).
(b) The correspondence ζ 7→ τ

(j)
ζ is injective and continuous.

(c) The set Tj is closed.
(d) The set Tj is invariant under all translations.

Proof. (a) If ζ ∈ Tj , then τ (j)
ζ does not belong to i(X): if x ∈ X, choose a function

ϕ ∈ C0(X) such that ϕ(x) 6= 0: then ϕj = 0, so that τ (j)
ζ (ϕ) = 0 6= ϕ(x) = [i(x)](ϕ).

Thus τ (j)
ζ 6= i(x) for each x ∈ X.

(b) Assume that z1 − z2 /∈ Γj . Choose ϕj ∈ Cj(X) such that ϕj(z1) 6= ϕj(z2)
and let ϕ ∈ A be such that ϕj = Ψj(ϕ) (Lemma 3.(b)). Then τ

(j)
ζ1

(ϕ) = ϕj(z1) 6=
ϕj(z2) = τ

(j)
ζ2

(ϕ), so τ (j)
ζ1

6= τ
(j)
ζ2

. Thus the mapping ij is injective. Its continuity is
easy to establish.

(c) Tj is the continuous image of the compact space Tj , hence it is a compact
subset of Z.

(d) Let z ∈ X be a representative of ζ ∈ Tj . For x ∈ X, denote the class of z+x
in Tj by ζ + ξ. Then

[
ρx(τ (j)

ζ )
]
(ϕ) = τ

(j)
ζ [ax(ϕ)] = [ax(ϕ)]j(z) = [ax(ϕj)](z) = ϕj(z + x) = τ

(j)
ζ+ξ(ϕ).

Hence ρx(τ (j)
ζ ) = τ

(j)
ζ+ξ, the character associated with the class of z + x in Tj . We

conclude that Tj is a single orbit under the representation ρ of X in X . ¤

We need to find subsets of i−1[W∩i(X)] easy to express in terms of the geometry
of X, for arbitrary neighbourhoods W of Tj .
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Lemma 5. Let W be a neighbourhood of Tj in X and set W = i−1[W ∩ i(X)].
Given any compact subset K of Σj there is R ∈ (0,∞) such that WR

j (K) ⊂W .

Proof. By Lemma 2 applied to F = Tj , there are ε > 0 and a finite family F =
{ϕ1, . . . , ϕm} of elements of A such that ∪τ∈Tj

VF,ε(τ) ⊂ W, in other terms such
that ∩i{τ ′ ∈ X | |τ ′(ϕi)− τ

(j)
ζ (ϕi)| < ε} ⊂ W for each ζ ∈ Tj . Upon restricting to

characters τ ′ belonging to i(X) and denoting the j-th asymptotic function of ϕi by
ϕi,j , we get immediately that ∩i{x ∈ X | |ϕi(x)−ϕi,j(x)| < ε} ⊂ W. Now for each
i there is Ri ∈ (0,∞) such that |ϕi(x) − ϕi,j(x)| < ε for all x ∈ WRi

j (K). Then
clearly the assertion of the Lemma holds for R = max{R1, . . . , Rm}. ¤

We finally specify the KTj -essential spectrum of H.

Lemma 6. The set σKTj (ΦH) coincides with the (band) spectrum of the periodic
Schrödinger operator Hj = −∆ + Vj.

Proof. Let us denote by Πj : CA → CA/KTj the canonical ∗-homomorphism. By
definition, σKTj (ΦH) is the spectrum of the observable Πj ◦ΦH affiliated to CA/KTj .
It is enough to show that CA/KTj is isomorphic to CCj(X) and that the image
of Πj ◦ ΦH under this isomorphism is ΦHj ; this will conclude the proof, since
isomorphisms of C*-algebras leave the spectra of observables invariant.

For any M ∈ N, ϕ1, . . . , ϕM ∈ A and ψ1, . . . , ψM ∈ C0(X) we set

Θj

[
M∑

i=1

ϕi(Q)ψi(P )

]
=

M∑

i=1

ϕi,j(Q)ψi(P ),

where ϕi,j ∈ Cj(X) is the j-th asymptotic function of ϕi. By the discussion in
Section 4, Θj extends to a surjective ∗-homomorphism CA → CCj(X) with kernel
KTj = CKTj . A simple argument in terms of the Neumann series shows that Θj [(H−
z)−1] = (Hj − z)−1, so that Θj(ΦH) = ΦHj . ¤

Remark. Since K(H) = CC0(X) = KZ ⊂ KTj , we have ∪N
j=1σ(Hj) ⊂ σess(H).

The behaviour of the bounded, uniformly continuous function V outside the cones
{Cj}j=1,...,N is submitted to no constraint and the asymptotic functions Vj are not
related. So it is possible to have a large set σess(H) \ ∪N

j=1σ(Hj) on which the
result of the Proposition (non-propagation into the asymptotic part of ∪N

j=1Cj) is
relevant and non-trivial. Of course the simplest situation is that where N = 1, and
the general case (N > 1) can be reduced to it since Proposition 1 involves only one
value of j.

7. Other Examples, Comments

Some other examples will be discussed briefly in the present section. Most of
the proofs consist in suitable adaptations of arguments already used above and we
shall just sketch them.

Example 1. Potentials that are asymptotically periodic in a half-space.
This is the example that is the most close to that treated in [4]. It is also related

to Section 6.
Let us write X = R ×X ′, with X ′ = Rn−1. For a periodic lattice Γ+ of X, we

denote by C+(X) the C*-algebra of all complex continuous functions on X that are
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Γ+-periodic. We shall consider the unital C*-algebra A+ of all bounded, uniformly
continuous functions ϕ : X → C such that there exist a (necessarily unique) element
ϕ+ ∈ C+(X) such that | ϕ(x1, x

′)− ϕ+(x1, x
′) |→ 0 when x1 → +∞, uniformly in

x′ ∈ X ′. As before we call ϕ+ the asymptotic function of ϕ. It is easy to see that
A+ is invariant under translations.

Since we imposed no conditions on the behaviour of ϕ outside a remote half-
space, we cannot determine the character space X of A+ precisely. But it is
straightforward to show that the torus T+ = X/Γ+ is a closed invariant subset of its
frontier and that any neighbourhood of T+ in X contains {(x1, x

′) ∈ X | x1 > R}
for some R > 0 large enough (use Lemma 2).

It is also easy to show that the quotient C*-algebra CA+/K
T+ is isomorphic to

CC+(X) in such a way that ϕ(Q)ψ(P ) corresponds to ϕ+(Q)ψ(P ); here ϕ ∈ A+,
ϕ+ ∈ C+(X) is its asymptotic function and ψ ∈ C0(X).

By applying the results of Section 5 and the discussion above one gets

Proposition 2. Let V ∈ A+ be real and let V+ ∈ C+(X) be its asymptotic func-
tion. Let H = −∆ +V and H+ = −∆ +V+ be the associated self-adjoint operators
in H = L2(X). Let η ∈ C0(R) with suppη ∩ σ(H+) = ∅. Then for each ε > 0 there
exist R > 0 such that

‖ χ(Q1 ≥ R)e−itHη(H)f ‖≤ ε ‖ f ‖
for all f ∈ H and all t ∈ R.

Of course, one can also introduce the C*-algebra A−, consisting in all bounded,
uniformly continuous functions that become Γ−-periodic (for some other periodic
lattice Γ−) at x1 = −∞, uniformly in the orthogonal variable x′. The elements of
A = A− ∩ A+ are bounded, uniformly continuous functions which have (different)
periodic limits at x1 = ±∞; their behaviour in a vertical strip is submitted to no
constraint.

Example 2. Potentials with asymptotic vanishing oscillation.
We say that a function ϕ ∈ Cb(X) has asymptotic vanishing oscillation, and we

write ϕ ∈ V O(X), if the function x 7→ sup|y|≤1 | ϕ(x+y)−ϕ(x) | is of class C0(X).
We remark that V O(X) contains the C*-algebra Crad(X) of all complex continuous
functions on X that have radial limits at infinity, uniformly in all directions. Sums
of the form ϕ0+ϕ1 with ϕ0 ∈ C0(X) and ϕ1 continuous and homogeneous of degree
zero outside a ball are the most general elements of Crad(X). Note that V O(X) is
considerably larger than Crad(X). A C1-function ϕ with ∂jϕ ∈ C0(X) for all j is
in V O(X). This includes ϕ(x) = φ [(1 + |x|)p] for p < 1 and φ, φ′ continuous and
bounded. We point out that Proposition 3 will be particularly simple to interpret
for potentials in Crad(X).

Let X be the character space of V O(X). By identifyingX with its homeomorphic
image in X , we can express this character space as the disjoint union X = X t Z.
The nice feature is that V O(X) is the largest unital, translation invariant C*-
subalgebra of Cu

b (X) such that all the elements of Z are fixed points under the
extension of the action of the group X. This was used in [11] to show that, for
V ∈ V O(X), the essential spectrum of the Schrödinger operator H = −∆ + V
is [minV (X)asy,∞), where the asymptotic range of V is defined as V (X)asy =
∩KV (X \K) with K varying over all compact subsets of X. This result is specific
to the class V O(X).
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The frontier Z is not easy to understand, so we shall consider only closed sets
F ⊂ Z which are suitably related to a given potential V . Let V̂ be the continuous
extension of V to X and G a closed subset of R such that its interior Go meets
V (X)asy. We set F = V̂ −1(G) ∩ Z; it is a closed, non-void subset of Z, and it
is automatically invariant under translations (this is the point which makes our
analysis possible without extra information on Z). To apply the Theorem, one has
to find in X a filter base adjacent to F and to calculate the KF -essential spectrum
of H. For the latter problem we proceed as in [11], where more details can be found.

The set σKF (H) is the spectrum in CV O(X)/K
F of the image of the observable

ΦH through the canonical ∗-homomorphism CV O(X) → CV O(X)/K
F . The quotient

C*-algebra CV O(X)/K
F is isomorphic to C(F ) o X (crossed product constructed

in terms of the trivial action of X on C(F )). The latter can be embedded in
the direct sum ⊕τ∈FC o X ∼= ⊕τ∈FC

P
0 (X), where CP

0 (X) is the C*-subalgebra
of B(H) of all the operators of the form ψ(P ), with ψ ∈ C0(X). This leads
to a ∗-homomorphism ΠF : CV O(X) → ⊕τ∈FC

P
0 (X) with kernel KF . This ∗-

homomorphism maps ϕ(Q)ψ(P ) to (ϕ̂(τ)ψ(P ))τ∈F , where ϕ̂ is the continuous ex-
tension of ϕ to X . With the Neumann series for the resolvent, it follows easily that
the observable ΦH is mapped to

(
ΦHτ

)
τ∈F

, where Hτ = −∆ + V̂ (τ) (self-adjoint

operator inH). It follows that σKF (H) = ∪τ∈Fσ(Hτ ) =
[
min V̂ (F ),∞

)
. By taking

into account the definition of the closed set F and the fact that V̂ (Z) = V (X)asy one
easily shows that V̂ (F ) = G ∩ V (X)asy, thus σKF (H) = [min{G ∩ V (X)asy},∞).

We next indicate a suitable filter base in X adjacent to F . For any compact
subset K of X we set WK = V −1(G) ∩ Kc. The assumption Go ∩ V (X)asy 6= ∅
implies that WK 6= ∅. Since WK ∩WK′ = WK∪K′ , WWW = {WK}K is a filter base in
X. Then (all closures are taken in X ):

∩KWK = ∩K [V −1(G) ∩Kc] ⊂ ∩K

[
V −1(G) ∩Kc

]
⊂

⊂ V̂ −1(G) ∩ [∩KKc
]

= V̂ −1(G) ∩ Z = F.

Thus WWW is adjacent to F . By applying the Corollary in Section 5 we obtain

Proposition 3. Let V ∈ V O(X) and consider the self-adjoint operator H = −∆+
V in H = L2(X), which defines an observable affiliated to CV O(X). Let G ⊂ R be
a closed set such that Go ∩ V (X)asy 6= ∅, and let ε > 0. Then for each η ∈ C0(R)
with suppη ⊂ (−∞,min{G ∩ V (X)asy}) there is a compact subset K of X such that

‖ χV −1(G)\K(Q)e−itHη(H)f ‖≤ ε ‖ f ‖

for all f ∈ H and all t ∈ R.

To illustrate this result, let us take G = [λ,∞) with min [V (X)asy] < λ <
max [V (X)asy]. Then, roughly, scattering states at energies situated below λ will
not propagate into the asymptotic part of the set {x ∈ X | V (x) ≥ λ}. For
a one-dimensional system with a slowly oscillating potential, this corresponds to
tunneling through an infinite sequence of more and more widely separated barriers
of increasing length. The effective parts of these barriers, for states with energy less
than λ, occupy the intervals {x ∈ R\K | V (x) ≥ λ} for some compact setK ⊂ R (as
an example one may consider a potential that is asymptotically of the form cos(|x|β)
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with 0 < β < 1; the essential spectrum of the associated Sturm-Liouville operator
will often be continuous, cf. Theorem 4 in [7], in particular vectors with spectral
support in the interval (−1, λ) will propagate away from each compact set K and
thus undergo tunneling of the indicated type). For multi-dimensional systems there
are various possibilities: for a spherically symmetric slowly oscillating potential
there will be an infinite sequence of spherically symmetric barriers arranged (as a
function of the radial variable r) in analogy with the one-dimensional case; for a
potential having radial limits (V ∈ Crad(X)) there will be no propagation into the
asymptotic part of the cone subtended by {ω ∈ S | limr→∞ V (rω) ≥ λ}; for certain
slowly oscillating non-spherically symmetric potentials there may be an infinite
collection of inaccessible regions of increasing size towards infinity.

The above type of behaviour is specific to the class V O(X) and is related to the
fact that the action of translations on the frontier Z is trivial. If V would tend at
infinity to a periodic function for instance, the connection between the localization
in energy and the domains of non-propagation has a different nature, as seen in
Section 6.

Example 3. Potentials with cartesian anisotropy.
We shall work here with X = R2 ≡ R1 × R2. The generalization to arbitrary

dimension is straightforward.
For j = 1, 2 let us denote by Aj the C*-algebra of all continuous functions

ϕ : Rj → C such that the limits c±j = limxj→±∞ ϕ(xj) exist. Then A = A1⊗A2 is
a unital C*-subalgebra of Cu

b (X) that is invariant under translations by elements
of X.

Let R̃j = Rj ∪ {−∞j ,+∞j} be the two-point compactification of Rj . Then R̃j

is the spectrum of Aj and X = R̃1× R̃2 is the spectrum of A. The closed invariant
subsets of the frontier Z = X \X are as follows: the four corners {(±∞1,±∞2)},
the four edges R̃1×{±∞2} and {±∞1}×R̃2 and all their unions. We shall illustrate
our Theorem for F = {(+∞1,+∞2)} and for F = R̃1 × {+∞2}.

So let us consider the self-adjoint operatorH = −∆+V inH = L2(X), for V ∈ A
a real function. It is easy to show that V has the following property (which in fact
characterizes the elements of A): for j, k ∈ {1, 2} and k 6= j, the limits V ±j (xj) =
limxk→±∞k

V (x) exist uniformly in xj ∈ Rj and define elements of Aj . The values
taken by the continuous extension of V to X on the four edges coincide respectively
with V ±j , j = 1, 2. Its values at the four corners will be denoted by c++, c+−, c−+,
c−−. Note that for example c++ = limx1→+∞1 V

+
1 (x1) = limx2→+∞2 V

+
2 (x2).

Let us consider the operator H+
1 = −∆+V +

1 =
(−∆1 + V +

1

)⊗12+11⊗(−∆2) in
the representation L2(R1)⊗ L2(R2). Its spectrum equals [a+

1 ,∞), where a+
1 is the

infimum of the spectrum of the operator H1,+ = −∆1 +V +
1 acting in H1 = L2(R1).

Three other operators of this kind are available and, with obvious notations, we have
σess(H) =

[
min{a+

1 , a
−
1 , a

+
2 , a

−
2 },∞

)
. This follows quite easily from our arguments

and was proved in a greater generality in §3 of [11]. Remark also that the spectrum
of H±± = −∆+c±± is [c±±,∞) and that inequalities such as a+

1 ≤ min{c−+, c++}
are true.

A neighbourhood base of the point {(+∞1,+∞2)} is composed of all the rect-
angles {(y1,+∞1] × (y2,+∞2] | y1 ∈ R1, y2 ∈ R2} and a neighbourhood base of
R̃1 × {+∞2} consists of the rectangles {R̃1 × (y2,+∞2] | y2 ∈ R2}. We get:

Proposition 4. Let ε > 0.
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(a) For any η ∈ C0(R) with suppη ⊂ (−∞, c++) there exist y1 ∈ R1, y2 ∈ R2

such that for all f ∈ H

‖ χ(Q1 > y1)χ(Q2 > y2)e−itHη(H)f ‖≤ ε ‖ f ‖ .

(b) For any η ∈ C0(R) with suppη ⊂ (−∞, a+
1 ) there exists y2 ∈ R2 such that

for all f ∈ H
‖ χ(Q2 > y2)e−itHη(H)f ‖≤ ε ‖ f ‖ .

So, at energies below a+
1 there is no propagation towards x2 = +∞2. At energies

comprised between a+
1 and c++ this becomes possible, but then the observable Q1

cannot diverge through positive values. Results of this type are by no means trivial
in the sense that, in certain situations, propagation away from any compact subset
of X does occur at energies as above (under suitable assumptions on V there will
be intervals of purely absolutely continuous spectrum of H in the considered energy
range, and associated states must propagate to infinity by the results of [2]).

Acknowledgment: We are grateful to Günter Stolz for correspondence and for
pointing out to us the paper [7].
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