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1 Introduction

We shall introduce a C*-algebra containig the functional calculus of a large class of Schréodinger operators with
variable magnetic fields. This is motivated by some recent operator algebraic methods for analyzing the essential
spectrum and the regions of non-propagation ([AMP], [GI1], [GI2], [M1], [M2]) and in the same time by the
interest of elaborating a gauge-invariant pseudodifferential calculus in the presence of a variable magnetic field
(INY, [CN], [P)).

Our results (Theorems 3.9 and 3.10) are the main technical ingredients for the type of developments men-
tioned above and we shall elaborate them in some future works. For reasons of space we shall not aim at optimal
results, the arguments will be rather condensed and we send to references for some justifications and for further
details. The concept and use of observables affiliated to C*-algebras are borrowed from [ABG], [GI1], [GI2].
In this setting magnetic fields, especially constant ones, are considered in [GI2]. In this paper, for the variable
magnetic fields the authors propose the use of group extensions, but we feel that twisted crossed products are
better suited both from the technical and the conceptual points of view. The general theory of twisted crossed
products has been developped mainly in ([PR1], [PR2]). It is well known that C*-algebraic methods lead to
very interesting results in the case of periodic Hamiltonians with a constant magnetic field; for this and many
related topics we refer to [B], [BES] (and the refferences therein).

In X = R™ we consider a non-relativistic particle subject to a potential V' and a magnetic field B, both
assumed to be bounded and uniformly continuous. We intend to study the Schrédinger Hamiltonian H :=
(IT4)2 4V in H := L?*(X); here A is a vector potential for B and I14 := —iV — A is the magnetic momentum.
It is well known that H can be defined as a self-adjoint operator and that C§°(X) is a core for it ([AHS], [LS]).
We shall define a C*-algebra of bounded operators in H containing the resolvent family {(H—z)"! | z € C\R}
and thus the entire Co-class functional calculus of H (we denote by C(R) the set of continuous functions
on R vanishing at infinity). This C*-algebra has a remarkable structure. We consider the natural action by
translations 6 of X on BC,(X) (the C*-algebra of bounded, uniformly continuous functions on X) and the
imaginary exponential of the flux of the magnetic field, that defines a cocycle wp on X x X with values in
the group of unitary elements in BC,(X). From these one can define the C*-algebra € := BC,(X) x5® X
(the twisted crossed product) that mixes in a subtle non-commutative way BC,(X) and L!(X). Then any
representation of € contains at the same time multiplication operators (by functions of class BC\, (X)) and Coo-
functions of the magnetic momenta, the commutation formulae: i[Q;, Q] = 0, i[Hf,Qk] = djk, i[Hf,H;;‘] =
By, being taken into account. We prove in this paper that any such representation also contains the resolvent
family of the magnetic Schrédinger Hamiltonian H.

2 The Twisted Crossed Product Algebra Associated to a Magnetic
Field

We consider a magnetic field as being defined by a bounded, uniformly continuous, matrix-valued function
B: X — Mn,n (]R) satisfying the conditions: Bjk = —Bkj, 6jBkl + 6kBlj + 8lBjk =0.

The physical description of a particle moving in a magnetic field B is obtained by replacing the usual
momentum p of the particle by the expression 7 := p — A(x) where A is a vector potential for our magnetic
field, i.e. a vector function A : X — X satisfying: B, = 0;A; — OrA;. Under our hypothesis on the function
B such a vector potential always exists but is not unique (for example any gradient of a regular scalar function
can be added to A).



The unitary groups associated to the self-adjoint operators H;-“ are the magnetic translations [S], [Z]. They

do not commute and their composition puts into evidence the following imaginary exponential of the flux of the

magnetic field:
on(oia) = e {~i [ B9},
<q,9+z,qgtz+y>

where < ¢q,q+z,q+x +y > is the triangle defined by the points: q,q+ z,q+ z +y. We consider this function as
a mapping X x X 3 (z,y) = wp(x,y;.) € Cu(X;T!) (where T! is the multiplicative group of complex numbers
of modulus one) and observe that:

wp(z,y)wp(z +y,2) = 0(z){ws(y, 2)}ws(z,y + 2), (2.1)
wp(z,0) =wp(0,z) =1,
w(z,—z) = w(—z,z) =1, 2.3)

where (6(z) f)(y) := f(y + x) denotes the action of X by translations on BC,(X).

Definition 2.1. We shall call a Twisted Quantum Dynamical System, shortened TQDS, a quadruplet
{X,A,0,w} where: X is a second-countable locally compact abelian group, A is a separable abelian unital
C*-algebra, 6 : X — Aut(A) is a continuous group homomorphism (taking the topology of simple convergence
on Aut(A)) and w : X x X — U(A) is a continuous mapping into the group of unitary elements of A satisfying
conditions (2.1, 2.2). We say that w is a 6-2-cocycle. If the 8-2-cocycle w also satisfies (2.3) we say that we
have a Magnetic Quantum Dynamical System, shortened a MQDS.

Definition 2.2. A covariant representation of a TQDS {X, A, 0,w} is a triple {H, U, p} where H is a Hilbert
space, U : X — U(H) is a strongly continuous mapping into the group of unitary operators on H and p: A —
B(H) a non-degenerate representation of A on H such that: U(z)U (y) = plw(z,y)|U(z +v), U(z)p(A)U(z)* =
p[0(z)A] (by non-degenerate we mean that the linear space generated by the family {p(4)u | YA € A,Vu € H}
is dense in H).

The Twisted Convolution Algebra. Let us fix a Haar measure dx on X and consider the complex linear
space L' (X; A) of Bochner integrable vector functions on X with values in A, with the L'-norm || f||1,4 :=
Jx dz||f(z)||.4. We define the composition given by the following twisted convolution’:

(5 0@ = [a{o (457 rn} {6 (§) e - i} {6 (-5) vtz - )}

and an involution defined by f*(z) := f(—z)*. We shall denote the structure thus defined by Lj(X;.4)*
and call it the twisted convolution algebra associated to the TQDS; it is not difficult to verify that it forms
a Banach *-algebra. Let us observe that we use an isomorphic form of the usual twisted crossed product,
that in the absence of the magnetic field leads to the Weyl form of the symbolic calculus.

Given a Banach *-algebra B, any C*-seminorm on it is bounded by the given norm, so that the supremum
of these C*-seminorms exists and satisfies the same bound. We call the C*-algebra obtained by separation
and completion its enveloping C*-algebra [D], denoted by C*[B]; let j : B — C*[B] be the natural morphism
thus obtained. Then C* [L}(X;A)*] = A %% X is called the twisted crossed product of A by X.
In this case the application j is injective so that Lj(X;.A)* is isomorphic to a dense *-subalgebra of
A x4 X. Let us observe that in the literature there are equivalent definitions of this structure but we do
not want to insist upon this point. It is known that the non-degenerate representations of A x§ X are in
a one-to-one correspondence with the covariant representations of the TQDS {X, A, 0, w}. For a covariant
representation {#, U, p} we denote by p x U the associated representation of the twisted crossed product
and we have:

(01 = [ dop(05I@) V@), ¥ €L A).
Proposition 2.3. For any TQDS:

1. The representation U : X — U(H) induces a linear contraction U : LY(X) - B(H), with L'(X)
considered as a complex Banach space U(¢) := [ dx ¢(x)U(z);



2. The image (p x U){A x§ X} is equal to the norm closure of the linear space generated by the set
{p(a)U(¢) | Ya € A, V¢ € LY(X)}. The statement remains true for the linear space generated by
the set of products taken in the reversed order.

The first point is obvious; the second one follows by rephrasing the proof in [GI1] for the untwisted case.

The Schrodinger Representation. The arguments below may be generalized to any TQDS due to the triv-
iality of the #-2-cohomology group discussed in [GI2], but for space reasons we shall concentrate on the
physical case of interest.

To a quantum particle in a magnetic field one can associate in a natural way a MQDS and, once a vector
potential A is chosen, a covariant representation of it. In fact one takes: X := R™ the group of translations;
A := BC,(R™) the algebra of observables associated to the position operator; (6(z)a)(y) := a(y + x) the
standard representation of translations on this algebra; w := wp the 6-2-cocycle defined by the magnetic
field; H := L2(R"), (p(a)u)(z) = (a(Q)u)(z) := a(z)u(z), Us(z) = Aa(z)T(z) (the magnetic translation),
where: (T(z)u)(y) i= u(y+2), Aa(z) i= exp{—iTAIQ, @1} € B(H) with Talz,y] = [, ,) A(€)-de (the
circulation of A along the line segment [z,y]). We call this covariant representation the Schrodinger
representation with vector potential A. We denote R4 = p x Ua and we have

x
Ra(f)u = / arf (5,Q+35) M@ T(@)u. (2.4)
b'¢
It is easy to verify that this representation is injective and the following ’gauge covariance’ relation holds:

pEMRa(Hple™™) = Rarwa(f), VA€ CHX;R).

3 The Resolvent of the Magnetic Schrodinger Hamiltonian

Let us denote by i : X — R the analytic function h(p) := Y7_, p} and let h := Fh be its Fourier transform
that defines a compactly supported distribution of second order. Given a magnetic field B and an associated
vector potential A, the operator h(IT4) gives the corresponding Schrédinger Hamiltonian on L?(X). Our aim
is to show that its resolvent belongs to the image through the Schrédinger representation of € = A xy? X with
A = BC,(X). This is an instance of the following abstract setting.

Let € be a C*-algebra; we call an observable affiliated to € [ABG] a morphism @ : C(R) — €. If € is
a C*-subalgebra of B(H), a self-adjoint operator H on H defines an observable affiliated to € iff n(H), defined
by functional calculus, belongs to € for any n € C(X). By an usual density argument this follows if one has
(H — z)~! € € for any 2z with Sz # 0.

Let z € C\R be fixed and let us define: h, := h—2z1, b, := Fh, and G, := Fh, 1. Then G, is a function that
solves the equation (—A — 2)G, = § or equivalently b, * G, = § (with * the usual convolution of distributions).
Our aim is to ’deform’ this equation in order to obtain an inverse of b, for the x;*-operation and prove that it
is in fact an element of the algebra BC,(X) x3” X and thus the affiliation of h to this algebra. In order to do
this we have to extend +,” to a slightly larger class of distributions.

First of all let us observe that any function f € Lj(X,A)“# defines a linear continuous map S(X) — A
by the formula < f,¢ >:= [, dzf(z)p(z), Yo € S(X). In a similar way, any h € L'(X) defines a map
S(X;A) — A that we shall denote by << .,. >> the associated pairing. Then, taking g and h elements of
L}(X), one has the relations: < h*y? g, >=<< h,¥8(p) >> and < g5 h,¢ >=<< h,¥B(p) >> with

)0 = [ do gtaoto+) {0 (- T ) ontyn) (33)
00 = [ aog@eta+n) {0 (=752 ) une ] (3:6)

These formulae allows us to extend the x;”-operation to the Dirac measure § in 0 € X that becomes a unit
for the algebra L}(X;.A)“5. Let L}(X;.A)“? @& C§ be the minimal unital extension of L}(X;.4)“# and we shall



continue to denote by x,* the associative operation on this larger algebra. By the same formula (3.5) we may
extend the *4?-operation to the pair (b, f) with f € Lj(X;.A)*?, under some regularity assumptions on the
magnetic field B.
Hypothesis 3.4. The magnetic field is given by a bounded matrix-valued C?-function with bounded derivatives
up to second order.

It is evident that for Sz # 0 the function ;! is a symbol of class S~2 (in the sense defined in $1.1 of [ABG])
and that for z = +ic, with o > 0, we have has,(p)~" = 0~ hei(p/a'/?)~1.
Lemma 3.5. For m > 0 suppose given a familly of functions {f,},>0 C S™™(R™), satisfying the homogeneity
condition f,(p) = 0% f1(p/a®). Then Ff, € L*(R") for any o and we have the estimate || F f,||p2 = o®||F fillp:-

This lemma follows easily from Proposition 1.3.6 of [ABG] and the fact that for n < 2m any symbol of class
S~™ is in L?, so that its Fourier transform is also in L? C L{, .. A straightforward computation leads from the
homogeneity of f, to that of the L'-norm of its Fourier transform.

Using the Lemma above for {z*0°G, }, (with |a| < 1, |8] < 1) we get:

12%0°Gig l|pr < o 1~ IBD2)12285 Gy 1. (3.7)

For space reasons we shall continue the arguments in a minimal version, suitable for our explicit form of
h and leave the general problem of extending the *,*-operation for a forthcoming paper. We shall consider
a mollifier family {h<}eso for h € E5(X) (the space of second order compactly supported distributions on X).
Then for any g € L'(X) we define for ¢ € S(X):

<h.xp? g, >i= lirr(l) << bg,lllf(cp) >>,
e— N
< g*p® b, >i=lim << h;,‘I/f(go) >> .
e—0
For g = G, we have
11_% << h;,\?f(cp) >>= ¢(0)+ < pz, 0 >,
lim << b, UF(p) >>=p(0)+ < vz, >,

e—0

where

(0) = =(V62) ) (Y- ¥) ] (0:0)+ 6. [ (- 7) " n] 0)

2
as maps in B(S(X);.A) (here V signifies the gradient with respect to the j-th argument). For a magnetic field B
j

satisfying the Hypothesis 3.4, all the factors containing derivatives of the #-2-cocycle wp in the above formulae
are continuous functions from X x X into BC,(X), bounded by quadratic polynomials in the variable z. Using
these facts and the estimate (3.7) we obtain:

Lemma 3.6. We have b, ;% G. =0+ p., G, ;% b, =6+ v,. For any z € C\ R the two maps p, and v,
belong to Lj(X; A)“? and we have the estimates:

”u:l:z'a”Ll < 07107 ”V:i:i(r“L1 < 0-710-

Let us define:

oo oo
taio 1= Grio %57 4 D (i) 05 Faio 1= 4 D (Vaio)? p %5% Gio (38)
=0 =0

Here f* means the *g 2-product of j factors f. We define hii; x5® tiir and Tijs 4 ” hiis by the same
regularization method as above. Using the associativity property of the x;”-product and some obvious algebraic
manipulations, we get: hiis *5” thic = 0, Thio *5° Dtic = 0, Thic = Thic %57 Diio %57 thic = Caio, tic = U5y,



and t;; —t_;, = 2i0t;,t_;,. By the Neumann series, Lemma 3.6 and the last two formulae above, we can define
by analytic extension a resolvent function C\ R 3 z — ¢, € € (extending ty;,). This gives the following:
Theorem 3.7. Let B be a magnetic field satisfying our Hypothesis 5.4. There exists an observable @y affiliated
to BCy(X) xy® X, such that for the extended operation defined above we have b, x5® ®y(r;) = ®y(r.) %32 h, =6
with r,(t) == (t — 2)7L.

It is easy to see that for a magnetic field satisfying Hypothesis 3.4 one can always choose a vector potential
satisfying
Hypothesis 3.8. The vector potential A is in L{ (X) and divA is in L2 (X).
Theorem 3.9. For any magnetic field B satisfying Hypothesis 3.4 and for any associated vector potential
satisfying Hypothesis 3.8, the formula (2.4) defining the Schridinger representation may be extended to the
distribution b, giving an essentially self-adjoint operator Ra(h) on C§(X) C L?(X). Its closure H satisfies:

HA=Y (T}, Ra(x.) = (H*—2)7".

Conclusion. The magnetic Schrodinger Hamiltonian defines an observable affiliated to the C'*-algebra
Ry {BCL(X) xg*” X}

Proof of Proposition 3.9. Let u € C§°(X) and v € L*(X); we have u € D(II}), u € Nf_, D((II#)?)
[LS] and —A; < 0,UA(z)u >= 37, < v,([1#)*>u >. Using the mollifier family for h and the Dominated
Convergence Theorem we extend formula (2.4) to obtain $R4(h) = 37, (7#')? on the domain C§°(X). Using
once again the results in [LS] we obtain the essential self-adjointness of R 4(h) and thus the first stated equality.
Observing that R4 extends naturally to the minimal unital extension of Lj(X;.A)“# and that 84 (6) =1 (the
identity operator on L?(X)), once again by a mollifier family for b and the remarks above we obtain the second
stated equality.

Theorem 3.10. Let V € BCy(X) and V(Q) the operator of multiplication by V in L?>(X). Then H :=
HA +V(Q) defines a self-adjoint operator on D(H*) and an observable affiliated to R {BC,(X) x5% X}.

Proof. The sum H := H* 4+ V(Q) is obviously self-adjoint on D(H*) and for Sz large enough the Neumann
series for its resolvent (H —z) ' = (Ha —2) ' 3 ,5(=1)7 [V(Q)(Ha — 2) ']’ is convergent in norm. Thus
the conclusion of the Theorem follows once we know that the product V(Q)(H4 — z)~! = p(V)9Ra(r.) belongs
to the C*-algebra € and this follows from the second point of Proposition 2.3. |

A comparison of our formulae (3.8) and relation (5.30) from [N] shows that our method leads to a non-
perturbative, representation independent definition of the resolvent of a large class of magnetic Schrodinger
Hamiltonians.
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