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Introduction

Starting from a very interesting remark made by H. Cornean and Gh.
Nenciu, together with Marius Măntoiu we have considered quantum
hamiltonians with magnetic fields and replaced the usual translations with
magnetic translations, generalizing some former results from constant
magnetic fields to bounded smooth magnetic fields.

This approach allowed us to obtain a pseudodifferential Weyl calculus,
twisted by a 2-cocycle associated to the flux of the magnetic field and we
developped this calculus in colaboration with V. Iftimie.

An interesting fact that we pointed out is that the algebra of observables
is defined only in terms of the magnetic field without the need of a vector
potential.

Moreover, we used some algebraic techniques in order to prove a number
of spectral results and I shall present here one of them.
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Magnetic fields and gauge transformations

The magnetic field

We work in the n-dimensional space X := Rn.

Let the dual X ′ ∼= Rn of X be the momentum space.

The magnetic field is described by a closed 2-form B on X .

On X := Rn the equations B = dA have always a solution, definig a
vector potential A for B.

Gauge transformations. B = dA = dA′ is equivalent to the existence
of Φ such that A′ = A + dΦ.

These equations can be considered either in D′ or on smaller spaces like
C∞ or C∞pol.
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Magnetic fields and gauge transformations

The magnetic canonical variables

For the Hamiltonian formalism, the Lorentz force is equivalent to the
replacement of the usual canonical pair of variables

(x , ξ) on Ξ by the pair of variables (x , ξ + A(x))

defined once we have chosen a vector potential A for B.

Appearently this prescription is highly non-unique due to the gauge
ambiguity.

In fact, one can easily see that the Hamilton equations of motion only
depend on the magnetic field B.
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Magnetic fields and gauge transformations

The gauge invariant formalism

Let π̃ : Ξ→ X , (x , ξ) 7→ x , be the canonical projection.

Let σB := σ + π̃∗[B].

This σB defines a new symplectic form on Ξ.

We associate to σB a new Poisson bracket:{
f , g
}B

:= σB(j−1
B (df ), j−1

B (dg))

where jB is the canonical isomorphism

jB : Ξ→ Ξ∗, < jB(X),Y >:= σB(X,Y).
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Magnetic fields and gauge transformations

The gauge invariant formalism

Using the canonical global coordinates we have:{
f , g
}B

(x , ξ) :=

=
n∑

j=1

[(
∂ξj f

)
(x , ξ)

(
∂xj g

)
(x , ξ)−

(
∂xj f

)
(x , ξ)

(
∂ξj g

)
(x , ξ)

]
+

n∑
j ,k=1

Bjk(x)
(
∂ξj f

)
(x , ξ)

(
∂ξk g

)
(x , ξ)
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The Schrödinger representation

The magnetic Schrödinger representation

Suppose chosen a gauge A for the magnetic field B.

On L2(X ) we define
Q1, . . . ,Qn,

the multiplication with the variables,

and

ΠA
1 := D1 − A1, . . . ,Π

A
n := Dn − An, with Dj := −i∂j

representing the canonical momenta in the magnetic field.

We can then define the Schrödinger operator:

HA :=
∑

1≤j≤n

(
ΠA

j

)2
+ V (Q)
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The Schrödinger representation

The magnetic Schrödinger representation

One can easily verify that changing the gauge

HA′ :=
∑

1≤j≤n

(
ΠA′

j

)2
+ V (Q), with A′ = A +∇Φ

gives

HA′ = HA −
∑

1≤j≤n

[Dj(∂jΦ) + (∂jΦ)Dj ] + |∇Φ|2 =

= HA − 2
∑

1≤j≤n

(∂jΦ)Dj + i∆Φ + |∇Φ|2 =

= HA + e iΦ
∑

1≤j≤n

[
D2

j , e
−iΦ
]

= e iΦHAe−iΦ.
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The Schrödinger representation

The magnetic Schrödinger representation

The magnetic Scrödinger operator is gauge covariant
i.e. Changing the vector potential in the magnetic Scrödinger
operator can be achieved by a unitary transformation.

Polynomials of degree higher then 2 are no longer gauge covariant.

What about effective Hamiltonians and functional calculus?
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A gauge covariant functional calculus

The covariant functional calculus

We consider the unitary groups associated to the above 2n self-adjoint
operators Q1, . . . ,Qn,,Π

A
1 , . . . ,Π

A
n

and define the Magnetic Weyl system:

UA(x) := e
−i

R
[Q,Q+x] A e i<x ,D>

V A(ξ) := e−i<ξ,Q>

W A((x , ξ)) := e−i<ξ,x/2)>V A(ξ)UA(x) =

= e−i<ξ,(Q+x/2)> e
−i

R
[Q,Q+x] A e i<x ,D>

.
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A gauge covariant functional calculus

The covariant functional calculus

For any test function f : Ξ→ C we define the associated magnetic
Weyl operator:

OpA(f ) :=

∫
Ξ

dX f̂ (X )W A(X ) ∈ B[H]

In fact for any tempered distribution F ∈ S ′(Ξ) we can define the
linear operator:

OpA(F ) :=

∫
Ξ

dX F̂ (X )W A(X ) ∈ B[S(X );S ′(X )]

It defines a linear bijection [M.P., J. Math. Phys. 04].

The covariant calculus associated to any two gauge-equivalent vector
potentials are unitarily equivalent:

A′ = A + dϕ ⇒ OpA′(f ) = e iϕ(Q)OpA(f )e−iϕ(Q).
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A gauge covariant functional calculus

The covariant functional calculus

The magnetic Schrödinger operator

If we denote by

h(x , ξ) :=
∑

1≤j≤n

ξ2
j + V (x)

then
OpA(h) = H

with H defined previously.
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A gauge covariant functional calculus

The magnetic algebra of quantum observables

The magnetic Moyal product

The above functional calculus induces a magnetic composition on the
complex linear space of test functions S(Ξ):

OpA(f ]Bg) := OpA(f ) · OpA(g)

It only depends on the magnetic field B !

Explicitely we have:

(f ]Bg)(X ) := 4n

∫
Ξ

dY

∫
Ξ

dZ e
−i

R
TX (Y ,Z) σ

B

f (X − Y ) g(X − Z )

where TX (Y ,Z ) is the triangle in Ξ having vertices:

X − Y − Z , X + Y − Z , X − Y + Z .
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A gauge covariant functional calculus

The magnetic algebra of quantum observables

We ca extend the product ]B by duality to bilinear maps:

S ′(Ξ)]BS(Ξ)→ S ′(Ξ); S(Ξ)]BS ′(Ξ)→ S ′(Ξ).

The magnetic Moyal algebra

We set:

MB(Ξ) :=
{

F ∈ S ′(Ξ) | F ]Bφ ∈ S(Ξ), φ]BF ∈ S(Ξ), ∀φ ∈ S(Ξ)
}

This defines a ∗-algebra for the composition ]B

and the usual complex conjugation as ∗-conjugation.
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A gauge covariant functional calculus

The norm

The familly:

CB(Ξ) :=
{

F ∈ S ′(Ξ) | OpA(F ) ∈ B[L2(X )]
}

does only depend on the magnetic field B.

On CB(Ξ) we can define the map:

‖F‖B := ‖OpA(F )‖B[L2(X )]

that does not depend on the choice of A
and is in fact a C∗-norm on CB(Ξ).

CB(Ξ) is a C∗-algebra isomorphic to B[L2(X )].
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Continuity of the spectra

Continuity of the spectra
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Continuity of the spectra

Symbols

We shall use the following Hörmander type symbols:

Definition

For m ∈ R we define:

the family of seminorms

|F |(m)
(a,α) := sup

(x ,ξ)∈Ξ
< ξ >−m+|α| ∣∣(∂a

x∂
α
ξ F )(x , ξ)

∣∣ , ∀F ∈ C∞(Ξ)

the Frechet space
Sm(Ξ) :=

{
F ∈ C∞(Ξ) | ∀(a, α), |F |(m)

(a,α) <∞
}
.

Hypothesis

The magnetic field B has components of class BC∞(X ).
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Continuity of the spectra

Calderon-Vaillancourt type Theorem

By usual oscilatory integrals techniques we prove that:

Proposition [I.M.P., Proc. RIMS 07]

For any m ∈ R we have Sm(Ξ) ⊂MB(Ξ).

Theorem [I.M.P., Proc. RIMS 07]

In any Schrödinger representation of the form OpA,
the operator corresponding to an observable F of class S0(Ξ), defines a
bounded operator
and there exist two constants c(n) ∈ R+ and p(n) ∈ N, depending only on
the dimension n of the space X , such that we have the estimation:

‖OpA(F )‖B(H) ≤ c(n)|F |(0)
(p(n),p(n)).
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Continuity of the spectra

Self-adjointness

Definition

For m > 0 a symbol F ∈ Sm(Ξ) is said to be elliptic
if there exist two positive constants R and C such that
for any (x , ξ) ∈ Ξ with |ξ| ≥ R one has that

|F (x , ξ)| ≥ C < ξ >m

.

Proposition

if F ∈ S0(Ξ) is a real function, OpA
~ (F ) is a bounded self-adjoint

operator on L2(X ) for any vector potential A of B;

if F ∈ Sm(X ) is a real elliptic symbol with m > 0, then OpA
~ (F ) has a

self-adjoint extension in L2(X ) for any vector potential A of B.
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Continuity of the spectra

The spectral result

Hypothesis 1

Consider a family of Hamiltonians {hε}ε∈I with I ⊂ R a compact interval,
such that

hε ∈ Sm(Ξ) elliptic with m > 0, for each ε ∈ I ,

the map I 3 ε 7→ hε ∈ Sm(Ξ) is continuous for the Fréchet topology
on Sm(Ξ).

there exist C ∈ R such that hε ≥ −C , ∀ ε ∈ I .

Hypothesis 2

We are given a family of magnetic fields {Bε}ε∈I with the components
Bε

jk ∈ BC∞(X ) such that the map I 3 ε 7→ Bε
jk ∈ BC∞(X ) is continuous

for the Fréchet topology on BC∞(X ).
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Continuity of the spectra

The spectral result

Definition

Let I be a compact interval and suppose given
a family {σε}ε∈I of closed subsets of R.

1 The family {σε}ε∈I is called outer continuous at ε0 ∈ I if for any
compact K ⊂ R such that K ∩ σε0 = ∅, there exists a neighborhood
V ε0

K of ε0 with K ∩ σε = ∅, ∀ε ∈ V ε0
K .

2 The family {σε}ε∈I is called inner continuous at ε0 ∈ I if for any open
O ⊂ R such that O ∩ σε0 6= ∅, there exists a neighborhood V ε0

O ⊂ I of
ε0 with O ∩ σε 6= ∅, ∀ε ∈ V ε0

O .

3 The family {σε}ε∈I is called continuous at ε0 ∈ I if it is both inner
and outer continuous.
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Continuity of the spectra

The spectral result

Theorem A.M.P. 2010

Suppose given a compact interval I ⊂ R, a family of classical Hamiltonians
{hε}ε∈I and a family of magnetic fields {Bε}ε∈I satisfying the above
Hypothesis.

Let us consider the family of quantum Hamiltonians Hε := OpAε(hε) for
some choice of a vector potential Aε for Bε.
Then the spectra σε := σ(Hε) ⊂ R form a continuous family of subsets at
any point ε ∈ I .
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Continuity of the spectra

The spectral result

Let us briefly comment upon the significance of our Theorem

It extends the results of Elliott [1982] and Bellissard [1991, 1994] to
the case of continuous models (with configuration space X = Rn)
and non-constant magnetic fields.

It extends the known results of Nenciu [1986] and Iftimie [1993] to a
large class of symbols of positive order, but with stronger regularity
hypothesis on the magnetic field.

Using our results in Contemp. Math. 307 (2002), the continuity
result of Nenciu [1986] can be recovered.
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Continuity of the spectra

The spectral result - Proof

Our proof is based on the following criterion:

Proposition

Suppose that {Hε}ε∈I is a family of self-adjoint operators in the Hilbert
space H such that for any z /∈ R the map

I 3 ε 7→
∥∥∥(Hε − z1)−1

∥∥∥ ∈ R+

is upper (resp. lower) semi-continuous in ε0 ∈ I .

Then the spectra {σ(Hε)}ε∈I form an outer (resp. inner) continuous
family of closed sets at the point ε0 ∈ I .
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Continuity of the spectra

The spectral result - Proof

In connection with this Criterion, our main result is

Theorem A.M.P. 2010

Suppose given a family of symbols {hε}ε∈I and a family of magnetic fields
{Bε}ε∈I satisfying our previous Hypothesis, then for any choice of vector
potentials {Aε}ε∈I associated to the magnetic fields Bε (Bε = dAε) and
for any z ∈ C \ R the map

I 3 ε 7→
∥∥∥∥(OpAε(hε)− z1

)−1
∥∥∥∥ ∈ R+

is continuous.

In order to prove this statement we use an operator algebraic framework
inspired by the work of G. Elliott and J. Bellissard.
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Suppose given a family of symbols {hε}ε∈I and a family of magnetic fields
{Bε}ε∈I satisfying our previous Hypothesis, then for any choice of vector
potentials {Aε}ε∈I associated to the magnetic fields Bε (Bε = dAε) and
for any z ∈ C \ R the map

I 3 ε 7→
∥∥∥∥(OpAε(hε)− z1

)−1
∥∥∥∥ ∈ R+

is continuous.

In order to prove this statement we use an operator algebraic framework
inspired by the work of G. Elliott and J. Bellissard.
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A continuous field of twisted crossed-products
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A continuous field of twisted crossed-products

The twisted crossed-product structure

Let us consider the inverse partial Fourier transform

F− : S(Ξ)→ S(X × X ),
[
F−f

]
(x , x ′) :=

∫
X ∗

dξ e iξ·x ′f (x , ξ)

We can transport the Moyal product ]B to a bilinear associative product
on S(X × X ) or F−MB(Ξ) that we denote by �B :

φ �B ψ := F−
[
(Fφ) ]B(Fψ)

]
.[

φ �B ψ
]

(x , x ′) =

=

∫
X

dz φ(x+(z−x ′)/2, z)ψ(x+z/2, x ′−z) exp{(−iγB(x−x ′/2; z , x ′−z)},

whith γB(x , x ′, z) the flux of B through < x , x + x ′, x + x ′ + z >.
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A continuous field of twisted crossed-products

The (1,∞) norm

On S(X × X ) let us consider the norm

‖φ‖(1,∞) :=

∫
X

dx ′ sup
x∈X
|φ(x , x ′)|

that verifies the inequality:

‖φ �B ψ‖(1,∞) ≤ ‖φ‖(1,∞)‖ψ‖(1,∞).

Let L := L1
(
X ; BCu(X )

)
be the closure of Cc(X ; BCu

(
X )
)

under the
(1,∞) norm.

It is a Banach ∗-algebra (with the involution φ∗(x , x ′) := φ(x ,−x ′)).
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A continuous field of twisted crossed-products

The regular representation

L has the following representation on L2(X × X ):

RB : L→ B
(
L2(X × X )

)
, RB(F )f := F �B f .

Remark 1

Taking into acount the unitary equivalence (associated to a gauge A)

L2(X × X )
OpA

≡ B2

(
L2(X )

)
,

we can easily notice that

OpA
[
RB(F )f

]
= OpA[F ]OpA[f ].

so that ‖F‖B = ‖RB(F )‖B(L2(X×X ))).
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A continuous field of twisted crossed-products

The C ∗-closure

Definition

Let BB ⊂ CB(Ξ) be the completion of L for the C ∗-norm ‖ · ‖B .

Let us make this construction for each magnetic field Bε with ε ∈ I
obtaining the family of C ∗-algebras {Bε}ε∈I ≡ {BBε}ε∈I .

One can also form the direct product∏
ε∈I

Bε :=

{
{aε}ε∈I | aε ∈ Bε, ‖a‖∗ := sup

ε∈I
‖aε‖Bε <∞

}
.
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A continuous field of twisted crossed-products

The cross-sections

Let us replace now BCu(X ) by the abelian algebra C
(
I ; BCu(X )

)

and let us consider on Cc

(
X ; C

(
I ; BCu(X )

))
the composition law

(Φ �Ψ) (x ; ε, x ′) :=

=

∫
X

dz Φ(x + (z − x ′)/2; ε, z) Ψ(x + z/2; ε, x ′ − z) e−iγB
ε (x−x ′/2;z,x ′−z)

and the norm

‖|Φ|‖(1,∞) :=

∫
X

dx ′ sup
ε∈I

sup
x∈X
|φ(x ; ε, x ′)|.

Then we can define L̃ := L1
(
X ; C

(
I ; BCu(X )

))
as the completion of Cc

(
X ; C

(
I ; BCu(X )

))
for the above norm.
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A continuous field of twisted crossed-products

The cross-sections

The evident equality

Cc

(
X ; C

(
I ; BCu(X )

))
= C

(
I ; Cc

(
X ; BCu(X )

))

and the evaluation maps (surjective and contractive)

eε : C
(
I ; Cc

(
X ; BCu(X )

))
→ Cc

(
X ; BCu(X )

)
, ε ∈ I ,

allow us to define evaluation maps

eε : L̃→ L, ε ∈ I ,

and by glueing them together, a continuous injective map:

e : L̃→
∏
ε∈I

Bε.
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A continuous field of twisted crossed-products

The cross-sections

Let us denote by B̃ the closure of e
[
L̃
]

in
∏
ε∈I

Bε.

Then B̃ is a C ∗-algebra

For each ε ∈ I , the map eε extends by continuity to a contraction:

ẽε : B̃→ Bε.

Proposition

For any Φ ∈ B̃ the map:

I 3 ε 7→ ‖ẽε(Φ)‖Bε ∈ R+

is upper semi-continuous.
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Proof of our main result
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Proof of our main result

An affiliation result

Proposition

Under our Hypothesis on {hε}ε∈I and {Bε}ε∈I , there exists some a > 0
large enough such that for any z ∈ C \ [a,+∞) we have:

1 for any ε ∈ I , the function hε − z1 ∈ Sm
1 (Ξ) ⊂Mε(Ξ) is invertible for

the ]ε-product having an inverse r εz ∈ F
[
L
]
;

2 moreover the function I × Ξ 3 (ε,X ) 7→ r̃z(ε,X ) := r εz (X ) belongs to

the algebra F
[
L̃
]

and eε
(
r̃z
)

= r εz .

Using this result and the previous Proposition
we obtain the upper semi-continuity part of our main result.
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Proof of our main result

The lower semi-continuity

Proposition

Given a continuous function I 3 ε 7→ φε ∈ L and an element ψ ∈ H, the
map

I 3 ε 7→ φε �ε ψ ∈ H

is continuous.

Using this result and the well known fact that if a family {Sε}ε∈I of
bounded linear operators in a Hilbert space H is strongly continuous, then
ε 7→‖ Sε ‖B(H) is lower semi-continuous
we obtain the lower semi-continuity part of our main result.
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