Scaling limits of factorizing scattering models

Henning Bostelmann

Department of Mathematics, University of York

Bucharest, 28 April 2011

Joint work with G. Morsella and G. Lechner together with Claudio D'Antoni

- Scaling limits of massive scattering models
- 2 The massless model defined
- 3 Conformal symmetry
- Size of the local algebras

5 Conclusions

Outline

Scaling limits of massive scattering models

- 2) The massless model defined
- 3 Conformal symmetry
- 4 Size of the local algebras

5 Conclusions

Models with factorizing scattering matrix

A specific class of quantum field theories; physical idea:

- Imagine a system of spin-0 bosons of mass m > 0 on 1+1 dimensional Minkowski space (1 spatial dimension)
- Two bosons (of different speed) will scatter phase $S(\theta_1 \theta_2)$.

• $\theta_{1,2}$ are the rapidities of the particles: $p(\theta) = \begin{pmatrix} m \cosh \theta \\ m \sinh \theta \end{pmatrix}$.

• Multi-particle scattering is just a composition of subsequent 2-particle processes ("factorizing scattering matrix").

Task: Given a function *S*, construct a corresponding quantum field theory.

The 2-particle scattering "matrix" *S* is a continuous function $\mathbb{R} + i[0, \pi] \to \mathbb{C}$, analytic in the interior, such that for $\theta \in \mathbb{R}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(\theta + i\pi) = S(-\theta)$$
.

Further conditions:

- *S* analytic and bounded $\mathbb{R} + i(-\kappa, \pi + \kappa)$ with some $\kappa > 0$. (Regularity)
- High energy limit: $\lim_{\theta \to \pm \infty} S(\theta)$ exists.

The 2-particle scattering "matrix" *S* is a continuous function $\mathbb{R} + i[0, \pi] \to \mathbb{C}$, analytic in the interior, such that for $\theta \in \mathbb{R}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(\theta + i\pi) = S(-\theta)$$
.

Further conditions:

- *S* analytic and bounded $\mathbb{R} + i(-\kappa, \pi + \kappa)$ with some $\kappa > 0$. (Regularity)
- High energy limit: $\lim_{\theta \to \pm \infty} S(\theta)$ exists.

Examples:

• S = 1 (free field)

The 2-particle scattering "matrix" *S* is a continuous function $\mathbb{R} + i[0, \pi] \to \mathbb{C}$, analytic in the interior, such that for $\theta \in \mathbb{R}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(\theta + i\pi) = S(-\theta)$$
.

Further conditions:

- *S* analytic and bounded $\mathbb{R} + i(-\kappa, \pi + \kappa)$ with some $\kappa > 0$. (Regularity)
- High energy limit: $\lim_{\theta \to \pm \infty} S(\theta)$ exists.

Examples:

- S = 1 (free field)
- S = -1 (Ising model)

The 2-particle scattering "matrix" *S* is a continuous function $\mathbb{R} + i[0, \pi] \to \mathbb{C}$, analytic in the interior, such that for $\theta \in \mathbb{R}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(\theta + i\pi) = S(-\theta)$$
.

Further conditions:

- *S* analytic and bounded $\mathbb{R} + i(-\kappa, \pi + \kappa)$ with some $\kappa > 0$. (Regularity)
- High energy limit: $\lim_{\theta \to \pm \infty} S(\theta)$ exists.

Examples:

• S = 1 (free field)

• S = -1 (Ising model)
•
$$S(\theta) = \frac{\sinh \theta - \sinh b}{\sinh \theta + \sinh b}, \ b \in i(0, \pi)$$

The 2-particle scattering "matrix" *S* is a continuous function $\mathbb{R} + i[0, \pi] \to \mathbb{C}$, analytic in the interior, such that for $\theta \in \mathbb{R}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(\theta + i\pi) = S(-\theta).$$

Further conditions:

- *S* analytic and bounded $\mathbb{R} + i(-\kappa, \pi + \kappa)$ with some $\kappa > 0$. (Regularity)
- High energy limit: $\lim_{\theta \to \pm \infty} S(\theta)$ exists.

Examples:

- S = 1 (free field)
- S = -1 (Ising model)

•
$$S(\theta) = \prod_{j=1}^{n} \frac{\sinh \theta - \sinh b_j}{\sinh \theta + \sinh b_j}$$
, Im $b_j \in (0, \pi)$, b_j in pairs $(b, -\bar{b})$

The 2-particle scattering "matrix" *S* is a continuous function $\mathbb{R} + i[0, \pi] \to \mathbb{C}$, analytic in the interior, such that for $\theta \in \mathbb{R}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(\theta + i\pi) = S(-\theta).$$

Further conditions:

- *S* analytic and bounded $\mathbb{R} + i(-\kappa, \pi + \kappa)$ with some $\kappa > 0$. (Regularity)
- High energy limit: $\lim_{\theta \to \pm \infty} S(\theta)$ exists.

Examples:

- S = 1 (free field)
- S = -1 (Ising model)

•
$$S(\theta) = \pm \prod_{j=1}^{n} \frac{\sinh \theta - \sinh b_j}{\sinh \theta + \sinh b_j}$$
, Im $b_j \in (0, \pi)$, b_j in pairs $(b, -\bar{b})$

The 2-particle scattering "matrix" *S* is a continuous function $\mathbb{R} + i[0, \pi] \to \mathbb{C}$, analytic in the interior, such that for $\theta \in \mathbb{R}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(\theta + i\pi) = S(-\theta).$$

Further conditions:

- S analytic and bounded $\mathbb{R} + i(-\kappa, \pi + \kappa)$ with some $\kappa > 0$. (Regularity)
- High energy limit: $\lim_{\theta \to \pm \infty} S(\theta)$ exists.

Examples:

- S = 1 (free field)
- S = -1 (Ising model)

•
$$S(\theta) = \pm \prod_{j=1}^{n} \frac{\sinh \theta - \sinh b_j}{\sinh \theta + \sinh b_j}$$
, $\operatorname{Im} b_j \in (0, \pi)$, b_j in pairs $(b, -\bar{b})$

Theorem: These are all examples.

Scaling limits

Construction of QFTs with factorizing scattering matrix

- Given *S*, define a "deformed" free field theory.
 - Deformed annihilation and creation operators z, z^{\dagger} .

$$z(\theta_1)z^{\dagger}(\theta_2) = \frac{S(\theta_2 - \theta_1)}{z^{\dagger}(\theta_2)}z^{\dagger}(\theta_2)z(\theta_1) + \delta(\theta_1 - \theta_2) \cdot \mathbf{1}.$$

- They act on an "S-symmetrized" Fock space $\mathcal{H}.$
- This allows us to define "fields",

$$\phi(\mathbf{x}) = \int d\theta \Big(e^{ip(\theta)\mathbf{x}} z^{\dagger}(\theta) + e^{-ip(\theta)\mathbf{x}} z(\theta) \Big).$$

- $\phi(x)$ is not local at x, but in a wedge region \mathcal{W} with tip at x.
- Define associated von Neumann algebra, $\mathfrak{A}(\mathcal{W})$.
- For double cone $\mathcal{O} = \mathcal{W}_1 \cap \mathcal{W}_2$: Set $\mathfrak{A}(\mathcal{O}) := \mathfrak{A}(\mathcal{W}_1) \cap \mathfrak{A}(\mathcal{W}_2)$.
- Result (Lechner 2006): $\mathfrak{A}(\mathcal{O})$ is large (cyclic vacuum).
- Scattering theory gives factorizing scattering matrix.

How do these models behave at short distances (ultraviolet scaling limit)?

- Can ask this in the algebraic context (Buchholz/Verch approach)
 - but very abstract, and hard to control

How do these models behave at short distances (ultraviolet scaling limit)?

- Can ask this in the algebraic context (Buchholz/Verch approach)
 - but very abstract, and hard to control
- More concretely, can consider *n*-point functions of ϕ :

$$W(x_1,\ldots,x_n) = (\Omega,\phi(x_1)\ldots\phi(x_n)\Omega).$$

How do these models behave at short distances (ultraviolet scaling limit)?

- Can ask this in the algebraic context (Buchholz/Verch approach)
 - but very abstract, and hard to control
- More concretely, can consider *n*-point functions of ϕ , rescaled:

$$W_{\lambda}(x_1,\ldots,x_n) = \lambda^d (\Omega,\phi(\lambda x_1)\ldots\phi(\lambda x_n)\Omega), \ \lambda \to 0.$$

How do these models behave at short distances (ultraviolet scaling limit)?

- Can ask this in the algebraic context (Buchholz/Verch approach)
 - but very abstract, and hard to control
- More concretely, can consider *n*-point functions of ϕ , rescaled:

$$W_{\lambda}(x_1,\ldots,x_n) = \lambda^d (\Omega,\phi(\lambda x_1)\ldots\phi(\lambda x_n)\Omega), \ \lambda \to 0.$$

 As λ → 0, one expects the *n*-point functions of the massless free field, except for *S* factors:

$$S(\theta - \hat{\theta}) = S(\operatorname{arcsinh}(\frac{p}{m}) - \operatorname{arcsinh}(\frac{\hat{p}}{m})).$$

How do these models behave at short distances (ultraviolet scaling limit)?

- Can ask this in the algebraic context (Buchholz/Verch approach)
 - but very abstract, and hard to control
- More concretely, can consider *n*-point functions of ϕ , rescaled:

$$W_{\lambda}(x_1,\ldots,x_n) = \lambda^d (\Omega,\phi(\lambda x_1)\ldots\phi(\lambda x_n)\Omega), \ \lambda \to 0.$$

 As λ → 0, one expects the *n*-point functions of the massless free field, except for *S* factors:

$$S(heta_{\lambda} - \hat{ heta}_{\lambda}) = Sig(\operatorname{arcsinh}ig(rac{p}{\lambda m} ig) - \operatorname{arcsinh}ig(rac{\hat{p}}{\lambda m} ig) ig), \ \lambda o 0.$$

^

How do these models behave at short distances (ultraviolet scaling limit)?

- Can ask this in the algebraic context (Buchholz/Verch approach)
 - but very abstract, and hard to control
- More concretely, can consider *n*-point functions of ϕ , rescaled:

$$W_{\lambda}(x_1,\ldots,x_n) = \lambda^d (\Omega,\phi(\lambda x_1)\ldots\phi(\lambda x_n)\Omega), \ \lambda \to 0.$$

 As λ → 0, one expects the *n*-point functions of the massless free field, except for *S* factors:

$$S(heta_{\lambda} - \hat{ heta}_{\lambda}) = Sig(\operatorname{arcsinh}ig(rac{
ho}{\lambda m} ig) - \operatorname{arcsinh}ig(rac{\hat{
ho}}{\lambda m} ig) ig), \ \lambda o 0.$$

• If
$$p > 0, \hat{p} < 0$$
, then $S(heta_{\lambda} - \hat{ heta}_{\lambda}) o S(\infty) = \pm 1$.

^

How do these models behave at short distances (ultraviolet scaling limit)?

- Can ask this in the algebraic context (Buchholz/Verch approach)
 - but very abstract, and hard to control
- More concretely, can consider *n*-point functions of ϕ , rescaled:

$$W_{\lambda}(x_1,\ldots,x_n) = \lambda^d (\Omega,\phi(\lambda x_1)\ldots\phi(\lambda x_n)\Omega), \ \lambda \to 0.$$

 As λ → 0, one expects the *n*-point functions of the massless free field, except for *S* factors:

$$S(heta_{\lambda} - \hat{ heta}_{\lambda}) = Sig(\operatorname{arcsinh}ig(rac{
ho}{\lambda m} ig) - \operatorname{arcsinh}ig(rac{\hat{
ho}}{\lambda m} ig) ig), \ \lambda o 0.$$

• If
$$p > 0$$
, $\hat{p} < 0$, then $S(\theta_{\lambda} - \hat{\theta}_{\lambda}) \rightarrow S(\infty) = \pm 1$.

• If p > 0, $\hat{p} > 0$, then $S(\theta_{\lambda} - \hat{\theta}_{\lambda}) \rightarrow S(\log p - \log \hat{p})$.

Scaling limit – Result

On further investigation, the limit theory looks like this:

- chiral: splits into two fields ϕ_L , ϕ_R on the left/right light ray
- ϕ_L , ϕ_R are one-dimensional fields, localized in half-lines.
- $[\phi_L(x), \phi_R(y)]_{\pm} = 0$ depending on $S(\infty)$
- translation and dilation covariant
- ϕ_L and ϕ_R are not free fields, but a kind of factorizing *S* model:
 - massless,
 - with the same function S as the massive model,
 - but with "pseudo-rapidity" $\beta = \log p$ instead of $\theta = \operatorname{arcsinh} p/m$.

Outline

2 The massless model defined

- 3 Conformal symmetry
- Size of the local algebras

5 Conclusions

Zamolodchikov-Faddeev algebra

• Zamolodchikov-Faddeev algebra (elements $z(\beta), z^{\dagger}(\beta)$):

$$\begin{aligned} z(\beta_1)z(\beta_2) &= S(\beta_1 - \beta_2) \, z(\beta_2) z(\beta_1) \,, \\ z^{\dagger}(\beta_1)z^{\dagger}(\beta_2) &= S(\beta_1 - \beta_2) \, z^{\dagger}(\beta_2) z^{\dagger}(\beta_1) \,, \\ z(\beta_1)z^{\dagger}(\beta_2) &= S(\beta_2 - \beta_1) \, z^{\dagger}(\beta_2) z(\beta_1) + \delta(\beta_1 - \beta_2) \cdot \mathbf{1}. \end{aligned}$$

• "Fock space" \mathcal{H} spanned by *n*-particle vectors,

$$\psi_n = \int d^n \beta f(\beta_1, \ldots, \beta_n) z^{\dagger}(\beta_1) \ldots z^{\dagger}(\beta_n) \Omega.$$

• Representation of the translation-dilation-reflection group:

$$U(T_{x})z^{\dagger}(\beta_{1})\dots z^{\dagger}(\beta_{n})\Omega = \exp(ie^{\beta_{1}+\dots+\beta_{n}}x)z^{\dagger}(\beta_{1})\dots z^{\dagger}(\beta_{n})\Omega,$$

$$U(D_{\lambda})z^{\dagger}(\beta_{1})\dots z^{\dagger}(\beta_{n})\Omega = z^{\dagger}(\beta_{1}+\lambda)\dots z^{\dagger}(\beta_{n}+\lambda)\Omega,$$

$$U(j)z^{\dagger}(\beta_{1})\dots z^{\dagger}(\beta_{n})\Omega = z^{\dagger}(\beta_{n})\dots z^{\dagger}(\beta_{1})\Omega.$$

Wedge-local fields

• With
$$\hat{f}_{\pm}(\beta) = \pm i e^{\beta} \int dx f(x) \exp(\pm i e^{\beta} x)$$
, define
 $\phi(f) := z^{\dagger}(\hat{f}_{+}) + z(\hat{f}_{-}), \quad \phi'(f) := U(j)\phi(f^{j})U(j).$

• The fields are half-line local:

$$[\phi(f),\phi'(g)]=$$
 0 if supp $f\subset(a,\infty),$ supp $g\subset(-\infty,a).$

• Consider associated von Neumann algebras,

$$\mathfrak{M}(a,\infty) = \{\exp i\phi(f) \mid \operatorname{supp} f \subset (a,\infty)\}''$$
$$\mathfrak{M}(-\infty,a) = \{\exp i\phi'(f) \mid \operatorname{supp} f \subset (-\infty,a)\}'' = \mathfrak{M}(a,\infty)'.$$

• The fields / the net of algebras are covariant under the translation-dilation-reflection representation *U*.

Local algebras?

• Now we can define local algebras for finite intervals I = (a, b):

$$\mathfrak{A}(a,b) := \mathfrak{M}(a,\infty) \cap \mathfrak{M}(-\infty,b).$$

- This gives a consistent local net of algebras, translation-dilation-reflection covariant.
- Define A(I) for unbounded intervals by taking unions and closure.
 - $\mathfrak{A}(a,\infty)\subset\mathfrak{M}(a,\infty)$, inclusion may be proper.

Local algebras?

• Now we can define local algebras for finite intervals I = (a, b):

$$\mathfrak{A}(a,b) := \mathfrak{M}(a,\infty) \cap \mathfrak{M}(-\infty,b).$$

- This gives a consistent local net of algebras, translation-dilation-reflection covariant.
- Define $\mathfrak{A}(I)$ for unbounded intervals by taking unions and closure.
 - $\mathfrak{A}(a,\infty)\subset\mathfrak{M}(a,\infty),$ inclusion may be proper.
- Question: How large are the $\mathfrak{A}(a, b)$?
- Question: Is this a conformal model?

Outline

- Scaling limits of massive scattering models
- 2 The massless model defined
- 3 Conformal symmetry
 - 4 Size of the local algebras

5 Conclusions

Existence of conformal symmetry?

Is our model conformally covariant?

 More precisely: Does the net of interval algebras *I* → 𝔅(*I*) extend to a net on the circle, covariant under an extension of *U* to the Möbius group?

Existence of conformal symmetry?

Is our model conformally covariant?

- More precisely: Does the net of interval algebras *I* → 𝔅(*I*) extend to a net on the circle, covariant under an extension of *U* to the Möbius group?
- The physics literature says: yes.
 - Argument: Every dilation covariant theory is conformally covariant.
 - This would give strong restrictions on the models (classification by conformal charge).

Existence of conformal symmetry?

Is our model conformally covariant?

- More precisely: Does the net of interval algebras *I* → 𝔅(*I*) extend to a net on the circle, covariant under an extension of *U* to the Möbius group?
- The physics literature says: yes.
 - Argument: Every dilation covariant theory is conformally covariant.
 - This would give strong restrictions on the models (classification by conformal charge).
- But in this generality, the statement is false.
 - Counterexamples known (Buchholz/Schulz-Mirbach).
 - It is true if a local energy density exists.
 - But here, it's not clear whether any local observables exist.
- What is the case in our situation?

The locally generated Hilbert space

For any interval $I \subset \mathbb{R}$, let us consider the space

 $\mathcal{H}_{\mathsf{loc}} := \overline{\mathfrak{A}(I)\Omega}.$

Lemma

The space \mathcal{H}_{loc} is independent of I, and invariant under U.

This follows from Reeh-Schlieder type arguments.

 \mathcal{H}_{loc} is the largest space on which we can expect a conformal extension.

• Namely, it would be invariant under the extension of U as well.

The locally generated Hilbert space

For any interval $I \subset \mathbb{R}$, let us consider the space

 $\mathcal{H}_{\mathsf{loc}} := \overline{\mathfrak{A}(I)\Omega}.$

Lemma

The space \mathcal{H}_{loc} is independent of I, and invariant under U.

This follows from Reeh-Schlieder type arguments.

 \mathcal{H}_{loc} is the largest space on which we can expect a conformal extension.

• Namely, it would be invariant under the extension of U as well.

 ${\mathfrak A}$ has the Bisognano-Wichmann property on ${\mathcal H}_{\text{loc}}.$

- That is, the modular group of $\mathfrak{A}(0,\infty)$ is the dilation group.
- Follows because the original half-line algebras $\mathfrak{M}(0,\infty)$ have this property.

Extension of the net

Due to the Bisognano-Wichmann property, we can apply a general result for translation-dilation covariant nets (Guido/Longo/Wiesbrock 1998).

Theorem

The representation $U[\mathcal{H}_{loc}$ extends to a strongly continuous unitary representation of $PSL(2, \mathbb{R})$ on \mathcal{H}_{loc} , and $I \mapsto \mathfrak{A}(I)$ extends to a local net on the circle, conformally covariant under this representation.

Extension of the net

Due to the Bisognano-Wichmann property, we can apply a general result for translation-dilation covariant nets (Guido/Longo/Wiesbrock 1998).

Theorem

The representation $U[\mathcal{H}_{loc}$ extends to a strongly continuous unitary representation of $PSL(2, \mathbb{R})$ on \mathcal{H}_{loc} , and $I \mapsto \mathfrak{A}(I)$ extends to a local net on the circle, conformally covariant under this representation.

This could mean:

- Many local observables ($\mathcal{H}_{loc} = \mathcal{H}$) & conformal symmetry,
- No conformal symmetry and no local observables $(\mathcal{H}_{loc} = \mathbb{C}\Omega, \mathfrak{A}(a, b) = \mathbb{C}\mathbf{1}),$
- Or anything inbetween.

Outline

- Scaling limits of massive scattering models
- 2 The massless model defined
- 3 Conformal symmetry
- 4 Size of the local algebras

5 Conclusions

Size of the local observables in our case

How large are \mathcal{H}_{loc} and $\mathfrak{A}(a, b)$ in our case?

- For general S, this is unknown local operators very inexplicit even for m > 0.
- Lechner's argument for m > 0 does not apply for m = 0.
- Let us have a look at some simple examples that we can control.

Size of the local observables in our case

How large are \mathcal{H}_{loc} and $\mathfrak{A}(a, b)$ in our case?

- For general S, this is unknown local operators very inexplicit even for m > 0.
- Lechner's argument for m > 0 does not apply for m = 0.
- Let us have a look at some simple examples that we can control.
- The simplest example is S = 1.
 - This is identical to the free U(1) current
 - $\mathcal{H}_{loc} = \mathcal{H}$
 - We have large local algebras $\mathfrak{A}(a, b)$, vacuum is cyclic for them.
 - Conformal symmetry (*c* = 1)
- This is an entirely trivial case, but good to keep in mind.

The critical Ising model

- The next simple example is S = -1.
 - expectation: critical Ising model, generated by a chiral Fermi field, c = 1/2
 - But how can this be seen here?

The critical Ising model

- The next simple example is S = -1.
 - expectation: critical Ising model, generated by a chiral Fermi field, c = 1/2
 - But how can this be seen here?
- Consider the following field:

$$\psi(x) := rac{1}{\sqrt{2\pi}} \int deta \, e^{eta/2} \left(\sqrt{i} \, e^{i e^{eta} x} z^{\dagger}(eta) + rac{1}{\sqrt{i}} e^{-i e^{eta} x} z(eta)
ight) \, .$$

- It turns out that ψ is an antilocal Fermi field.
- *T*(*x*) = : ψ(*x*)∂_{*x*}ψ(*x*): is the energy density of our model, and relatively local to the halfline algebras M.
- Local algebras $\mathfrak{A}(I)$ are precisely those generated by T(x).
- $\mathcal{H}_{\text{loc}} = \mathcal{H}_{e}$ (even particle number vectors)

Size of the local algebras

Lessons from the Ising model

What can we learn from the example S = -1 (the Ising model)?

Lessons from the Ising model

What can we learn from the example S = -1 (the Ising model)?

• In general, $\mathcal{H}_{\mathsf{loc}} \subsetneq \mathcal{H}$.

Lessons from the Ising model

What can we learn from the example S = -1 (the Ising model)?

- In general, $\mathcal{H}_{\mathsf{loc}} \subsetneq \mathcal{H}$.
- Recall that in the massive Ising model, many local observables exist:
 - Even operators squares of wedge fields (Buchholz/Summers)
 - Odd operators known to exist by abstract arguments (Lechner); heuristically given by infinite sums of wedge fields or z, z[†] (Schroer/Truong)
 - Vacuum Ω is cyclic for double cone algebras.
- In the massless case, we see (roughly):
 - Even local operators still exists generated by T(x)
 - Odd local operators fail to exist $\mathcal{H}_{\text{loc}} = \mathcal{H}_{\text{e}}$

Lessons from the Ising model

What can we learn from the example S = -1 (the Ising model)?

- In general, $\mathcal{H}_{\mathsf{loc}} \subsetneq \mathcal{H}$.
- Recall that in the massive Ising model, many local observables exist:
 - Even operators squares of wedge fields (Buchholz/Summers)
 - Odd operators known to exist by abstract arguments (Lechner); heuristically given by infinite sums of wedge fields or z, z[†] (Schroer/Truong)
 - Vacuum Ω is cyclic for double cone algebras.
- In the massless case, we see (roughly):
 - Even local operators still exists generated by T(x)
 - Odd local operators fail to exist $\mathcal{H}_{\text{loc}} = \mathcal{H}_{\text{e}}$
- What does this mean for general S?
 - Expectation (following Zamolodchikov & Zamolodchikov 1992): Scaling limit should be identical to $S = \pm 1$, depending on $S(\infty)$.
 - But their arguments are not applicable in our context.

Outline

- Scaling limits of massive scattering models
- 2 The massless model defined
- 3 Conformal symmetry
- 4 Size of the local algebras

5 Conclusions

Results & Open Questions

Results:

- The scaling limit of the massive factorizing scattering models are massless, chiral factorizing scattering models.
- The chiral components can be defined in the algebraic framework.
 - Observables localized in half-lines
 - Translation-dilation-reflection symmetry
- For $S = \pm 1$, one gets the expected conformal models (c = 1, c = 1/2)
- For general S, we might have
 - a conformal model, or
 - a completely nonlocal model,
 - or a mixture of both.

Results & Open Questions

Results:

- The scaling limit of the massive factorizing scattering models are massless, chiral factorizing scattering models.
- The chiral components can be defined in the algebraic framework.
 - Observables localized in half-lines
 - Translation-dilation-reflection symmetry
- For $S = \pm 1$, one gets the expected conformal models (c = 1, c = 1/2)
- For general S, we might have
 - a conformal model, or
 - a completely nonlocal model,
 - or a mixture of both.

Open points:

- Can we determine the size of local algebras if S is not constant?
- In which sense are the models interacting? Can one measure S?