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Scaling limits

Models with factorizing scattering matrix

A specific class of quantum field theories; physical idea:

Imagine a system of spin-0 bosons of mass m > 0
on 1+1 dimensional Minkowski space (1 spatial dimension)
Two bosons (of different speed) will scatter – phase S(θ1 − θ2).

θ1,2 are the rapidities of the particles: p(θ) =

(
m cosh θ
m sinh θ

)
.

Multi-particle scattering is just a composition of subsequent 2-particle
processes (“factorizing scattering matrix”).

Task: Given a function S, construct a corresponding quantum field theory.
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Scaling limits

The scattering function S

The 2-particle scattering “matrix” S is a continuous function R + i[0, π]→ C,
analytic in the interior, such that for θ ∈ R,

S(θ) = S(θ)−1 = S(θ + iπ) = S(−θ) .

Further conditions:

S analytic and bounded R + i(−κ, π + κ) with some κ > 0. (Regularity)

High energy limit: limθ→±∞ S(θ) exists.

Examples:

S = 1 (free field)

S = -1 (Ising model)

S(θ) =
sinh θ − sinh b
sinh θ + sinh b

,

Theorem: These are all examples.
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Scaling limits

Construction of QFTs with factorizing scattering matrix

Given S, define a “deformed” free field theory.
Deformed annihilation and creation operators z, z†.

z(θ1)z†(θ2) = S(θ2 − θ1) z†(θ2)z(θ1) + δ(θ1 − θ2) · 1.

They act on an “S-symmetrized” Fock spaceH.

This allows us to define “fields”,

φ(x) =

∫
dθ
(

eip(θ)xz†(θ) + e−ip(θ)xz(θ)
)
.

φ(x) is not local at x , but in a wedge regionW with tip at x .

Define associated von Neumann algebra, A(W).

For double cone O =W1 ∩W2: Set A(O) := A(W1) ∩ A(W2).

Result (Lechner 2006): A(O) is large (cyclic vacuum).

Scattering theory gives factorizing scattering matrix.
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Scaling limits

Scaling limit – Approach

How do these models behave at short distances (ultraviolet scaling limit)?
Can ask this in the algebraic context (Buchholz/Verch approach)

but very abstract, and hard to control

More concretely, can consider n-point functions of φ:

W (x1, . . . , xn) =
(
Ω, φ(x1) . . . φ(xn)Ω

)
.

As λ→ 0, one expects the n-point functions of the massless free field,
except for S factors:

S(θ − θ̂) = S
(

arcsinh
( p

m

)
− arcsinh

( p̂
m

))
.

If p > 0, p̂ < 0, then S(θλ − θ̂λ)→ S(∞) = ±1.
If p > 0, p̂ > 0, then S(θλ − θ̂λ)→ S(log p − log p̂).
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Scaling limits

Scaling limit – Result

On further investigation, the limit theory looks like this:

chiral: splits into two fields φL, φR on the left/right light ray

φL, φR are one-dimensional fields, localized in half-lines.

[φL(x), φR(y)]± = 0 depending on S(∞)

translation and dilation covariant
φL and φR are not free fields, but a kind of factorizing S model:

massless,
with the same function S as the massive model,
but with “pseudo-rapidity” β = log p instead of θ = arcsinh p/m.
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The massless model

Zamolodchikov-Faddeev algebra

Zamolodchikov-Faddeev algebra (elements z(β), z†(β)):

z(β1)z(β2) = S(β1 − β2) z(β2)z(β1) ,

z†(β1)z†(β2) = S(β1 − β2) z†(β2)z†(β1) ,

z(β1)z†(β2) = S(β2 − β1) z†(β2)z(β1) + δ(β1 − β2) · 1.

“Fock space”H spanned by n-particle vectors,

ψn =

∫
dnβ f (β1, . . . , βn) z†(β1) . . . z†(βn)Ω.

Representation of the translation-dilation-reflection group:

U(Tx )z†(β1) . . . z†(βn)Ω = exp(ieβ1+...+βn x)z†(β1) . . . z†(βn)Ω,

U(Dλ)z†(β1) . . . z†(βn)Ω = z†(β1 + λ) . . . z†(βn + λ)Ω,

U(j)z†(β1) . . . z†(βn)Ω = z†(βn) . . . z†(β1)Ω.
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The massless model

Wedge-local fields

With f̂±(β) = ±i eβ
∫

dx f (x) exp(±ieβx), define

φ(f ) := z†(̂f+) + z (̂f−), φ′(f ) := U(j)φ(f j)U(j).

The fields are half-line local:

[φ(f ), φ′(g)] = 0 if supp f ⊂ (a,∞), supp g ⊂ (−∞, a).

Consider associated von Neumann algebras,

M(a,∞) = {exp iφ(f ) | supp f ⊂ (a,∞)}′′

M(−∞, a) = {exp iφ′(f ) | supp f ⊂ (−∞, a)}′′ = M(a,∞)′.

The fields / the net of algebras are covariant under the
translation-dilation-reflection representation U.
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The massless model

Local algebras?

Now we can define local algebras for finite intervals I = (a, b):

A(a, b) := M(a,∞) ∩M(−∞, b).

This gives a consistent local net of algebras,
translation-dilation-reflection covariant.
Define A(I) for unbounded intervals by taking unions and closure.

A(a,∞) ⊂M(a,∞), inclusion may be proper.

Question: How large are the A(a, b)?

Question: Is this a conformal model?
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Conformal symmetry

Existence of conformal symmetry?

Is our model conformally covariant?

More precisely: Does the net of interval algebras I 7→ A(I) extend to a
net on the circle, covariant under an extension of U to the Möbius group?

The physics literature says: yes.
Argument: Every dilation covariant theory is conformally covariant.
This would give strong restrictions on the models (classification by
conformal charge).

But in this generality, the statement is false.
Counterexamples known (Buchholz/Schulz-Mirbach).
It is true if a local energy density exists.
But here, it’s not clear whether any local observables exist.

What is the case in our situation?
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Conformal symmetry

The locally generated Hilbert space

For any interval I ⊂ R, let us consider the space

Hloc := A(I)Ω.

Lemma
The spaceHloc is independent of I, and invariant under U.

This follows from Reeh-Schlieder type arguments.

Hloc is the largest space on which we can expect a conformal extension.

Namely, it would be invariant under the extension of U as well.

A has the Bisognano-Wichmann property onHloc.

That is, the modular group of A(0,∞) is the dilation group.

Follows because the original half-line algebras M(0,∞) have this
property.
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Conformal symmetry

Extension of the net

Due to the Bisognano-Wichmann property, we can apply a general result for
translation-dilation covariant nets (Guido/Longo/Wiesbrock 1998).

Theorem

The representation UdHloc extends to a strongly continuous unitary
representation of PSL(2,R) onHloc, and I 7→ A(I) extends to a local net on
the circle, conformally covariant under this representation.

This could mean:

Many local observables (Hloc = H) & conformal symmetry,

No conformal symmetry and no local observables
(Hloc = CΩ, A(a, b) = C1),

Or anything inbetween.
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Size of the local algebras

Size of the local observables in our case

How large areHloc and A(a, b) in our case?

For general S, this is unknown – local operators very inexplicit
even for m > 0.

Lechner’s argument for m > 0 does not apply for m = 0.

Let us have a look at some simple examples that we can control.

The simplest example is S = 1 .
This is identical to the free U(1) current
Hloc = H
We have large local algebras A(a, b), vacuum is cyclic for them.
Conformal symmetry (c = 1)

This is an entirely trivial case, but good to keep in mind.
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Size of the local algebras

The critical Ising model

The next simple example is S = −1.
expectation: critical Ising model, generated by a chiral Fermi field, c = 1/2
But how can this be seen here?

Consider the following field:

ψ(x) :=
1√
2π

∫
dβ eβ/2

(√
i eieβxz†(β) +

1√
i
e−ieβxz(β)

)
.

It turns out that ψ is an antilocal Fermi field.

T (x) = :ψ(x)∂xψ(x) : is the energy density of our model,
and relatively local to the halfline algebras M.

Local algebras A(I) are precisely those generated by T (x).

Hloc = He (even particle number vectors)
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Size of the local algebras

Lessons from the Ising model

What can we learn from the example S = −1 (the Ising model)?

In general,Hloc ( H.

Recall that in the massive Ising model, many local observables exist:
Even operators – squares of wedge fields (Buchholz/Summers)
Odd operators – known to exist by abstract arguments (Lechner);
heuristically given by infinite sums of wedge fields or z, z† (Schroer/Truong)
Vacuum Ω is cyclic for double cone algebras.

In the massless case, we see (roughly):
Even local operators still exists – generated by T (x)
Odd local operators fail to exist –Hloc = He

What does this mean for general S?
Expectation (following Zamolodchikov & Zamolodchikov 1992):
Scaling limit should be identical to S = ±1, depending on S(∞).
But their arguments are not applicable in our context.
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Conclusions

Results & Open Questions

Results:

The scaling limit of the massive factorizing scattering models
are massless, chiral factorizing scattering models.
The chiral components can be defined in the algebraic framework.

Observables localized in half-lines
Translation-dilation-reflection symmetry

For S = ±1, one gets the expected conformal models (c = 1, c = 1/2)
For general S, we might have

a conformal model, or
a completely nonlocal model,
or a mixture of both.

Open points:

Can we determine the size of local algebras if S is not constant?

In which sense are the models interacting? Can one measure S?
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