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1 Introduction.

In this talk we discuss a subject at the confluence of the theory of induced group representations
and spectral theory in Hilbert spaces, concentrating on the problem of the periodic Schrödinger
Hamiltonians, of interest for mathematical physics.

The abstract Problem: Suppose given a real affine space X of finite dimension d ∈ N \ {0};
let us denote by T : Rd → Diff(X) the natural action of the group Rd on X by translations.
Let us denote by BC∞(X;CN) the space of smooth functions X → CN that are bounded
together with all their derivatives. Suppose fixed some linear differential operator

L(x,∇) :=
∑
|α|≤p

aα(x)∂α : BC∞(X;CN)→ BC∞(X;CN) (1.1)

having coefficients {aα : X → C}|α|≤p that are invariant under the action by translations of
the discrete subgroup Zd ⊂ Rd.

We used the usual multi-index notations ∂α :=
∏

1≤j≤d
∂
αj
xj , |α| :=

∑
1≤j≤d

αj.

What can one say about the structure and spectral properties of such an operator?

Historical References:

• Gustave Floquet (1883), Sur les équations différentielles linéaires coefficients périodiques,
Annales de l’École Normale Supérieure 12: 47 - 88.

• George William Hill (1886), On the part of the motion of the lunar perigee which is a
function of the mean motions of the sun and moon. Acta Math. 8: 136.

• Alexander Mihailovich Lyapunov (1892), The General Problem of the Stability of Mo-
tion. London: Taylor and Francis. Translated by A. T. Fuller from Edouard Davaux’s
French translation (1907) of the original Russian dissertation (1892).

• Felix Bloch (1928), Über die Quantenmechanik der Elektronen in Kristallgittern. Z.
Phys. 52: 555 - 600.

Textbook References:

• P.A. Kuchment, Floquet theory for partial differential equations, Operator Theory: Ad-
vances and Applications, 60, Birkhäuse, Basel, 1993.

Complete Rd-invariance.

• being abelian, all its unitary irreducible representations are of dimension 1, i.e. acting
on C considered as 1-dimensional complex linear space
Commutation of our operator with all translations just means that it reduces on each
irreducible representation to multiplication by a complex number and thus, on functions
on the Pontriaghin dual group, that is isomorphic to Rd itself, it is represented by
multiplication with a function.

• in this case L : BC∞(X) → BC∞(X) is a differential operator with constant coeffi-
cients: L0(∇) =

∑
|α|≤p

aα∂
α.
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• the Fourier transform (
Fφ
)
(ξ) :=

∫
Rd

dx e−2πi<ξ,x>φ(x) (1.2)

defines a bijection between the spaces of tempered distributions.

• L̂0 := FL0F
−1 is just multiplication with the polynomial L̊0(ξ) :=

∑
|α|≤p

aαξ
α.

Considering now invariance only by translations with elements from Zd ⊂ Rd we must no-
tice that we start with a unitary representation of Rd that is a direct integral of irreducible
1-dimensional representations and we have to restrict this direct integral to the discrete subgroup
Zd ⊂ Rd. Thus we are reduced to study the topological and Hilbertian structure of this direct
sum of restrictions.

For any abelian locally compact group G let us denote by G◦ the abelian group of its characters
(i.e. its Pontriaghin dual). We shall denote by Γ∗ ⊂X∗ the dual lattice of Γ ⊂X:

Γ∗ :=
{
γ∗ ∈X∗ , < γ∗, γ >∈ Z, ∀γ ∈ Γ

}
(1.3)

More precisely, we start with an operator acting in L2(Rd) that is the natural unitary repre-
sentation by translations of Rd on itself that we denote by

ρ : Rd → U
(
L2(Rd)

)
,
(
ρ(x)u

)
(y) := u

(
τx(y)

)
= u(x+ y). (1.4)

The Fourier theory tells us that this representations is unitarily equivalent with a direct integral1

of irreducible (1-dimensional) unitary representations:

ρ̂ := FρF−1 : Rd → U
(
L2([Rd]◦

)
, (1.5)

ρ̂ =

∫ ⊕
[Rd]◦

dξ εξ, εξ : Rd → U(C) = S, εξ(x) := e2πi<ξ,x>. (1.6)

We have thus

ρ̂|Zd =

∫ ⊕
[Rd]◦

dξ εξ|
Zd
. (1.7)

At this point we have to notice that

εξ(γ) = εη(γ), ∀γ ∈ Zd ⇐⇒ ξ − η = γ∗ ∈ Zd∗ ⊂ [Rd]◦ (1.8)

so that we have to restrict our direct integral to the quotient space [Rd]◦/Zd∗ = [Rd]◦/[Sd]◦ =

[Zd]◦ d
= Sd∗. Moreover, we notice that for any γ∗ ∈ Zd∗ the character εγ∗ are Γ-periodic functions

on Rd.
Thus, let us consider the short exact sequence of dual groups

0 ↪−→ [Sd]◦ ↪−→ [Rd]◦ [Zd]◦ 1l

l∼= l∼= l∼=
Zd∗ X∗ Sd∗

and define a representation of our operator as a function of the variable in [Zd]◦ ∼= Sd with operator
values acting on a space of functions on [Sd]◦ ∼= Zd. Unfortunately, the relation between the

1Definition 3.1 in ch. II §1 of J. Dixmier Les algèbres d’opérateurs dans l’espaces Hilbertien
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standard representation by translations of Rd on itself and its restriction to the discrete subgroup
Zd is more complicated due to the topological and algebraic structure of the short exact sequence

0 ↪→ Zd ↪→ Rd � Sd � 1 (1.9)

that does not split. The main point is that while the quotient Rd/Zd ∼= Sd has a group structure,
the topological group Rd is not the product (neither topologically nor as algebraic structures) of
the two groups Zd and Sd

1.1 The discrete Fourier transform.

We recall that Zd being a discrete abelian group all its ireducible unitary representations are 1-
dimensional and form a compact abelian group isomorphic to the d-dimensional torus Sd considered

as subgroup of the multiplicative group
[
C \ {0}

]d
with componentwise multiplication.

More precisely we have the isomorphism:

Sd 3 z = (z1, . . . , zd)
∼7→ Θz ∈ Ẑd, Θz(γ) := zγ :=

∏
1≤j≤d

z
γj
j . (1.10)

We have the imaginary exponential representation:

Sd 3 z =
(
e−2πiθ1 , . . . , e−2πiθd

)
, (θ1, . . . , θd) ∈ [−1/2, 1/2)d.

Some spaces of complex sequences. Let us consider the following complex linear spaces:

c(Zd) :=
{
s : Zd → C , ∃N(s) ∈ N, |γ| ≥ N(s)⇒ sγ = 0

}
, (1.11)

c0(Zd) :=
{
s : Zd → C , lim

|γ|↗∞
sγ = 0

}
, (1.12)

o(Zd) :=
{
s : Zd → C , ∀N ∈ N, lim

|γ|↗∞
< γ >N sγ = 0

}
, (1.13)

lp(Zd) :=
{
s : Zd → C ,

∑
γ∈Zd

|sγ|p <∞
}
, 1 ≤ p <∞, (1.14)

l∞(Zd) :=
{
s : Zd → C , sup

γ∈Zd

|sγ| <∞
}
. (1.15)

Let us define the discrete Fourier transform:

F̊ : c→ C
(
Sd
)
,
(
F̊(s)

)
(z) :=

∑
γ∈Zd

sγz
γ, (1.16)

(
F̊(s)

)
(θ) =

∑
γ∈Zd

sγe
−2πi<θ,γ> (1.17)

We recall the following well known results:

F̊
[
l1(Zd)

]
⊂ C

(
Sd
)
, (1.18)

F̊
[
l2(Zd)

]
= L2

(
Sd
)
, (1.19)

F̊
[
o(Zd)

]
= C∞

(
Sd
)

(1.20)

and the fact that F̊ : l2(Zd) ∼−→ L2(Sd) is a unitary transformation.
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Finally let us recall the Poisson formula2 that we shall use several times. We have the fol-
lowing equality, as distributions in S ′(X) with series converging in the weak sense (as tempered
distributions):

(Poisson Formula)
∑
γ∈Γ

δγ =
∑
γ∗∈Γ∗

εγ∗ . (1.21)

Here δγ is the Dirac measure in γ ∈X and εγ∗(x) := e−2πi<γ∗,x>.

1.2 The short exact sequence of topological groups.

0 ↪→ Zd ↪→ Rd � Sd � 1

The Borelian section:

• We shall consider the borelian decomposition Rd = Zd × Jd with J := [−1/2, 1/2)

• using the usual entire part function:

[·] : R→ Z, [t] := max
{
k ∈ Z , k ≤ t

}
∈ Z, ∀t ∈ R, (1.22)

• and defining

R 3 t 7→ ([t]2, {t}2) ∈ Z× [−1/2, 1/2) : [t]2 := [t+ 1/2] (1.23)

{t}2 := t− [t]2. (1.24)

We obtain a bijective application t2 : Rd 3 x 7→
(
[x]2, {x}2

)
∈ Zd × Jd.

• We use the notations x̃, ỹ, . . . for the points of Jd.

Group structure on Sd: On the quotient space Sd ∼= Rd/Zd we can define the following abelian
group structure:

x̃+̂ỹ := {x̃+ ỹ}2. (1.25)

It only depends on the classes of x̃ and ỹ in the quotient space Rd/Zd.

The cocycle: Let us notice that

t2
(
t−1
2 (α, x̃) + t−1

2 (β, ỹ)
)

=
(
α + β + ν(x̃, ỹ), x̃+̂ỹ

)
(1.26)

where
ν : Sd × Sd → Zd, ν(x̃, ỹ) :=

(
[x̃1 + ỹ1]2, . . . , [x̃d + ỹd]2

)
(1.27)

is a 2-cocycle for the translations that is the origin of the twist of the decomposition of the
representations.

2§7.2 in Lars Hörmander The Analysis of Linear Partial Differential Operators, I. 2-nd edition, Springer-Verlag,
1990.
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The projection: We have the following explicit model for the quotient group Rd/Zd:

Rd/Zd ' Sd :=
{
z = (z1, . . . , zd) ∈ Cd, |z1| = . . . = |zd| = 1

}
⊂ Cd (1.28)

with the projection defined by the imaginary exponential:

ed : Rd 3 x 7→ ed(x) :=
(
e−2πix1 , . . . , e−2πixd

)
∈ Sd (1.29)

and the group structure iduced from
(
C \ {0}

)d
considered as direct product of d copies of

the multuplicative group C \ {0}.

The Borelian section: We notice that the function

sd : Sd 3 z = (z1, . . . , zd) 7→
(
(1/2πi) ln z1, . . . , (1/2πi) ln zd) ∈ Jd (1.30)

with ln the principal determination of the logarithm on C, defines a section for ed over Sd.
(We have here a very well-known aspect of a rather deep result 3.)

3Theorem 5.11 in V.S. Varadarajan, Geometry of Quantum Theory, 2-nd edition, Springer 2007
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2 The Bloch-Floquet-Zak transform.

Due to the commutation of our periodic differential operator with the Zd-translations, it will
leave invariant all the unitary irreducible representations of Zd.

These representations are in bijective correspondence with the classes of characters
in the dual [Rd]◦ of Rd modulo their action on [Sd]◦ ∼= Zd∗, i.e. with the classes of characters
in [Rd]◦/[Sd]◦ ∼= [Zd]◦ ∼= Sd∗.

A. Let us start with the Fourier transform

F : L2(X)
∼−→ L2(X∗),

(
Ff
)
(ξ) :=

∫
X

dx e−2πi<ξ,x>f(x) (2.31)

taking the canonical unitary representation of Rd by translations into the direct integral of unitary
irreducible represntations.

• Decompose L2(X∗) ' L2
(
[Sd]◦

)
⊗ L2

(
[Zd]◦

) ∼= L2
(
Sd∗; l2(Zd∗)

)
.

• Thus our initial representation of Zd on L2(X) becomes a direct integral over [Zd]◦ ∼= Sd∗
of unitary reducible representations given by scalar multiples of the identity on the Hilbert
space L2

(
[Sd]◦

) ∼= l2(Zd∗). Then, our Γ-translation invariant operator will become a direct
integral over [Zd]◦ ∼= Sd∗ of operators acting in L2

(
[Sd]◦

) ∼= l2(Zd∗).

In fact, we can go further and obtain some more interesting structure to be used in our analysis.
In fact, going back to (1.1) and considering the case N = 1 we notice that we have in fact two
types of ’elementary operators’ involved :

• multiplication with functions a ∈ BC∞(X):

BC∞(X) 3 f 7→ af ∈ BC∞(X)

• differential operators that can be considered as products of the generators of the unitary
translations on X.

In conclusion we shall be interested also in the Fourier transform of operators of multiplication
with smooth functions on X and these are easy to be described using the Rd-translations on X∗:

F(af) =
(
Fa
)
∗
(
Ff
)
, ∀(a, f) ∈ BC∞(X∗)× C∞0 (X∗) (2.32)

with ∗ the usual convolution:
(
φ ∗ ψ

)
(ξ) :=

∫
X∗
dη φ(ξ − η)ψ(η). Thus, denoting by a(Q) the

operator of multiplication with the C∞0 function a on L2(X∗) and by Û : Rd → U
(
L2(X∗)

)
the

natural representation by translations, we can write (in the weak operator topology):

Fa(Q)F−1 =

∫
X∗
dξ
(
Fa
)
(ξ)Û(ξ). (2.33)

Thus, working with functions a ∈ BC∞ will imply having integrands
(
Fa
)
∈ S ′(X∗) and thus will

oblige us to impose some regularity conditions on the functions in L2(X∗) (at least continuity!).
But the existence of the cocycle ν : Sd×Sd → Zd and the discontinuity of the section sd : Sd → Rd

imply a complicated form for the representation of Û : Rd → U
(
L2(X∗)

)
with respect to the tensor

decomposition introduced above. In fact, the canonical action of Rd on itself by translations is
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different of the direct product of the canonical actions by translations of the two groups Zd and
Sd (see (1.25)). Taking into account the cocycle (1.27) comes to consider the projection Rd → Sd
as a principal bundle with group Zd; we shall analyse this structure further.

For the moment let us consider this ’continuity problem’ in a different way:

• Consider on l2(Zd∗) the restriction of the Γ∗-translations:

Û † : Zd∗ → U
(
l2(Zd∗)

)
,
(
Û †(γ∗)s

)
(α∗) := s(α∗ + γ∗). (2.34)

• Define

L̊ :=
{
F ∈ C

(
X∗; c(Zd∗)

)
,
(
T∗(γ∗)F

)
(ξ) = Û †(γ∗)F (ξ), ∀(γ∗, ξ) ∈ Γ∗ ×X∗}, (2.35)

‖F‖2
L :=

∫
E∗

dξ̃ ‖F (ξ̃)‖2
l2(Γ∗)

(2.36)

and the completion L that is a Hilbert space.

B. Let us apply a dual discrete Fourier transform in order to come back to the X-representation
only for the variables ’modulo Γ’, i.e.:

F̊∗ : l2(Γ∗)
∼−→ L2(Sd),

(
F̊∗s
)
(τ) :=

∑
γ∗∈Γ∗

e2πi<γ∗,τ>sγ∗ . (2.37)

Definition 2.1.

U † := F̊∗Û
†(F̊−1
∗ ) : Zd∗ → U

(
L2(Sd)

)
,
(
U †(γ∗)φ

)
(τ) = e−2πi<γ∗,τ>φ(τ), (2.38)

G̊ :=
(
F̊∗ ⊗ 1l

)
L̊ ⊂

{
F ∈ C

(
X∗;C(Sd)

)
,
(
T∗(γ∗)F

)
(ξ) = U †(γ∗)F (ξ), ∀(γ∗, ξ) ∈ Γ∗ ×X∗}

‖F‖2
G :=

∫
E∗

dξ̃ ‖F (ξ̃)‖2
L2(Sd) (2.39)

and the completion G that is a Hilbert space.
Definition 2.2. We define the following uniray operator

U †
Γ : L2(X∗) 3 f̂ 7→ f̃ ∈ G , f̃(z, ξ̃) :=

∑
γ∗∈Γ∗

e2πi<γ∗,sd(z)>f̂(ξ̃ + γ∗). (2.40)

C. We define finally the Bloch-Floquet-Zak transform 4 as the composition of the two unitaries
U †

Γ and F:

ŨΓ := U †
Γ ◦F : L2(X∗)

∼−→ G (2.41)

f̃(ξ, τ) :=
∑
γ∗∈Γ∗

e2πi<γ∗,τ>f̂(ξ + γ∗) =
∑
γ∗∈Γ∗

e2πi<γ∗,τ>

∫
X

dx e−2πi<ξ+γ∗,x>f(x) = (2.42)

=

∫
X

dx

(∑
γ∗∈Γ∗

e2πi<γ∗,τ−x>

)
e−2πi<ξ,x>f(x) =

∑
γ∈Γ

e−2πi<ξ,γ+τ>f(γ + τ). (2.43)

4

• G De Nittis, M Lein: Applications of magnetic DO techniques to SAPT Reviews in Mathematical Physics
23 (03), 233-260

• J. Zak: Dynamics of electrons in solids in external fields, Phys. Rev. 168(3) (1968) 686695.
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2.1 The Bloch-Floquet Hilbert bundle.

2.1.1 The principal bundle Rd � Sd with fiber group Zd:

The manifold structure on S1.

• Charts: S1 ⊂ V0 ∪ V1,

V0 :=
{
z = e−2πiτ , τ ∈ (−3/8, 3/8) ⊂ R

}
⊂ S,

φ0 : V0 3 z 7→ (1/2πi) ln z ∈ I := (−3/8, 3/8) ⊂ R,

V1 :=
{
z = e−2πiτ , τ ∈ (1/8, 7/8) ⊂ R

}
⊂ S,

φ1 : V1 3 z 7→ (1/2πi) ln(−z) =
(
(1/2πi) ln z − 1/2

)
∈ I := (−3/8, 3/8) ⊂ R.

• Chart intersections: V0 ∩ V1 = W = W0 t W1,

W0 :=
{
z = e−2πiτ , τ ∈ (−3/8,−1/8) ⊂ R

}
=
{
z = e−2πiτ , τ ∈ (5/8, 7/8) ⊂ R

}
=⊂ S,

φ0

[
W0

]
= I0 := (−3/8,−1/8) ⊂ I ⊂ R,

φ1

[
W0

]
= I1 := (5/8− 1/2, 7/8− 1/2) = (1/8, 3/8) ⊂ I ⊂ R,

W1 :=
{
z = e−2πiτ , τ ∈ (1/8, 3/8) ⊂ R

}
⊂ S,

φ0

[
W1

]
= (1/8, 3/8) = I1 ⊂ I ⊂ R,

φ1

[
W1

]
= (1/8− 1/2, 3/8− 1/2) = (−3/8,−1/8) = I0 ⊂ I ⊂ R,

• Coordinate change:

ψ := φ1 ◦ φ−1
0 : I0 t I1 → I0 t I1.

ψ|Ij =: ψj (j ∈ {0, 1})
{
ψ0(t) = t+ 1/2 ∈ I1

ψ1(t) = t− 1/2 ∈ I0

The manifold structure on Sd. Let I := {0, 1}d.

• Charts: Sd ⊂ ∪
a∈I
V d
a ,

V d
a :=

�
1≤j≤d

Vaj , φda :=
�

1≤j≤d
φaj : V d

a → Id ⊂ Rd.

• Chart intersections: W d
a,b =

�
1≤j≤d

(
Vaj ∩ Vbj

)
=
�

1≤j≤d
Wa,b(j) where

Wa,b(j) :=

{
= Vaj , for aj = bj
= W, for aj 6= bj

.

We notice that for a 6= b, the intersection W d
a,b are disjoint unions of elements of the form�

1≤j≤d
V(κj) for any κ ∈ {0, 1, 2, 3}d and V(j) := Vj for j = 0, 1 and V(j) := Wj−2 for j = 2, 3.

• Coordinate change:

ψd
∣∣ �
1≤j≤d

V(κj)
=
�

1≤j≤d

ψκj−2

where we define ψ−2 = ψ−1 = IId.
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The principal bundle structure on e : R � S.

• Local trivialisations:

1. e−1
[
V0

]
3 t 7→ Φ0(t) = (φ0(e(t)), [t]2) ∈ I × Z.

2. e−1
[
V1

]
3 t 7→ Φ1(t) = (φ1(e(t)), [t]) = (φ1(e(t)), [t− 1/2]2) ∈ I × Z.

• Transition functions: Ψ := Φ1 ◦ Φ−1
0 =

(
ψ(τ), Fτ (k)

)
:
(
I0 ∪ I1

)
× Z→

(
I0 ∪ I1

)
× Z

with Fτ (k+ p) = Fτ (k) + p for any τ ∈ I0 ∪ I1 and (k, p) ∈ Z2. Thus Fτ (k) = Fτ (0) + k and
Fτ (0) ∈ Z is constant on any connex domain.

1. For (τ, k) ∈ I0 × Z = (−3/8,−1/8) × Z we have ψ(τ) = τ + 1/2 and Fτ (0) =
Φ1

(
Φ−1

0 (τ, 0)
)

= Φ1(τ) = −1.

2. For (τ, k) ∈ I1×Z = (1/8, 3/8)×Z we have ψ(τ) = τ−1/2 and Fτ (0) = Φ1

(
Φ−1

0 (τ, 0)
)

=
Φ1(τ) = 0.

Thus: Fτ (0) =

{
= −1, ∀τ ∈ I0,
= 0, ∀τ ∈ I1.

.

The principal bundle structure on ed : Rd � Sd.
Transition functions: Ψa,b(θ, γ) =

(
ψa,b(θ), Fa,b,θ(γ)

)
with Fa,b,θ(γ) = Fa,b,θ(0) + γ on W d

a,b.

With the above results we obtain a family
{
ρκ =

�
1≤j≤d

ρκj
}
κ∈{0,1,2,3}d ⊂ Zd

where ρ0 = ρ1 = ρ3 = 0 and ρ2 = −1
such that the transition functions on

�
1≤j≤d

Vκj is ρκ ∈ Zd.

Remark 2.3. The fiber associated to the structure group Zd beeing discrete we also have a
canonical connection with holonomy Hol◦x(Rd;Sd) ∼= {0} and Holx(Rd;Sd) ∼= Zd for any x ∈ Rd.

2.1.2 The associated bundle defined by U †.

Having the principal bundle ed : Rd � Sd with fibres free transitive Zd-spaces and the represen-
tation U † : Zd∗ → U

(
L2(Sd)

)
we can construct a vector bundle p : E∗ � Sd∗ with fibres Hilbert

spaces unitary equivalent with L2(Sd) through the following canonical procedure.

• The direct product: E∗ := X∗ × L2(Sd)

• The orbits of the Zd∗-action:

(ξ, f) ./ (η, g) ⇔ ∃γ∗ ∈ Zd∗, η = ξ + γ∗, g = [U †]−1(γ∗)f. (2.44)

For (ξ, f) ∈ X∗ × L2(Sd) the equivalence class
[
(ξ, f)

]
./

may be identified with the point(
ed(ξ), U †([ξ]2)f

)
∈ Sd∗ × L2(Sd);

Thus we shall simply denote
[
(ξ, f)

]
./

=: e
(
ed(ξ), U †([ξ]2)f

)
.

• The associated bundle:

E∗ :=
(
X∗ × L2(Sd)

)
/ ./, (2.45)

p
(
[ξ, f ]./

)
:= ed(ξ). (2.46)

Page 10



Notes Floquet seminar

• The fiber over z∗ ∈ Sd∗

p−1(z∗) =
{
e(z∗, f)}f∈L2(Sd) ' L2(Sd). (2.47)

• The local trivializations:

Φ̃a :=
(
φa ◦ p, F̃a ◦ (p, IId)

)
: p−1

[
Va
]
→ Id × L2(Sd) where

F̃a(p(e(z, f)), (e(z, f))) := U †
(
Fa,z(e(z, f))

)
f

Ψ̃κ :=
(
ψκ, F̃κ

)
: Iκ × L2(Sd) → Iκ × L2(Sd) where F̃κ := U †(ρκ) with ρκ ∈ Zd defined

at the end of the last subsection.

Remark 2.4. Let us notice that each element x ∈ Rd defines an identification

q(x) : L2(Sd) ∼−→ E∗p(x) (2.48)

given by the following relation: q(x)f :=
[
(x, f)

]
./

.

The canonical lift of basic curves. Suppose given a continuous curve [0, 1] 3 τ 7→ z∗(τ) ∈ Sd∗
and let us fix some point e0 ∈ p−1(z∗(0)). Now, let [0, 1] 3 τ 7→ ξ(τ) ∈ Rd be the unique lift
of {z∗(τ)}τ∈[0,1] ⊂ Sd to Rd through ξ(0) = sd(z∗(0)) given by Remark 2.3. Then there exists a
unique f0 ∈ L2(Sd∗) such that e0 = e

(
z∗(0), f0

)
. One can easily verify that the lifted curve is then

given by
[0, 1] 3 τ 7→

[(
ξ(τ), f0

)]
./
∈ E∗. (2.49)

This is the linear connection associated to the canonical connection in Remark 2.3 and allows us
to identify from now on the tangent space to Sd∗ at any point z∗ ∈ Sd∗, that is isomorphic to Rd,
with the horizontal tangent space to E∗ at any point e ∈ E∗ with p(e) = z∗.

The canonical action of Rd: T̃ : Rd → AutE∗:

∀ζ ∈ Rd, T̃(ζ)
[
(ξ, f)

]
./

:=
[
(T(ζ)ξ, f)

]
./
. (2.50)

2.1.3 The sections in p : E∗ � Sd∗.

Noticing that C(Sd) ⊂ L2(Sd) is a dense subspace, we can consider a subbundle of
p : E∗ � Sd∗ associated to it.

• The equivalence relation ./ on E∗ can be restricetd to E∗◦ := X∗ × C(Sd) becuase the
representation U † : Zd∗ → U

(
L2(Sd)

)
leaves the subspace C(Sd) ⊂ L2(Sd) invariant.

• Thus we can define E∗◦ := E∗◦/ ./ and p◦ := p|E∗◦ : E∗◦ � Sd∗ as subbundle of E∗.

The space of regular sections: Let us define C
(
E∗◦ ;Sd∗

)
as the linear space of continuous

sections s : Sd∗ → E∗◦ ⊂ E∗.
A standard argument aloows us to prove that C

(
E∗◦ ;Sd∗

)
is dense in L2

(
E∗;Sd∗

)
(the space of

L2-sections in p : E∗ � Sd∗), for the L2-norm. The action induced by (2.50) on L2
(
E∗; Sd∗

)
is simply

the canonical action by translations on G .
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2.1.4 The induced representation.

Definition 2.5. Let us define C̊
(
X∗;C(Sd)

)
as the linear subspace of continuous functions

F : X∗ → C(Sd) that verify the covariance condition(
T∗(γ∗)F

)
(ξ) = U †(γ∗)

(
F (ξ)

)
, ∀ξ ∈X∗, ∀γ∗ ∈ Γ∗. (2.51)

Proposition 2.6. There is a canonical identification I◦ : C
(
E∗◦ ;Sd∗

) ∼−→ C̊
(
X∗;C(Sd)

)
.

Proof.

• Let F̃ ∈ C̊
(
X∗;C(Sd)

)
and let us define

F : Sd∗ → E∗◦ , F (z∗) :=
[
(ξ, F̃ (ξ))

]
./
, ∀ξ ∈ (ed)−1(z∗). (2.52)

It defines a section of the fiber bundle p◦ : E∗◦ � Sd∗ that is continuous (see the definition).

• Let F ∈ C
(
E∗◦ ;Sd∗

)
and let us fix some ξ ∈ X∗ and look at the fiber p−1

◦ (ed(ξ)) and at the
image F (ed(ξ)) ∈ p−1

◦ (ed(ξ)).
By construction there exists a unique element f ∈ C(Sd) such that[

(ξ, f)
]
./

= F (ed(ξ)) ∈ p−1
◦ (ed(ξ)). (2.53)

We define then F̃ (ξ) := f ∈ C(Sd) with the unique choice explained above.

Remarks:

• C̊
(
X∗;C(Sd)

)
is a subspace of L2

loc

(
X∗;L2(Sd)

)
,

• given a function F̃ ∈ C̊
(
X∗;C(Sd)

)
its restriction F̃E := F̃

∣∣∣
E

to the unit cell completely

defines the entire function F̃ ∈ C̊
(
X∗;C(Sd)

)
,

• the closure of C̊
(
X∗;C(Sd)

)
for the Hilbertian norm

‖F‖E,2 :=

∫
E

dξ‖F (ξ)‖2
L2(Sd) (2.54)

is a Hilbert space containing C̊
(
X∗;C(Sd)

)
as dense linear subspace. An eaasy argument

proves that this Hilbert space coincides with the Hilbert space G from Definition 2.1.

2.1.5 Conclusion

Then we obtain a simplified version of Theorem 2.2.3 in P.A. Kuchement (one can obtain the
complete version with some work in the fiber bundle formulation):(

FΓL
(
Q,∇

)
u
)

(ξ, τ) =
∑
γ∈Γ

e−2πi<ξ,γ+τ>
∑
|α|≤p

a(τ)
(
∂αu

)
(γ + τ) (2.55)

=
∑
|α|≤p

a(τ)
(
(∂̃ + 2πi{ξ})αũ

)
(ξ, τ) (2.56)

=
[(

1l⊗ L̃(Q,∇+ 2πi{ξ})
)
ũ
]
(ξ, τ) (2.57)
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2.2 The Floquet representation.

Let us recall the discontinuous section sd : Sd∗ →X∗ and define the function Υ : Sd∗×X → S1 ⊂ C
by Υ(z∗, x) := e2πi<sd(z∗),x> such that for any function F ∈ G , its restriction to E∗ ⊂X∗ multiplied
with Υ becomes a periodic function on Sd∗. The problem is that now the fiber is no longer constant.
If we denote by Υz∗ the operator of multiplication with the function Υ(z∗, s

d(·)) on L2(Sd) and
define Hilbert spaces Fz∗ := Υz∗E

∗
z∗ = Υz∗L

2(Sd) we can easily verify that the family{
Υz∗u, u ∈ L2(Sd)

}
z∗∈Sd∗

⊂
∏
z∗∈Sd∗

Fz∗ (2.58)

defines a measurable (and even smooth) ”field of vectors” in the sense of (5) and we can associate
to it a direct integral

F :=

∫ ⊕
Sd∗
dz∗ Fz∗ (2.59)

that is unitarily equivalent with our Hilbert space G ∼= L2
(
E∗;Sd∗

)
; let us denote by F † : G → F

this unitary (i.e. the operator of multiplication with the function Υ) and by FΓ := F † ◦ U †
γ .

Explicitely we have that for any f ∈ L2(X)(
FΓf

)
(x, θ) =

∑
γ∈Zd

f(γ + x)e−2πi<θ,γ> (2.60)

5J. Dixmier (”Les algèbres d’opérateurs dans l’espaces Hilbertien” Definition 3.1 in ch. II §1)
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3 The periodic Schrödinger Hamiltonian.6

We shall look at the above problem having in mind one of its very important and intensively
studied application in the mathematical description of periodic quantum Hamiltonians. Without
trying to make a real introduction into the foundations of the mathematical description of physical
systems let us very briefly try to formulate the problem of mathematical physics that we have in
view.

3.1 Mathematical description of physical observables.

• systems of particles evolving in a 3-dimensional real affine space with the time considered as
a real parameter.

• their state is characterised by two families of real vectorial observables: the position associ-
ated with the 3-dimensional real affine space X where we observe the particles moving and
the momentum that the mathematical description associates with the dual X∗.
This feature is in some sense the manifestation of the ”law of movement” being a second
order differential equation.

• Fixing a frame: F0 := {x◦,T(e1)x◦, . . . ,T(ed)x◦} ⊂ X with x◦ ∈ X and {ej}1≤j≤d ⊂ Rd

the canonical linear basis of Rd, we can identify X ≡ Rd. Then X∗ ∼= Rd is its dual with
< ·, · >: X∗ ×X → R the duality map.

• its physical observables are described by functions of the ’state’ observables position and
momentum.

• One of these observables, the one measuring the energy, called the Hamiltonian of the system
is also the generator of the time evolution.

• For the classical theory the states are points of a finite dimensional real symplectic space
Ξ := X ×X∗ with symplectic form σ

(
(x, ξ), (y, η)

)
:=< ξ, y > − < η, x >,

with the evolution defined by the flow of the vector field associated to the Hamiltonian
function by the symplectic form σ.

• For the quantum theory,

– the states are points of the projective space of an infinite dimensional complex Hilbert
space H

– the physical observables are self-adjoint operators on the given Hilbert space H.

– the basic interpretation rule is

the mean value of the observable associated to the operator T in the state
described by the 1-dimensional projection q ∈ P(H) is given by Tr(qT ) ∈ R.

6Michael Reed, Barry Simon, Analysis of Operators, Vol. IV. Academic Press 1978.
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3.1.1 Self-adjoint operators.

In fact there are 4 main aspects concerning self-adjoint operators in complex Hilbert spaces that
are of importance for considering them as mathematical objects associated to physical measurable
observables :

◦ Given a self-adjoint operator T : D(T )→ H in the Hilbert space H:

- for any measurable function F : R → C we have a uniquely defined normal operator
F (T ) : D

(
F (T )

)
→ H;

- the subset sp(T ) ⊂ R gives the subset of possible measured values of the observable it
represents.

- there exists a spectral measure ET : β(R)→ P(H) such that T =
∫
sp(T )

ET (dt).

◦ The Stone Theorem states that there exists a bijective correspondence between self-adjoint
operators T in H and 1-parameter unitary, strongly continuous groups R 3 t 7→ UT (t) ∈
U(H)) on H given explicitely by

UT (t) = exp {−itT} .

The time evolution. Finally, given the Hamiltonian self-adjoint operator H : D(H) → H rep-
resenting the energy of the system, the time evolution is given by the unitary strongly
continuous 1-parameter group UH(t) = e−itH in the sense that UH(t)qUH(t)∗ ∈ P(H) is the
state at time t ∈ R corresponding to the state q ∈ P(H) at time 0.

Fundamental self-adjointness criterion. Suppose given a symmetric operator

T : D(T )→ H.

Then it is self-adjoint if and only if
(
T ± i1l

)
D(T ) = H.

Remark 3.7. Clearly, if T : D(T ) → H is a self-adjoint linear operator and a ∈ R, then
T + a1l : D(T )→ H is self-adjoint.
In fact we have

D((T + a1l)∗) =
{
f ∈ H , ∃g ∈ H, 〈f, (T + a1l)h〉H = 〈g, h〉H

}
(3.61)

=
{
f ∈ H , ∃g ∈ H, 〈f, Th〉H = 〈g − af, h〉H

}
(3.62)

= D(T ∗) = D(T ). (3.63)
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3.1.2 The Weyl system.

In the quantum theory the relation between states and observables is more subtle and we can no
longer interpret the main observables defining a classical state: the position and the momentum
observables as some kind of ’coordinates of the state’(!). Instead we can still view the rest of the
observables as ’functions’ of these basic observables for a non-commutative calculus: the Weyl
calculus.

• In fact we can consider aWeyl system, as a strongly continuous application

W : Ξ 3 X 7→ W (X) ∈ U(H)

that verifies the identity: W (X)W (Y ) = e(i/2)σ(X,Y )W (X + Y ).

• Taking into account that Ξ = X ×X∗ we shall emphasize the existence of the following
unitary strongly continuous representation of X ∼= Rd:

X 3 x 7→ U(x) := W
(
(x, 0)

)
∈ U(H). (3.64)

• Then the space S ⊂ H of smooth vectors for the 1-parameter unitary strongly continuous
groups

R 3 t 7→ WX(t) := W (tX) ∈ U(H)

indexed by X ∈ Ξ defines a canonical Fréchet space associated to the Weyl system, contin-
uously embedded in H. Let S ′ be its dual with the dual continuous embedding H→ S ′.

• Some technical arguments allow to define for any F ∈ S ′(Ξ) the following integrals

Op(F ) := (2π)−d
∫

Ξ

dZ

(∫
Ξ

dX eiσ(X,Z)F (X)

)
W (Z)

considered as oscillatory integrals of sesqui-linear forms on H. One can prove that we obtain
a topological and linear iseomorphism

Op : S ′(Ξ)
∼−→ L

(
S ; S ′)

with L(V1; V2) the linear space of continuous operators from the locally convex space V1 to
the locally convex space V2.

We shall be interested by the movement of a quantum particle in the real affine space of dimen-
sion d = 1, 2, 3 in the presence of a regular lattice of fixed atoms, representing a first approximation
for the movement of electrons in solids, a system of enormous theoretical and practical interest.
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3.2 The problem.

1. We start with a d-dimensional real affine space X in which we suppose enbedded a regular
lattice Γ ⊂X; we shall be mainly interested in the case d = 1, 2, 3.

2. Suppose that the lattice Γ is generated by the d linearly independent vectors {ej}1≤j≤d
starting from a point x0 ∈ Γ ⊂ X. Modulo a change of basis matrix we may suppose that
the above frame {x0, e1, . . . , ed} also gives the identification X ≡ Rd i.e. the configuration
space with the Lie group acting on it freely and transitively. Then we identify also Γ ≡ Zd
as normal discrete subgroup of Rd.

Many times we shall ’tacitly’ identify X ≡ Rd and Γ ≡ Zd.
We shall denote by E ⊂X the unit cell of Γ ⊂X defined as the image of the Borel section.
We shall also denote by E∗ ⊂X∗ the unit cell of the dual space.

3. We fix some function V ∈ L2
loc(X;R) that is Γ-periodic, i.e. V (x+ γ) = V (x) for any γ ∈ Γ

and a.e. in x ∈X. We conclude that V ∈ L2
loc,unif(X;R).

4. We consider the linear differential operator −∆ : BC∞(X)→ BC∞(X) given by

−∆ :=
∑

1≤j≤d

(−i∂xj)2 ≡
∑

1≤j≤d

D2
j . (3.65)

We consider its restriction

−∆|C∞0 (X) : C∞0 (X)→ C∞0 (X) (3.66)

and the operator sum

−∆|C∞0 (X) + V (Q) : C∞0 (X)→ C∞0 (X). (3.67)
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3.3 The periodic Hamiltonian.

We are working on the Hilbert space L2(X) considered as the natural representation of Rd by
translations on itself (see (3.64)).

H0 :

• We know that the differential operator −∆|C∞0 (X) : C∞0 (X) → C∞0 (X) ⊂ L2(X) has a
self-adjoint extension H0 with domain

D(H0) := F−1
{
f ∈ L2(X∗) , (1 + | · |2)f ∈ L2(X∗)

}
= (3.68)

=
{
f ∈ L2(X∗) , (1−∆)f ∈ L2(X∗)

}
≡H 2(Rd). (3.69)

where (1−∆)f is considered in the sense of tempered distributions.
Using the derivatives in the sense of distributions: H0 is the closure of −∆|C∞0 (X).

• For any a ≥ 0 the operator (H0 + a1l± i1l) = F−1(| · |2 + a± i)F is invertible
(the function |ξ|2 + a± i) being invertible)
and has the inverse F−1(| · |2 + a± i)−1F.

• Given f ∈ L2(X) and p ≥ 2 (we can also take p =∞), we have∥∥(H0 + (a± i)1l
)−1

f
∥∥
p

=
∥∥∥F−1(Q2

∗ + a± i)−1f̂
∥∥∥
p
≤
∥∥∥(Q2

∗ + a± i)−1f̂
∥∥∥
p′

(3.70)

≤
(∫

R
dt (t2 + a)−qtd−1

)1/q

‖f‖2 (3.71)

using the inequalities Hausdorff-Young and Hölder with p′ = p(p−1)−1 and q = 2p′(2−p′)−1.
For q > d/2 the integral above is finite and we have the estimation(∫

R
dt (t2 + a)−qtd−1

)1/q

= C(d, q)ad/2q−1 ≤ C(d, q)as, with s < 0. (3.72)

• We conclude that for f ∈ L2(X) and p > 2, for any ε > 0 there exists some constant
C(d, p) > 0 depending only on the dimension and on the exponent p > 2 such that∥∥(H0 + (a± i)1l

)−1
f
∥∥
p
≤ C(d, p)ε‖f‖L2(X). (3.73)

• Equivalently, for any p > 2 and any ε > 0 there exists some finite constant C(d, p, ε) > 0
such that for any f ∈H 2(X) we have that

‖f‖p ≤ ε
∥∥H0f

∥∥
L2(X)

+ C(d, p, ε)‖f‖L2(X). (3.74)

V :

• We can consider the linear operator of multiplication with V defined above

C∞0 (X) 3 φ 7→ V φ ∈ L2(X) (3.75)

and the unbounded self-adjoint operator it induces in L2(X)

V : D(V ) :=
{
f ∈ L2(X) , V f ∈ L2(X)

}
→ L2(X). (3.76)
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H0 + V :

• C∞0 (X) ⊂ D(H0) ∩D(V ) ∈ L2(X), thus H0φ+ V φ for any φ ∈ C∞0 (X).

• For any a ≥ 0 we can write(
H0 + V + a1l± i1l

)
=
[
1l + V

(
H0 + a1l± i1l

)−1
] (
H0 + a1l± i1l

)
(3.77)

• The partition of unity:

– let us choose a function χ ∈ C∞0 (2E; [0, 1]) with χ|E = 1 (where 2E :=
{

2x , x ∈ E
}

).

– For any γ ∈ Γ we consider the translate T(γ)χ (i.e.
(
T(γ)χ

)
(x) := χ(x+ γ)).

– any point x ∈X belongs to the supports of at most 2d functions in
{
T(γ)χ

}
γ∈Γ

.

– the following series is well defined, invariant for translations by γ ∈ Γ and:

1 ≤
∑
γ∈Γ

(
T(γ)χ(x)

)
≤ 2d, ∀x ∈X, (3.78)

– Let χ̃(x) := χ(x)

(∑
γ∈Γ

T(γ)χ(x)

)−1

and define ϕγ := T(γ)χ̃ for any γ ∈ Γ.

– they take values in [0, 1], have supports in T(γ)(2E) for each γ ∈ Γ and satisfy:∑
γ∈Γ

ϕγ(x) = 1, ∀x ∈X. (3.79)

– Moreover we can find a second function χ̊ ∈ C∞0 (3E; [0, 1]) with χ|2E = 1 such that:

1 ≤
∑
γ∈Γ

(
T(γ)χ̊(x)

)
≤ C, ∀x ∈X, (3.80)

∂αχ̃ = χ̊
(
∂αχ̃

)
, ∀α ∈ Nd. (3.81)

We shall use the notation ϕ̊γ := T(γ)χ̊.

• for any f ∈H 2(X) we can write:(
V f
)
(x) =

∑
γ∈Γ

ϕγ(x)V (x)f(x)

∣∣(V f)(x)
∣∣2 ≤ C(d)

∑
γ∈Γ

ϕγ(x)2V (x)2|f(x)|2

‖V f‖2
L2(X) ≤ C(d)

(
sup
γ∈Γ
‖ϕγV ‖2

L2(X)

)∑
γ∈Γ

‖ϕγf‖2
∞

≤ C(d)

(
sup
γ∈Γ
‖ϕγV ‖2

L2(X)

)∑
γ∈Γ

(
ε
∥∥H0ϕγf

∥∥2

2
+ C(d, ε)‖ϕγf‖2

2

)
(3.82)

using (3.74) at point (4.) above.
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• Let us compute

H0ϕγf =
∑

1≤j≤d

(−i∂j)2
(
ϕγf

)
(3.83)

=
∑

1≤j≤d

[
ϕγ
(
(−i∂j)2f

)
+ 2

(
(−i∂j)ϕγ

)(
(−i∂j)f

)
+ f

(
(−i∂j)2ϕγ

)]
(3.84)

and using∥∥((−i∂j)ϕγ)((−i∂j)f)∥∥2

2
=
〈(

(−i∂j)ϕγ
)(

(−i∂j)f
)
,
(
(−i∂j)ϕγ

)(
(−i∂j)f

)〉
2

(3.85)

= 2
〈(
∂jϕγ)(∂

2
jϕγ)

)(
∂jf
)
, f
〉

2
+
〈(
∂jϕγ

)2(
∂2
j f
)
, f
〉

2

≤ C
[∥∥ϕ̊γH0f

∥∥2

2
+
∥∥ϕ̊γf∥∥2

2

]
(3.86)

we obtain∑
γ∈Γ

∥∥H0ϕγf
∥∥2

2
≤ C

∑
γ∈Γ

[∥∥ϕ̊γH0f
∥∥2

2
+
∥∥ϕ̊γf∥∥2

2

]
≤ C ′

[∥∥H0f‖2
2 + ‖f‖2

2

]
. (3.87)

• Coming back to (3.82) we conclude that

‖V f‖2
L2(X) ≤ C(d)

[
ε
∥∥H0f‖2

2 + C(ε)‖f‖2
2

]
(3.88)

or equivalently that for any ε > 0 there is some aε ≥ 0 such that(
V
(
H0 + aε1l± i1l

)−1
)

(x) ≤ ε. (3.89)

• It follows that the operator
[
1l + V

(
H0 + a1l± i1l

)−1
]

is invertible in L2(X) and thus it is

surjective. From (3.77), using also the surjectivity of
(
H0 + aε1l± i1l

)
and the Fundamental

self-adjointness criterium, we obtain the self-adjointness of the operator
(
H0 + V + aε1l

)
for

ε ∈ (0, 1) on the domain H 2(X) of H0.

Proposition 3.8. The operator HV := H0+V : H 2(X)→ L2(X) is well defined and self-adjoint.
We evidently have invariance for any translations with elements in Γ:

T∗(γ)H 2(X) = H 2(X); T∗(γ)−1HVT
∗(γ) = HV , ∀γ ∈ Γ. (3.90)
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3.4 The Bloch-Floquet-Zak representation of the Hamiltonian.

Let us consider now the Bloch-Floquet-Zak transform of the Hamiltonian HV : H 2(X)→ L2(X).(
ŨΓ

(
∂xjf

))
(z, ξ̃) = 2πi

(
U †(Q∗,j f̂))(z, ξ̃) = 2πi

∑
γ∗∈Γ∗

e2πi<γ∗,sd(z)>(ξ̃j + γ∗j )f̂(ξ̃ + γ∗) (3.91)

=
((

2πiξ̃j + ∂̃j
)
f̃
)

(z, ξ̃) =
((

2πi(1l⊗Q∗,j) + (∂̃j ⊗ 1l)
)
f̃
)

(z, ξ̃) (3.92)

where ∂̃j is the derivative with respect to the coordinate on the j-th factor of the direct product

Sd; more precisely we have ∂̃j = ed∗∂xj as tangent fields.(
ŨΓ

(
−∆f

))
(z, ξ̃) =

(( ∑
1≤j≤d

(2πiξ̃j + ∂̃j)
2
)
f̃
)

(z, ξ̃). (3.93)

• Thus: ŨΓH 2(X) =: G2 is the Hilbert space obtained by completion of the space

G̊∞ :=
{
F ∈ C∞

(
X∗;C∞(Sd)

)
,
(
T(γ∗)F

)
(ξ) = U †(γ∗)F (ξ), ∀(γ∗, ξ) ∈ Γ∗ ×X∗} (3.94)

for the Hilbertian norm

‖F‖2
G2

:=

∫
E∗

dξ̃ ‖F (ξ̃)‖2
H 2(Sd). (3.95)

• For the position operator :(
ŨΓ

(
Qjf

))
(z, ξ̃) = − i

2π

(
U †(∂ξj f̂))(z, ξ̃) = − i

2π

∑
γ∗∈Γ∗

e2πi<γ∗,sd(z)>
(
∂ξj f̂

)
(ξ̃ + γ∗) (3.96)

∀W ∈ C(Sd) =⇒
(
ŨΓW

(
ed(Q)

)
f
)

(z, ξ̃) = W (z)f̃(z, ξ̃). (3.97)

• In conclusion (
ŨΓ

(
HV f

))
(z, ξ̃) =

(( ∑
1≤j≤d

(2πiξ̃j + ∂̃j)
2 + V (z)

)
f̃
)

(z, ξ̃). (3.98)

All our operators act in G and thus have a continuation for (z, ξ) ∈ Sd×X∗ that leaves invariant
the condition (

T(γ∗)F
)
(ξ) = U †(γ∗)F (ξ), ∀(γ∗, ξ) ∈ Γ∗ ×X∗ (3.99)

We conclude that

T(γ∗)ŨΓT Ũ −1
Γ T(γ∗)−1 = U †(γ∗)ŨΓT Ũ −1

Γ U †(γ∗)−1, ∀γ∗ ∈ Γ∗. (3.100)

Conclusion 3.9. Thus, in the BFZ representation, the Hamiltonian HV has the domain

G 2 =
{
F ∈ L2

loc

(
X∗; H 2(Sd)

)
,
(
T(γ∗)F

)
(ξ) = ε−γ∗F (ξ), ∀γ∗ ∈ Γ∗}

and is given by a family of differential operators{
H̃V,ξ : H 2(Sd)→ L2(Sd), H̃V,ξ := U †([ξ]2)

[(
2πi{ξ}2 + ∇̃

)2
+ V (Q)

]
U †([ξ]2)−1

}
ξ∈X∗

so that (
ŨΓ(HV )(ŨΓ)−1F

)
(z, ξ) =

(
H̃V,ξF (ξ)

)
(z).
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3.5 Properties of the Bloch-Floquet-Zak Hamiltonians.

1. Making a discrete Fourier transform it is rather evident that for any ξ̃ ∈ E∗ the differential
operator

H̃0,ξ̃ :=
(
2πiξ̃ + ∇̃

)2
: H 2(Sd)→ L2(Sd) (3.101)

is self-adjoint and positive definite.

2. Thus, for any ξ̃ ∈ E∗, the resolvent set of H̃0,ξ̃ contains R\ [0,∞) and C\R. Let us consider

some a > 0, so that −a ∈ ρ(H̃0,ξ̃), and the associated resolvent
(
H̃0,ξ̃ + a1l

)−1
. We notice

that (
F̊−1(H̃0,ξ̃ + a1l)−1φ̂

)
γ∗

=
(
4π2(ξ̃ + γ∗)2 + a

)−1
φ̂γ∗ (3.102)

admits each vector vγ∗ of the canonical orthonormal basis of l2(Γ∗) as eigenvector with

eigenvalue
(
4π2(ξ̃ + γ∗)2 + a

)−1 ∈ R+. But lim
|γ∗|↗∞

(
4π2(ξ̃ + γ∗)2 + a

)−1
= 0. Thus the

resolvent
(
H̃0,ξ̃ − z1l

)−1
is compact for any ξ̃ ∈ E∗ and any z ∈ ρ(H̃0,ξ̃).

3. Repeating the arguments in paragraph 3.2.(4) we obtain (3.74) also for functions defined
on Sd with the natural measure and with H0 replaced by the Laplace operator on the d-
dimensional torus denoted by −∆̃. Thus, taking p =∞ we notice that for any f ∈H 2(Sd)∥∥V f∥∥

2
≤ ‖V ‖2‖f‖∞ ≤ ‖V ‖2

[
ε‖ − ∆̃f‖2 + C(ε)‖f‖2

]
. (3.103)

Using this estimation we notice further that for any a > 0 we can write:∥∥∥∥V ((2πiξ̃ + ∇̃
)2

+ (a± i)1l
)−1

φ

∥∥∥∥2

L2(Sd)

(3.104)

≤ C(d)
∥∥V ∥∥2

L2(Sd)

[
ε

∥∥∥∥(− ∆̃
)((

2πiξ̃ + ∇̃
)2

+ (a± i)1l
)−1

φ

∥∥∥∥2

L2(Sd)

+C(ε)

∥∥∥∥((2πiξ̃ + ∇̃
)2

+ (a± i)1l
)−1

φ

∥∥∥∥2

L2(Sd)

]
(3.105)

≤ C(d)
∥∥V ∥∥2

L2(Sd)

∑
γ∗∈Γ∗

[
ε|γ∗|2 + C(ε)

] ∣∣∣4π2(ξ̃ + γ∗)2 + (a± i)
∣∣∣−2

|φ̂γ∗|2

≤ C(d)
(
ε+ C(ε)a−2

)∥∥V ∥∥2

L2(Sd)
‖φ‖2

L2(Sd) < C ′
(
ε+ C(ε)a−2

)
‖φ‖2

L2(Sd) (3.106)

for ε > 0 small enough and a > 0 large enough.
We conclude that the operator H̃V,ξ̃ : H 2(Sd)→ L2(Sd) is self-adjoint for any ξ̃ ∈ E∗.

4. Let us also notice that our above result implies that for any φ ∈H 2(Sd) we can write∥∥V φ∥∥
2
≤ ε

∥∥H0φ
∥∥

2
+ C(ε)‖φ‖2 ≤ ε

∥∥HV φ
∥∥

2
+ ε
∥∥V φ∥∥

2
+ C(ε)‖φ‖2 (3.107)

and conclude that ∥∥V φ∥∥
2
≤ ε

1− ε
∥∥HV φ

∥∥
2

+
C(ε)

1− ε
‖φ‖2. (3.108)
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5. Moreover, we can use the above estimation in order to prove that H̃V,ξ̃ : H 2(Sd)→ L2(Sd)
is bounded from below:

∀φ ∈H 2(Sd) : 〈φ,
(
H0 + V + a1l

)
φ〉2 > (a− C)‖φ‖2

2. (3.109)

6. Further let us notice that we can write for any ξ̃ ∈ E∗:(
H̃V,ξ̃ − z1l

)−1
=
(
H̃0,ξ̃ − z1l

)−1 −
(
H̃V,ξ̃ − z1l

)−1
V
(
H̃0,ξ̃ − z1l

)−1
(3.110)

and deduce that∥∥(H̃V,ξ̃ + a1l
)−1 −

(
H̃0,ξ̃ + a1l

)−1∥∥
B(L2(Sd))

≤ (3.111)

≤
∥∥(H̃V,ξ̃ + a1l

)−1∥∥
B(L2(Sd))

∥∥V (H̃0,ξ̃ + a1l
)−1∥∥

B(L2(Sd))
(3.112)

<
C(ε+ C(ε)a−2)

a− C
(3.113)

and thus can be made arbitrarily small for ε > 0 small enough and a > C > 0 large

enough. We may conclude that for a > 0 large enough, the resolvent
(
H̃V,ξ̃ + a1l

)−1
is in the

closure of the ideal of compact operators and thus it is compact. But for any z ∈ ρ
(
H̃V,ξ̃

)
we can write(

H̃V,ξ̃ − z1l
)−1

=
(
H̃V,ξ̃ + a1l

)−1 − (a+ z)
(
H̃V,ξ̃ + a1l

)−1(
H̃V,ξ̃ − z1l

)−1
(3.114)

and thus
(
H̃V,ξ̃ − z1l

)−1
is also compact due to the ideal property of the subalgebra of

compact operators.

7. Let us consider now the variation of the operators H̃V,ξ̃ : H 2(Sd) → L2(Sd) when we vary

ξ̃ ∈ E∗. First we notice that they have all of them the same domain H 2(Sd). Then let us
consider ξ̃ in the interior E̊∗ of E∗. Thus for any such ξ̃ there exists a small neighbourhood
of it Wξ̃ such that ξ̃ ∈ Wξ̃ ⊂ E∗. For any η̃ ∈ Wξ̃ we can write(
H̃V,ξ̃ − z1l

)−1 −
(
H̃V,η̃ − z1l

)−1
=
(
H̃V,ξ̃ − z1l

)−1
[
H̃0,η̃ − H̃0,ξ̃

](
H̃V,η̃ − z1l

)−1
(3.115)

= 2πi
(
H̃V,ξ̃ − z1l

)−1
(η̃ − ξ̃)

(
2πi(ξ̃ + η̃) + ∇̃

)(
H̃V,η̃ − z1l

)−1
.

If we notice that for any φ ∈ L2(Sd) we can write

∂̃j
(
H̃V,η̃ − z1l

)−1
φ = ∂̃j

(
H̃0,η̃ − z1l

)−1(
H̃0,η̃ − z1l

)(
H̃V,η̃ − z1l

)−1
φ (3.116)

=
[
∂̃j
(
H̃0,η̃ − z1l

)−1
][

1l − V
(
H̃V,η̃ − z1l

)−1
]
φ (3.117)

=
[
F̊−1 2πiQ∗,j

4π2|η̃ +Q∗|2 − z
F̊
][

1l − V
(
H̃V,η̃ − z1l

)−1
]
φ (3.118)

and we conclude that the operator ∂̃j
(
H̃V,η̃ − z1l

)−1
φ is bounded in L2(Sd)

and thus that the application: E̊∗ 3 ξ̃ 7→
(
H̃V,η̃ − z1l

)−1 ∈ B
(
L2(Sd)

)
is analytic.
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8. Let us consider now some point ξ̃ ∈ ∂E∗ and a small neighborhood of it W ⊂ X∗

diffeomorphic to a d-dimensional disc. For any η ∈ W , using Conclusion 3.9 we can write:

H̃0,η − H̃0,ξ̃ = U †([η]2)H̃0,{η}2U
†([η]2)−1 − H̃0,ξ̃ (3.119)

=
∑

1≤j≤d

[
U †([η]2)

(
2πi{ηj}2 + ∂̃j)

2U †([η]2)−1 −
(
2πiξ̃j + ∂̃j)

2
]

(3.120)

=
∑

1≤j≤d

[(
2πi{ηj}2 + ∂j + 2πi[η]2)2 −

(
2πiξ̃j + ∂j)

2
]

(3.121)

and we recuperate the difference η− ξ̃ and thus the derivability of the norm of the resolvent
with respect to the variable η ∈X∗.

3.6 Conclusion.

1. We have put into evidence a unitary transformation

ŨΓ : L2(X)
∼−→ G :=

{
F ∈ L2

loc

(
X∗;L2(Sd)

)
,
(
T(γ∗)F

)
(ξ) = U †(γ∗)F (ξ),∀(γ∗, ξ) ∈ Γ∗×X∗}

where (
U †(γ∗)φ

)
(ω) := e−2πi<γ∗,ω>φ(ω).

2. The space G is canonically identified with the space of L2 sections in the vector bundle
p : E∗ � Sd∗ associated to the principal bundle ed : Rd � Sd by the canonical diagonal
representation U † : Zd∗ → U

(
L2(Sd)

)
. The transformed Hamiltonian is an analytic section

in the vector bundle L(E∗) � Sd associated to the principal bundle ed : Rd � Sd by the
canonical conjugate representation L(U †) : Zd →Hom

(
B(H 2(Sd);L2(Sd))

)
.

3. The transformed Hamiltonian associated to HV is given by multiplication (in the variable
ξ ∈X∗) with an analytic family in the sense of Kato, of differential operators with compact
resolvent:{

H̃V,ξ : H 2(Sd)→ L2(Sd), H̃V,ξ := U †([ξ]2)
[(

2πi{ξ}2 + ∇̃
)2

+ V (Q)
]
U †([ξ]2)−1

}
ξ∈X∗ .

4. Having compact resolvent, the spectrum of each Hamiltonian H̃V,ξ : H 2(Sd) → L2(Sd), for
any ξ ∈X∗, is a countable sequence of eigenvalues of finite multiplicity, diverging to +∞:

sp(H̃V,ξ) =
{
λn(ξ)

}
n∈N, λn(ξ) < λn+1(ξ)∀n ∈ N, lim

m↗∞
λn(ξ) = +∞∀ξ ∈X∗. (3.122)

5. Suppose fixed some ξ ∈X∗ and some λn(ξ∈sp(H̃V,ξ). Then d(λn(ξ), sp(H̃V,ξ) \ {λn(ξ)}) > 0

and we can find a circle Cn(ξ) ⊂ C \ sp(H̃V,ξ) of radius r > 0 and center λn(ξ) such that

d(Cn(ξ), sp(H̃V,ξ) ≥ r > 0 and its interior domain Dn(ξ) ⊂ C satisfies Dn(ξ) ∩ sp(H̃V,ξ) =
{λn(ξ)}. Let us denote by pn(ξ) ∈ B

(
L2(Sd)

)
the eigenprojection corresponding to the

eigenvalue λn(ξ), i.e.:

pn(ξ)H̃V,ξpn(ξ) = λn(ξ)pn(ξ) (3.123)

Using the Riesz-Dunford calculus for the spectral region {λn(ξ)} we obtain that

(a) pn(ξ) = − 1
2πi

∮
Cn(ξ)

dz
(
H̃V,ξ − z1l

)−1
,
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(b) λn(ξ) = − 1
2πi

∮
Cn(ξ)

dz z
(
H̃V,ξ − z1l

)−1
.

(c) Let nn(ξ) := dim(pn(ξ)H̃V,ξ) ∈ N be the multiplicity of the eigenvalue λn(ξ).

6. The fact that the family
{
H̃V,ξ}ξ∈X∗ is an analytic family in the sense of Kato, means that:

(a) the resolvent set ρ(H̃V,ξ) ⊂ C is continuous with respect to the variables ξ ∈ X∗, i.e.

given any ξ ∈ X∗, for any z ∈ ρ(H̃V,ξ) there exists some δ > 0 depending on ξ and z

such that |η − ξ| < δ implies that z ∈ ρ(H̃V,η),

(b) the resolvents
(
H̃V,ξ−z1l

)−1
appearing in the above Riesz-Dunford integrals are analytic

functions of ξ ∈X∗ on some open domain depending on z ∈ C.

7. Thus we can find a small neighborhood Wξ ⊂ X∗ of ξ ∈ X∗ such that d(Cn(ξ), sp(H̃V,η) ≥
r/2 > 0 for any η ∈ Wξ. Then

(a) if there exists some neighborhood W ◦
ξ of ξ such that W ◦

ξ ⊂ Wξ and nn(η) = p ∈ N
is constant for η ∈ W ◦

ξ , then the eigenvalue λn(η) has constant multiplicity p on W ◦
ξ

and the application W ◦
ξ 3 η 7→ λn(η) ∈ R is real analytic; then also the application

pn : W ◦
ξ → B

(
L2(Sd)

)
is analytic (as vector valued function with values in a Banach

space).

(b) if for any neighborhood W ′
ξ of ξ such that W ′

ξ ⊂ Wξ there exists some η ∈ W ′
ξ such

that Dn(ξ) ∩ sp(H̃V,η) has at least two points, then there exists a neighborhood W ◦
ξ of

ξ such that W ◦
ξ ⊂ Wξ and k ≤ p continuous functions µj : W ◦

ξ → R such that

i. µj(ξ) = λn(ξ), for any j ∈ {1, . . . , k} and

ii. Dn(ξ) ∩ sp(H̃V,η) = ∪
1≤j≤k

{µj(η)} for any η ∈ W ◦
ξ ,

and p continuous functions qj : W ◦
ξ → B

(
L2(Sd)

)
such that

i. qj(η)H̃V,ξqj(η) = µj(η)qj(η) for any j ∈ {1, . . . , k} and η ∈ W ◦
ξ , and

ii. − 1
2πi

∮
Cn(ξ)

dz
(
H̃V,η − z1l

)−1
= ⊕

1≤j≤k
qj(η) for any η ∈ W ◦

ξ .

8. We recall the U †-covariance of the vectors in G and of the operator valued section

X∗ 3 ξ 7→ H̃V,ξ ∈ B
(
H 2(Sd);L2(Sd)

)
, (3.124)

that meaning that H̃V,ξ = U †([ξ]2)H̃V,{ξ}2 [U
†([ξ]2)]−1. We conclude that the Hamiltonians

H̃V,ξ and H̃V,{ξ}2 are unitarily equivalent for any [ξ]2 ∈ Zd and thus the functions λn : X∗ →
R are Γ∗-periodic and continuous for any n ∈ N. Moreover they are analytic in all points
ξ ∈X∗ with the exception of the points where they may intersect.

9. The projection valued functions pn : X∗ → B
(
L2(Sd)

)
satisfy the U †-covariance condition

pn(ξ + γ∗) = U †(γ∗)pn(ξ)[U †(γ∗)]−1. (3.125)

10. Let us consider some point ξ ∈ X∗ and an eigenvector φn(ξ) ∈ H 2(Sd) verifying the
equation:

H̃V,ξφn(ξ) = λn(ξ)φn(ξ), i.e.
[ ∑

1≤j≤d

(
− i∂̃j + ξj)

2 + V
]
φn(ξ) = λn(ξ)φn(ξ)(ξ). (3.126)
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Then(
− ∆̃ + 1

)−1
[ ∑

1≤j≤d

(
− i∂̃j + ξj)

2 + V
]
φn(ξ) = λn(ξ)

(
− ∆̃ + 1

)−1
φn(ξ)(ξ) (3.127)

φn(ξ) +
(
− ∆̃ + 1

)−1(− iξ · ∇̃+ |ξ|2 − 1l + V
)
φn(ξ) = λn(ξ)

(
− ∆̃ + 1

)−1
φn(ξ). (3.128)

Thus we get that

φn(ξ) =
(
− ∆̃ + 1

)−1(
iξ · ∇̃+ |ξ|2 + 1l− V + λn(ξ)

)
φn(ξ) (3.129)

and (
iξ · ∇̃+ |ξ|2 + 1l− V + λn(ξ)

)
φn(ξ) ∈H 1(L2(Sd)

)
(3.130)

in order to conclude that in fact φn(ξ) ∈ H 3(Sd) for any n ∈ N and any ξ ∈X∗. Iterating
this argument we obtain that φn(ξ) ∈ C∞(Sd) for any n ∈ N and any ξ ∈X∗.

3.7 The Floquet representation.

In this new representation we can prove by repeating the arguments above, that

• The operator FΓVF−1
Γ becomes multiplication with the Γ-periodic function V : X → R on

each Fz∗ ' Υz∗L
2(Sd) that it leaves invariant.

• The operator FΓHF−1
Γ , we notice that if we define

Hz∗ :=
{
u ∈H 2

loc(Rd), T(γ)u = e2πi<sd(z∗),γ>u, ∀γ ∈ Zd
}

(3.131)

• the Hilbert space H1 may be identified with the order 2 Sobolev space on the d-dimensional
torus H 2(Sd),

• for each z∗ ∈ Sd∗ the space Hz∗ ⊂ Fz∗ is unitarily equivalent with Υz∗H
2(Sd),

• the family
{

Υz∗u, u ∈ H 2(Sd)
}
z∗∈Sd∗

⊂
∏
z∈Sd

Hz∗ , defines a measurable (and even smooth)

”field of vectors” in the sense of J. Dixmier (”Les algèbres d’opérateurs dans l’espaces Hilber-
tien” Definition 3.1 in ch. II §1) and we can define the direct integral

H :=

∫ ⊕
Sd∗
dz∗Hz∗ . (3.132)

We conclude that the operator FΓHF−1
Γ decomposes into a family of differential operators

FΓHF−1
Γ =

∫ ⊕
Sd∗
dz∗Hz∗ :

∫ ⊕
Sd∗
dzHz∗ →

∫ ⊕
Sd
dz∗ Fz∗ (3.133)

with Hz∗ = −∆|Hz∗
for any z∗ ∈ Sd∗ \ {1}.

Then let us notice that if φ ∈ S (Rd), then each term in the series in the right member of
(2.60) is differentiable (of any order) and the series is convergent due to the fast decay condition in
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S (Rd). Thus
(
FΓφ

)
(x, θ) is of class C∞

(
Rd;C∞(Sd)

)
. Moreover it is clear that all the derivatives

of FΓφ also belongs to ΥG . We have the relation

FΓ∂
α
x f =

(
∂αx ⊗ 1l

)(
FΓf

)
, ∀α ∈ Nd. (3.134)

Let us take f ∈ H 2(X) i.e. ∂αf ∈ L2(X) for |α| ≤ 2. Thus, for |α| ≤ 2, we conclude that
FΓ∂

αf ∈ L2
E

(
Rd;L2(Sd)

)
and

FΓ∂
αf =

(
∂αx ⊗ 1l

)
FΓf, ∀γ ∈ Zd, (3.135)

T(γ)
(
FΓ∂

αf
)

= Û◦(γ)
(
FΓ∂

αf
)
, ∀γ ∈ Zd. (3.136)

We can denote this space H 2
E

(
Rd;L2(Sd)

)
and notice that it is a Hilbert space for the scalar

product induced from H 2(X).
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4 Isolated Bloch bands

.
Definition 4.10. Suppose that there exist two natural numbers (k,N) ∈ N2 such that:

d
(
λk−1(ξ̃);λk(ξ̃)

)
= d0(ξ̃) ≥ d0 > 0, ∀ξ̃ ∈ E∗; (the condition is void for k = 0). (4.137)

d
(
λk+N(ξ̃);λk+N+1(ξ̃)

)
= d1(ξ̃) ≥ d1 > 0, ∀ξ̃ ∈ E∗. (4.138)

Then we call the set
{
λk(ξ), . . . , λk+N(ξ)

}
ξ∈X∗ an isolated Bloch band.

Definition 4.11. Suppose that there exist two natural numbers (k,N) ∈ N2 such that:

d
(

inf
ξ∈E∗

λk(ξ), sup
ξ∈E∗

λk−1(ξ)
)

= d0 > 0; (the condition is void for k = 0). (4.139)

d
(

inf
ξ∈E∗

λk+N+1(ξ), sup
ξ∈E∗

λk+N(ξ)
)

= d1 > 0. (4.140)

Then we call the set
{
λk(ξ), . . . , λk+N(ξ)

}
ξ∈X∗ a strictly isolated Bloch band.

The Bloch bundles. Given an isolated Bloch band Λ :=
{
λk(ξ), . . . , λk+N(ξ)

}
ξ∈X∗ we define

its associated Bloch bundle as the subbundle

E∗Λ
ed

� Sd, E∗Λ,z∗ := ⊕
k≤j≤k+N

pj(s
d(z∗))Ez∗ , ∀z∗ ∈ Sd∗. (4.141)

We shall use the notation
PΛ(ξ) := ⊕

k≤j≤k+N
pj(ξ), ∀ξ ∈X∗ (4.142)

verifying evidently the relation:

PΛ(ξ + γ∗) = U †(γ∗)PΛ(ξ)U †(γ∗)−1, ∀ξ ∈X∗, ∀γ∗ ∈ Γ∗. (4.143)

The Berry parallel transport. Given two points (ξ, η) ∈ X∗ × X∗ and the oriented line
segment from ξ ∈X∗ to η ∈X∗:

[0, 1] 3 τ 7→ ζ(τ) := ξ + τ(η − ξ) ∈X∗ (4.144)

we want to define a strongly-differentiable function

[0, 1] 3 τ 7→ Tξ→η(τ) ∈ U
(
L2(Sd)

)
(4.145)

satisfying the intertwining property

Tξ→η(τ)PΛ

(
ξ
)

= PΛ

(
ζ(τ)

)
Tξ→η(τ), ∀τ ∈ [0, 1]. (4.146)

Let us differentiate with respect to τ ∈ (0, 1) in order to obtain the equation:

∂

∂τ
T−1
ξ→η(τ)PΛ

(
ζ(τ)

)
Tξ→η(τ) = 0, ∀τ ∈ (0, 1). (4.147)

0 = −T−1
ξ→η(τ)

(
∂τTξ→η

)
(τ)T−1

ξ→η(τ)PΛ

(
ζ(τ)

)
Tξ→η(τ)+ (4.148)

+T−1
ξ→η(τ)

(
∂τPΛ

(
ζ(τ)

))
Tξ→η(τ) + T−1

ξ→η(τ)PΛ

(
ζ(τ)

)(
∂τTξ→η

)
(τ) (4.149)
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(
∂τTξ→η

)
(τ)T−1

ξ→η(τ)PΛ

(
ζ(τ)

)
Tξ→η(τ) = (4.150)

=
(
∂τPΛ

(
ζ(τ)

))
Tξ→η(τ) + PΛ

(
ζ(τ)

)(
∂τTξ→η

)
(τ) (4.151)

(
∂τTξ→η

)
(τ)T−1

ξ→η(τ)PΛ

(
ζ(τ)

)
Tξ→η(τ) = (4.152)

=
〈
dPΛ

(
ζ(τ)

)
, (η − ξ)

〉
Tξ→η(τ) + PΛ

(
ζ(τ)

)(
∂τTξ→η

)
(τ) (4.153)

(
∂τTξ→η

)
(τ)T−1

ξ→η(τ)PΛ

(
ζ(τ)

)
−PΛ

(
ζ(τ)

)(
∂τTξ→η

)
(τ)T−1

ξ→η(τ) = (4.154)

=
〈
dPΛ

(
ζ(τ)

)
, (η − ξ)

〉
(4.155)

One can easily verify that the above equation is implied by(
∂τTξ→η

)
(τ)T−1

ξ→η(τ) =
〈
dPΛ

(
ζ(τ)

)
, (η−ξ)

〉
PΛ

(
ζ(τ)

)
−PΛ

(
ζ(τ)

)〈
dPΛ

(
ζ(τ)

)
, (η−ξ)

〉
. (4.156)

Let us denote by (
Dξ→ηPΛ

)
(ζ) :=

〈
dPΛ(ζ), (η − ξ)

〉
. (4.157)

In conclusion, the parallel transport is given by the unique solution of the following Cauchy
problem: (

∂τTξ→η

)
(τ) =

[(
Dξ→ηPΛ

)
,PΛ

](
ζ(τ)

)
Tξ→η(τ), (4.158)

Tξ→η(0) = 1l ∈ B
(
L2(Sd)

)
.

Our arguments above have shown that the solution Tξ→η(τ) of this Cauchy problem satisfies
the identity (4.146) for any τ ∈ [0, 1] and thus we have

Tξ→η(1)PΛ

(
ξ
)

= PΛ(η)Tξ→η(1) (4.159)

so that U(η, ξ) := Tξ→η(1) is a intertwining operator between PΛ(ξ) and PΛ(η).
Proposition 4.12. For any (ξ, η) ∈ X∗ ×X∗ the operator U(η, ξ) is a unitary operator on the
Hilbert space L2(Sd) and verifies the covariance property:

U(η + γ∗, ξ + γ∗) = U †(γ∗)U(η, ξ)U †(γ∗)−1

Proof. The unitarity follows easily from the fact that the bounded operator i
[(
Dξ→ηPΛ

)
,PΛ

]
in

the Cauchy problem (4.158) is hermitian.
Let us recall the property (3.125) of the projections {PΛ(ξ)}ξ∈X∗ . Then we can write for any

γ∗ ∈ Zd∗ (
Dξ+γ∗→η+γ∗PΛ

)
(ζ + γ∗) : =

〈
dX∗PΛ(ζ + γ∗), (η − ξ)

〉
= (4.160)

=
〈
dX∗

(
U †(γ∗)PΛ(ζ)U †(γ∗)−1

)
, (η − ξ)

〉
=

=
〈(
U †(γ∗)

(
dX∗PΛ(ζ)

)
U †(γ∗)−1

)
, (η − ξ)

〉
=

= U †(γ∗)
〈((

dX∗PΛ(ζ)
))
, (η − ξ)

〉
U †(γ∗)−1 =

= U †(γ∗)
(
Dξ→ηPΛ

)
(ζ)U †(γ∗)−1. (4.161)
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We may conclude that Tξ+γ∗→η+γ∗(τ) is the unique solution of the Cauchy problem:(
∂τ T̃ξ→η

)
(τ) =

[(
Dξ+γ∗→η+γ∗PΛ

)
,PΛ

](
ζ(τ) + γ∗

)
T̃ξ→η(τ) = (4.162)

= U †(γ∗)
[(
Dξ→ηPΛ

)
,PΛ

](
ζ(τ)

)
U †(γ∗)−1T̃ξ→η(τ),

T̃ξ→η(0) = 1l ∈ B
(
L2(Sd)

)
.

and thus we must have the equality:

Tξ+γ∗→η+γ∗(τ) = U †(γ∗)Tξ→η(τ)U †(γ∗)−1. (4.163)

From this we evidently obtain

U(η + γ∗, ξ + γ∗) = U †(γ∗)U(η, ξ)U †(γ∗)−1. (4.164)

The Berry connection. We can associate the above parallel transport defined by the Bloch
projections with a covariant derivative: the Berry covariant derivative. Given ξ ∈ X∗, a tangent
vector v ∈ T ξX

∗ and ani smooth curve [−1, 1] 3 τ 7→ ζ(τ) ∈X∗ with ζ(0) = ξ and
(
∂τζ
)
(0) = v,

for any F ∈ G we can define(
∇Λ
vF
)
(ξ) := lim

τ→0
(1/τ)

((
T−1
ξ→η
)
(τ)F

(
ζ(τ)

)
− F (ξ)

)
= (4.165)

=
(
∂τT

−1
ξ→η
)
(0)
(
F (ξ)

)
+
(
∇vF

)
(ξ) = (4.166)

= −
[(
DvPΛ

)
,PΛ

](
F (ξ)

)
+
(
∇vF

)
(ξ) (4.167)

with DvPΛ :=
〈
dPΛ

(
ζ(τ)

)
, v
〉
.
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