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1 Introduction

In [2] we considered the regularity of the spectrum of a class of ¥DO with respect to a family of

slowly varying dilation-type perturbations, related to a problem discussed in [4]. In this note we

present some results that may be obtained when one eliminates the ’slow variation’ hypothesis.
We shall use the multi-index conventions of [5]. Let:

Vnm(@) = maxmax sup |6’§‘8§a|, V(n,m) e NxN (1.1)

laj<n |Blm (z,£)eR2d
and S o(R? x R?) [5] the set of smooth functions satisfying
Unm(a) < oo, V(n,m)eNxN. (1.2)

We shall consider some real Hormander symbol a(z,§) of class S o(R? x R?).
We shall denote by (-, ')L2(Rd)

variable), with the quadratic norm denoted simply by |- | and we shall use the notation (-, >

the scalar product in L2(R?) (considered antilinear in the first

W)
L'(V) x # (V) - C for the canonical bilinear duality map for tempered distributions on the real
finite dimensional Euclidean space V.

Following [5] we define the Weyl quantization of the symbol a € S§,(R? x R?) as the operator:

(Dpw(a)go)(x) = (2m)™ Ad dy » dn e'<ney> a((m + y)/2,77) o(y), Ve Z(RY, VreRe (1.3)

Due to the Calderon-Vaillancourt Theorem (see [1] and §XIII.1 in [7]) this operator is bounded in
L2(R4) with the following bound on the operator norm:

”DPw(a)SOHB(LQ(Rd)) < Cvageazina(a). (1.4)

We shall use the same notation for its extension to the entire Hilbert space. Let £]a] € .7’ (RIxR?)
be the distribution kernel of Op“(a) (see [6]); it may be computed by the following formula:

Rla]=(2n) (e F )a)o Y (1.5)
where T: R?xR? > (2,y) » ((z+y)/2,2 - y) e RYx R? is a bijection with Jacobian -1 and:
(Fe)w) = @2 [ dgemg(e), Voe s (RY, VoeR! (1.6)
R

is the inverse Fourier transform. We also define the distribution &[a] = 8[a]o T-! € .#/(Rd x R4).
With a slight abuse, we can write the following explicit formula:

Rla](z +v/2, z—v/[2) = K[a](z,v) := (27) 7 [;gd dn e~ a(z,n). (1.7)
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Proposition 1.1. (see [5]) The tempered distribution K[a] € (R x RY) is in fact a smooth
(with respect to the weak topology) distribution valued function Re> z > R[a](z,-) € .#"(RY) such
that for any z € R? the distribution R[a](z,-) € .#'(R) has singular support contained in {v = 0}
(possibly void) and rapid decay together with all its derivatives, in the complement of v =0.

L2(R9)-boundedness criterion. Given a distribution kernel &[a] as in the above Proposition
and using the operator-norm estimation in the Calderon-Vaillancourt Theorem for its associ-
ated Hormander symbol a = (18 F)R[a] € Soo(RIxR?), our main criterion for L2(R?)-boundedness
of the associated linear operator in L?(R?) will be the boundedness of the seminorms:

Vo ((1® F)R), min(n,m) > 3d +4. (1.8)
Notation 1.2. We shall use the following notations:
o <v>i= \/W, for any v € R? and s,(v) :=< v >P for any p e R.
e 7, for the translation with —z € R? on any space of functions or distributions on R9.

o C°(R4;R?) defined as the space of smooth Ré-valued functions with bounded derivatives of
all strictly positive orders.

The Problem. Let F ¢ C{°(R%R?Y) and 0 € R with |[§] < 1. To any real-valued symbol a €
S5 0(R? x R?) we associate the perturbed symbols:

a[Fls(x,§) := a(x + (5F(x),§).
We are interested in the variation of the spectrum o(Op”(a[F]s)) c R, as a set, when § goes to 0.
Remark 1.3. We evidently have the inequalities:
Unm(a[Fs) < Co(0, F)vpm(a), VY(n,m)eNxN,

with C, (6, F') depending on the sup-norm of the derivatives of F' up to order n — 1, uniformly in
d€(0,1].

We shall use the short-hand notations (for |[§| < 1):

Ks:=0p"(a[F]s) e B(LX(RY)), K5:=R[a[F]s] e 7 (R? x R?); (1.9)
E.(9) :==sup o(Kjs). (1.10)

The Hausdorff distance: dg(A, B) := max {sup dist(¢, B) , supdist(t, A)} for A, B subsets of C.
teA teB

2 The main results

Theorem 2.1. There exists C'(a, F') >0 such that for || <1 we have the estimation:
du(o(Ks), o(Ko)) < C(a, F)/]o]

Remark 2.2. Counter-examples from the literature show that this estimation is ’'sharp’, i.e.
spectral gaps of order \/|0| may be created by these type of perturbations.



From Theorem 1.5 in [2] and some other similar results from the literature, one may expect
a more regular behaviour of the spectral edges. In fact, in this situation we obtain the following
result depending on the decay at infinity of the second order derivatives og the 'perturbing function’
F e O (R4 RY).

Theorem 2.3. Suppose that |(0y,0,,F)(z)| < C <z >+ for some C' >0, >0 and for any
pair of indices (j, k). Then there exists C(a, F') >0 and oy > 0 such that for |§| < 6y we have the
estimation:

|£.(0) = £.(0) | < C(a, F)|o|(t+m/@em),

3 Proof of Theorem 2.1

The main idea of the proof is to construct a ’quasi-resolvent” (see (3.6))) and use the unitarity
of z-translations and localization around a lattice of points in R¢ in order to control the possible
linear growth of /. We notice that the invariance of our arguments when changing F' into —F
allows us to work with ¢ > 0.

Let us consider some exponent r € (0,1] and the discrete family of points I's := {2,(8) = 6%y €

R4, ~e Zd}. We notice that for any z € I's, the bounded operator 7_: Ky7: has the integral kernel
Ro(z + 2,v), with £(z,v) given in (L.9). Thus, given some v € Z? let us consider the difference:
Ks—T1_. (5yK0T.,(5) and its associated distribution kernel, considered as smooth distribution valued
function on R? and use Newton-Leibniz formula in the first variable to obtain:

Rs(z,-) - ﬁo(z + 0", ) = ﬁo(z +0 F(2), ) - Ro(z + 6", )
= [0 ds ((Vzﬁo)(z +0"y +s(0 F(z) - 0"y), )) (0F(2)=d"y)
= 0" [D1o](2,7) - (8" F(2) - ) (3.1)

with the last line giving the definition of [@1.@0](2, -). We can then define the mapping \IIS[F],(Y‘S) :
R?>3 2+ z+ 8%y +s(d F(z) — 0"y) € R? and write that in the sense of tempered distributions:

[Dus]= [ ds(9.5) 0 (WLFI. 1) = 2m) 2 [ s (18 F)(7.)) o (2, [F1, 1))
- (zﬂ)-dﬂ(]l@f-)[folds((vza))o(qls[F]§5>,]1))],
with 1 : R - R? being the identity map, denoting by (¥,®) the map R? x R? 5 (z,y)

(U(2),¥(y)) € R x R? for any pair of maps ¥ € C=(R%R%) and ® € C=(R%R?). The above
formula evidengtly implies that:

(1o 7)) = 2m) ] [ ds((70)) o (W.LFI, )] (3.2)

In order to estimate the operator norm of the linear operator defined by this distribution kernel,
we use our boundedness criterion ([1.8) and notice that:

9207 (1® F)[D1R] = (27r)-d/2[ fol ds ((vzagag a)) o (T, [F1Y, ]1))] (3.3)

being bounded by v|4/41,8/(a). Thus, if we can impose by some localization procedure, a bound
uniform in (z,7) € R? x Z4 for the factor §'*F(z) — v and its z-derivatives then we may obtain a
decaying factor 0% going to 0 with ¢ > 0. We are thus lead to consider the following partition of
unity:



e We fix a function g € Cg"(Rd; [0, 1]) such that: Y g(z-7)?=1, VzeR%

~eZd
e For any ~y € Z¢ we define the cut-off function: g[Fj],(2) := (60" F(2) - 7).

e Given 7 € Z¢ we denote by V. the set of all 7/ € Z? with the property that the support of
g[F5], has a non-empty overlap with the support of g[Fj],, including 7’ = 7. Denote by
n, € N\ {0} the cardinal of V., notice that it is clearly independent of v and ¢ and that:

Z [g[Fg]W(z)]2 =1, VzeR% (3.4)
ez
zesuppg[F5], = 3L>0, 0™ F(2) -] < L. (3.5)

e Finally let us denote by G[Fj], the self-adjoint, bounded operator of multiplication with
g[Fs], in L*(R%). Obviously G[Fs], = Op®(g[Fs],) for g[Fs], € Sho(R? x R?) a symbol

independent of the second variable.

The quasi-rezolvent for Ks. Let us fix any 3 ¢ O'(K()) and define:
-1 ~
T)(3;6) =70, 5) (Ko = 31) 7o), T(5:0):= Y. G[F5],T,(3;0) G[Fys],. (3.6)
~veZd

Remark 3.1. Unitarity of translations and the functional calculus for self-adjoint operators imply
that for any ¢ € [0,1] we have the estimation:

"Tw(3;5)“B(L2(Rd)) = H(KO_Z’]I)_lulB(LQ(Rd)) s diSt(Z’vU(KO))_l’ ¥y e Z7

Lemma 3.2. For any ¢ € [0,1] the series in (3.6) is convergent in the strong operator topology
and we have the estimation

173 0) gy < \/(ng+1)/2\\([(0-511)‘1\\B(L2(Rd)) < /(n, + 1)/2dist (5,0 (Kp)) .

Proof. (For the convenience of the reader we reproduce here our proof of Lemma 2.4 in [2]) For
e L2(R%), let us consider any M € N let us define:

T(50)™ = 3 GIF), T,(5:0) Gl Fsl, (3.7)

[vIsM

and compute:

> Y AG[F5), Ty (3;6) G[Fs)y ¥, G[Fs]y Ty (3;0) G[Fs]y ) <

ly|<M 7€V
v+1
<
2

STy (3:0) G[Fs]y 0] < || (Ko —3]1)‘1\\;(L2(Rd))%TH | > [Rd dz[g[Fs)y ()] [ (2)? da

|'Y|5M |5M
-12 n,+1
< H(KO _511) HIB(L2(IRd)) gT ||77ZJH27

where in the last equality we used the quadratic partition of unity identity in the definition of
geCy (]Rd; [0, 1]) The convergence and the estimation in the Lemma are then evident. ]

Proposition 3.3. With the above notations and hypothesis, we have the estimation:

| (k5 -51) T(5;0) - 1 < C(a, F)8"2 [dist(3,0(K0))] .

B(L?(R%))



Proof. For any M € N let 7(3;5)(1‘4) as in (3.7) be the partial sum approaching T(g;é) in the
strong operator topology and let us consider the product:

(Ks=31)T(3:0)™ = 3 (K5 -31) G[F5], T,(5:0) G F5,. (3.8)

[vIsM

We notice that for any v € Z¢ we can write that:
(K5 -31) G[F5], T (3:0) G[Fily = 72 () (Ko - 5]1)_17'@(6) G[F5],T(3;0) G[F5] + (3.9)
+ [(Ka —31) - 7 0) (Ko —5]1)_1%(5)] G[Fs], T:(3:0) GLEF5 ],
= [glFs) ) 1+ e (Ko =31) 7y, GLES ) T5(5:0) GLEF3 ), +
+ | (K5 -30) = 72,9 (Ko =31) 7, 0) | GLES ), T, (5:0) GLFb
Lemma 3.4. For any -y € Z* we have the estimation:

H[(K& -31) - 7. (5 (Ko —3]1)_17@(5)] G[F5]7||B(L2(Rd)) < O(a, F)o".

Proof. We consider thr bounded operator:
H = [(Ks =31) = 7o) (Ko =51) 7 | GLES], (3.10)

appearing in the statement of the Lemma and compute its distribution kernel:

A[Hs] = [8[alFs] - (8lal o (72 © 7o) ) | (1 © 9[ F5],). (3.11)
We shall prefer to work with the modified kernels:

R = A[H;] o 171 = | (K[a[F15] - (Rla] o (mey5) @ 7o) ) e Y [(1 @ g[Fs], ) 0 Y1)
= (%5 - (Roo (@ 1)) [(1@ gl F3],) 0 T7']
= [(85- (Roo (e @ 1)) (1o sn) |[[(1@ 9[F),) o T (L5 )] (3.12)

with the last line valid for any N € N and the first factor above being bounded for any N € N due
to the arguments using (3.3). In fact, by (3.1)) we can write:

(e F)fs=0°[ 3 (Mo F)[Dif],) « (Mo F)[(8"F -7,) @ sy])]+

1<j<d
(e F)([(1og[F),) e T (185 )]
Concerning the second factor above we notice that:
[(1®g[Fs],) o Y ](2,0) = g(6) F(z-v/2) - 7) (3.13)
and using the compactness of the support of the cut-off function g we deduce that on the support

of the function (1® .7:)([(1 ® g[Fg]v) o T‘l](l ®5,N)) there exists some L > 0, depending only on
the diameter of the support of g such that:

L 2‘6(1”)F(z—v/Q)—’y‘:‘(S(l“)(F(z)—[Olds[(v/Q)-(VF)(Z—SU/Q)])—'y‘2 (3.14)

> “5(1_“)}7(2) —7‘ - |6(1_“) ./(;1 ds [(v/?) (VF)(z- sv/?)” | (3.15)



and thus we have the inequality:
1
[ ds[(0/2) - (Y F)(z = s0/2)]| < L+ 60 ((1/2)| Fll) < 0>
0

Moreover, one easily notices that the function ([(1 ® g[F(;],Y) o T*l](l ®5_N)) is of class

50 F(2) —~| < L+60-)

BC>=(R? x R?) having rapid decay in the second variable, with uniform bounds with respect
to 0 € [0,1], so that its partial Fourier transform (1 ® f)([(l ® g[Fs],) o T](1 ®5,N)) is a
function of class BO™(R? x R?) = S ;(R? x R?), uniformly with respect to ¢ € [0,1].

Recalling now our boundedness criterion (|1.8)):

H[(K5 =31) = 7o) (K _5]1)_17_z~/(5):|g[F5]’YH

the conclusion of the Lemma follows. O

< V3d+4,3d+4((]l ® }—)?‘5)7

B(L2(R?))

Lemma 3.5. For any v € Z¢ we have the estimation:

H I:T—zw(é) (Ko- 3]1)_17%(5) , G[Fﬁ]'y:l

Proof. In a similar way with the proof of our previous Lemma |3.4] we consider the linear operator:
[T—zws) (Ko-31)"'7.0). G[Fé]v] =

= 7o) (Ko =31) 7o) GIEs)y = GIFs)y sy (Ko - 30) 72 0)

and its distribution kernel:
Ros = (ﬁ[@] o (T2, (5) ® Tzw((s)))[(l ®g[F5],) - (9[F5), ® 1)] (3.17)
with the modified form:
Resi=Reso T =[S0 (@ e D][((LeglF],) o 1) - ((glFs],@1) 01| (3.15)
Let us analyse the smooth function in the second factor above:
(1@ g[Fs],) o) = ((olFs)y @ 1) 0 T7)](2,0) =
=g(6"MF(z-v/2) - 7) = g(6"MF(z+v/2) - 7) =
= - [Oclis (V) (SE™E(z-v/2) =y + 56T (F(z +v/2) - F(z - v[2))-
(TN (F(z+v/2) - F(z-v/2)) =

H < C(a, F) ot
B(L2(R))

(3.16)

1 1/2
=g 3 fds dt vy, O Fj(z + sv) x (3.19)
1<j,k<d 0 -1/2
x (0;9)(0 ™ F(z-v/2) =y + 50" (F(z +v/[2) - F(z - v[2))
and our usual boundedness criterion clearly implies the conclusion of the Lemma. O]

Putting together (3.9)), Remark and the above two lemmas, and optimizing the estimation
by taking k =1 -k =1/2 we conclude that:
2 5

(55 - 30) GLF3), T, (5:0) GLEs), - [9[F3), ] 1 = X5 GLE3 ),

(%) 12 (4 -1

HXW HB(LQ(W)) < C(a, F) 6" (dist(3,0(K0)) .
Finally we have to use the fact that Y g(x —~v)? =1 and Y g(z-+) € [0,n,], both series

~veZd veZ4

being locally finite, so that the finite sums in (3.8]) are convergent and summing up over =y € Z¢
using the estimation ([3.20)) clearly implies the conclusion of the Proposition. n

(3.20)
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End of the proof of Theorem 2.1, If dist(;,, U(Dp(a))) > (C'§'/2 the conclusion of Proposition

implies that 3 ¢ O’(K(;).

Finally, replacing 7'(3;6) in (3.6) by:
~ -1
S(3;0) = Z G[F5], Tz (8) (K5 _5]1) T—z,(5) G[Fs], (3.21)

ez

all the arguments above can still be applied in order to obtain the following estimation similar to
the conclusion of Proposition [3.3}

| (70 -31) 5(3:6) - 1) < C(a, F) 62 (dist(3,0(K5)) . (3.22)

B(L?(R%))

It follows that if dist(g, J(Dp“’(a[F](;))) > C'61/2 then 3 ¢ U(KO) and the Theorem is proven.

4 Proof of Theorem 2.3

In this case, we shall no longer estimate norms, but rather quadratic forms. The main idea is
to replace the perturbation x — x + ¢ F/(x) with a similar one in a new variable u € R%, namely
x> x+0 F(u) and use the unitarity of translations in estimating the modified quadratic form. In
order to control the distance between the new variable u and z := (z +y)/2 we shall use a scaled
weight function 20,,(z —u) as in [2] (see (£.2)).

We intend to estimate the difference &, () -&,(0) for § > 0 small enough, and begin by making
explicit the defining formula ([1.10)):

E.(6)= sup (qb, Dp(a[F](g) ¢)L2(1Rd) =  sup <ﬁ[a[F]5], O® ¢>,7(]Rd><]Rd)

HQS”LQ(Rd):l B L ”¢HL2(Rd):1 (41>
= Sllp <ﬁ5 ) (QS ® ¢) °© T >,7(Rd><]Rd)'
Hd)”LQ(Rd):l
The weight function. Let us consider the functions:
z2
W (2) = (4r)~U? e_%, W,.(2) = k¥?W(k 2), Vre(0,1] (4.2)
and the following identity:
27 (Jw+ /2 + [w=v/2]) = [wf + /4, V(w,v) e R xR (4.3)
We deduce that:
ddzﬂﬂ,g(z) =1, Vke(0,1],
R
_u) = ~df2 -1/ _ 1/2 - u)2)2 (4.4)
W, (z-u) = ((k/47)" W, (v)) " W, (2 - u+v/2)W,. (2 —u-v/2)"?

V(z,u,v, k) € [RY3 % (0,1].
Our strategy is to replace in formula the distribution:
S5 = ([, du((ram) ©1)) 8 (4.5)
with the distribution:
w,[85] = [ du((r20,) ©1)((75r00 ©1)5%) (4.6)
and estimate:

E.(k,0):= sup <QU,€[R5] , (9@ ¢)o T_l)

L (RIxRE)"
1] 2=1 (RER)



Proposition 4.1. With the above notations and hypothesis, for any ¢ € .#(R?) there exists some
C(a, F) >0 such that we have the estimation:

(W.[85]. (506) 0 T) sy = (6. DP(0) 8) 1oy + Cla F) 62 |83, Vo€ L(RY).

Proof. Starting from (4.7]), we have to estimate the following iterated integrals:

. (4.8)

./11;1 dufRd dz200,.(z - u) fRd dv¢(z+v/2)¢(z—v/2)ﬁ0(z+§F(u),y)

We shall use the rapid decay in v € R? of the kernel ﬁo(z +0F (u),v) by breaking the integral
in v € R? in a bounded region and its complementary. In fact we shall choose some function
x € Cg°(R?), taking values in [0, 1], having support in the ball |[v| < R and being equal to 1 on the
ball |v] <7, for some strictly positive r < R.

Let us first estimate the integral on the unbounded region, for any x € (0,1) and N € N:

[Rd du/ﬂ%d dz,.(z —u) /]1;4 dv<z5(z+v/2)¢(z—v/2)ﬁ0(2+5F(u),v) <v>N<v>N[1-x(kv)]

< %N(T_Nsup sup < v >V |ﬁo(z>v)|) 181725y < Crla) &% 16172 ga)-

zeR4 |v|>r

On the support of x we shall use the second formula in (4.4)) in order to write that:

fRd du ./]Rd dz0,.(z —u) fRd dv¢(z+v/2)¢(z—v/2)ﬁ0(z+(5F(u),v) x(kv) = (4.9)

= (a’ (]lRﬁ ® T—‘SF(“))(IIRﬁ ®Dpw(a“))(ﬂRﬁ ® TéF(“))a)Lz(Rd.Lz(Rd))

with:
(Rl0.T o T)(z.0) = (/4 220,(0)) " By (2,0) x(0) = P70 () oz, 0), (410)
= S ) x(w0) + 62 [ ds (P 16) P (i) Sz, 0),
3= (ra0) 0 € (L L2(RY)). (1.11)
We notice that we have a unitary map
L*(RY) 5 ¢~ ¢:=(7,W,) ¢ ¢ L*(RY; L*(RY)) (4.12)

and the equality (taking into account the unitarity of translations):

(57 (ﬂRg ® T—aF(u))(ﬂRg ®Dpw(am>)(]le ® TéF(u))a) = (¢a Dpw(%W) o (4.13)

L*(R4L2(RY)) L2(R4)

Thus if we change the Hilbert space L?(R?) with the Hilbert space L2(R?; L2(R?)) via the above
unitary map we may conclude that:

Ag{d du[Rd dz2,.(z —u) ./;w dv ¢(z +v/2)p(2 —v/2) Ro(z + F (u),v) x(kv) = (4.14)
= (0, 99"(@)9) , ., = (020" (@)8) , .+ (4.15)

L2(R4)
+ K2 _[gd dszddvqb(anv/Q)gb(z—v/Q)(v[()ldseS"“’Q/lG) (J0]*/16) Ro(z + 0F (u),v) x(rk )



where we have put into evidence the symbol a, € 5870(Rd x R?) associated to the integral kernel
Rla](z,y)x(rx(z—y)). Then we may control the factor (Jv|*/16) using the rapid decay of £ with

respect to the variable v € R? and write that exp (s|/1 U|2/16)X(/€ v) < exp(R?/16). Finally we use
once again the estimation on the support of 1 — x:

((ba Dp(ax) ¢)L2(Rd) =
= (62 9P(0)0) oy = [,z [ dvoG+0l2)0(z = 0/2) Sz )1 - x(50)]
(6. 9p(@)0) sy = [0z [ v G020z = 0/2) Kolz0)[1 = x(kv)]| <

< /@N(r’Nsup sup <v >N |ﬁ0(2,v)|) H¢”2LQ(R(1) < C(a) HN H¢Hi2(Rd)'

zeR4 |v|2r

This Proposition clearly implies the estimation:
£.(0) < £,(0) + O(K?). (4.16)

Proposition 4.2. There exists C(a, F) >0 such that for any (x,0) € (0,1) x (0,1) and for any
¢ e L2(RY):

<ﬁ6 ) (a ® ¢) °© T_1>5p(Rded) - <m[ﬁ6] ) (5 ® ¢) °© T_1>,7(Rd><Rd) =

g oy (A17)
= Cp(avF) ||¢HL2(]Rd) (5/0+5/‘€ 0 +0°K )

Proof.
(85, (0©0) 0 T™) ooy ~ (W], (080) 0T sy =
=fRddu Rddzﬁﬂn(z—u)[wdvmgb(z—vﬂ) [Ro(z +0F(2),v) = fo(z+6F (u),v)]
— -3 du ngzann(z —u)‘/ﬂégvmqﬁ(z —0/2) (V8o (2 + 0F (2) + s0(F () - F(2)),v)x

X [/O.lds((z—u)-VF)(Z+s(u—z))].

We shall need a second cut-off, this time on the perturbing field F' € C;°(R?). Let us consider the
same function x € C5°(R?) as in the proof above and the weighted one x4(z) := x(6 z) for some
cut-off parameter 0 € (0,1]. Then we define:

Fg = X9F7 FéL = (1—X9)F (418)

and the corresponding integral kernels & and 20[R;]° with F replaced by Fy and respectively K5
and 20[R;s]* with F replaced by Fy-.
We have the evident estimations:

(85, (0©0) 0 T™) , pupay ~ (B0, (0@ ) 0T} oy o = (4.19)
- /Rd dz /Rd dvd(z +v/2)p(z - v/2) [Ro(z +0Fy(2),v) - ﬁg(z,v)] = (4.20)
=9 /ﬂ;d dz [I;d dvo(z+v/2)p(z -v/[2) fol ds[Fp(2) - (0.80)(z + 56 Fy(2),v)], (4.21)



(WK1, (0@0) 0 T7) sy~ (R0 (9@ D)0 X)) = (4.22)
=fRddufRddzm(z—u) [Rddvmwz—vﬂ)[ﬁo(z+5Fg(u),v)—ﬁ0(z,v)]= (4.23)
=Addz[wdvmﬂz—m)[fRddum(z—u)(ﬁo(sz@(u),v)—ﬁo )] @29
:\fRddufRddzm(z—u) fRddvmqb(z—vm[ﬁo(z+5F9(u),v)—ﬁo 0)]|= (425)
=5fRddszddum¢(z—v/2)[fRddum(z—u)x (4.26)

([ as[Faw) (0-8) (= + s5 Fo(u).)])] (427

Lemma 4.3. The symbol a§,(z,n) associated to the kernel & ,(z,v) = fol ds[Fp(2) - (0.80)(2 +
s6 Fp(2),v)] belongs to S50 (RIxRT) with seminorms bounded by CO~ uniformly for (,0) € (0,1]2.

Proof. We can write that:

asy(z,m) = (2m)? /H;i dv e &5 o(2,0) = (4.28)
= (27)/? ./]Rd dv "< [}1 ds [Fg(z) : ((’L(Il ® }"’)a)(z +80 Fy(2), v)] (4.29)
- fol ds[Fy(2) - (0.a) (2 + 56 Fo(2),m)]. (4.30)
As in Remark [I.3] we notice that
Vnm(a5g) < (jg@pJFg(z)DOsgligll/n+17m(a[F]s) < MpO! OsgligunJer(a[F]s) (4.31)
[

Lemma 4.4. The symbol a§,(z,n) associated to the kernel

50(2,0) = /ﬂ;d du,.(z —u) ( /01 ds [Fg(u) : (82,@0)(,2 + 80 Fg(u),v)])
belongs to S§o(R% x R) with seminorms bounded by CO~' uniformly for (8,0) € (0,1]2.
Proof. We can write that:
ally(z,m) = (27)" fR dve I /Y (2,0) = (4.32)
= ./(;1 ds .[Rd du20,.(z —u) ([Fg(u) (0.a)(z+s6 Fg(u),n)]). (4.33)
As in Remark [I.3] we notice that
Vnm(59) < (Sz@IFe(U)DOiggvml,m(a[F s) € Mp0™" sup vy m(a[F1,) (4.34)
Finally putting the above results together we conclude that:

(%5, B® )0 T, oy — (WK, (B00) 0T | < CLFIOOL (435)
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Let us consider now the ’outer region’ integrals:
(’Q(JS_ ) (a ® (b) © Til)y(Rded) - (m[ﬁzjﬁ:] ) (6 ® ¢) © Til)y(Rded) = (436>
= 011[0](5,0, k) + 6* L[ 0](6,0, k)

where:

T1[#](0,0,k) = _[Rd du[Rd dz0,.(z - u) 'éd dvp(z+0v/2)p(z - v/2) (Vzﬁo)(z+5F;(z),v)x
X [((z—u)-VF;)(z)+(1/2)/01ds(1—3)((z—u)®(z—u)(V@V)F(j)(z+s(u—z))]

To[#](6,0,k) == (1/2) /H;d du/Rd dzW,.(z - u) fRd dvo(z+v[2)p(z - v/[2) x
x /01(1—S)ds((vz®Vz)ﬁg)(z+5F9l(z)+s5(F;(u)—F9l(z)),v)x

x ];1 dt((z-u) - VF})(z+t(u-2z)) /(;1 dt' ((z-u) - VF§)(z+t'(u-2))
We may conclude that:
[Z:[61(6,0. )| < &720" 0] 72, [Z2[01(6,0, %) < £72| 6] (4.37)
O

In order to finish the proof of Theorem [2.3, we only have to make the following choices for our
scaling parameters:

e =017 for some p e (0,1), so that §6-1 = §7;

e 2 =3P so that 6k=201+1 = §(-p)+(1-p)(A+p) = §2+p)(1-p) gand §2k-2 = §(2-0)

e imposing p=(2+ p)(1-p) € (0,1) means taking p= (1 +u)/(2 + p).
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