Propagation and controlled *K*-theory (joint work with G. Yu)

H. Oyono-Oyono

Université Paul Verlaine, Metz

April 27, 2011

EU-NCG Annual Meeting in Bucharest.

Data (Atiyah, Kasparov, Mishchenko)

- M compact manifold ;
- D elliptic differential operator on M.
- $\widetilde{M} \xrightarrow{\Gamma} M$ covering.
- \widetilde{D} equivariant lift of D to \widetilde{M} ;
- *Q* parametrix supported near the diagonal for *D*;
- \tilde{Q} equivariant lift of Q to a paramétrix for \tilde{D} ;
- $\widetilde{S_0} := Id \widetilde{Q}\widetilde{D}$ and $\widetilde{S_1} := Id \widetilde{D}\widetilde{Q}$ are Γ -invariant smooth kernel operators on $\widetilde{M} \times \widetilde{M}$ with support near the diagonal, i.e with finite propagation.

Equivariant Index

•
$$P = \begin{pmatrix} \widetilde{S_0}^2 & \widetilde{S_0}(Id + \widetilde{S_0})\widetilde{Q} \\ \widetilde{S_1}\widetilde{D} & Id - \widetilde{S_1}^2 \end{pmatrix}$$
 is an idempotent. Coefficients are

 Γ -invariant smooth kernels on $M \times M$ with finite propagation.

• The reduced convolution C^* - algebra associated to these kernels is Morita equ. to $C^*_r(\Gamma)$. This Morita equ. preserves propagation

Definition (Γ -invariant Index for D)

$$\operatorname{Ind}_{\Gamma} D \stackrel{def}{=} [P] - \left[\begin{pmatrix} 0 & 0 \\ 0 & Id \end{pmatrix} \right] \in K_0(C_r^*(\Gamma)).$$

- *K*-theory for *C**-algebra is homotopy invariant but we loose track of the propagation (problem when defining higher order indices).
- The *K*-theory for algebras that keep track of propagation (smooth algebras) is not in general homotopy invariant.
- Can we keep track of the propagation within the *C**-algebra framework?

Definition

A filtered C*-algebra A is a C*-algebra equipped with a family $(A_r)_{r>0}$ of closed linear subspaces:

- $A_r \subset A_{r'}$ if $r \leq r'$;
- *A_r* is stable by involution;
- $A_r \cdot A_{r'} \subset A_{r+r'};$
- the subalgebra $\bigcup_{r>0} A_r$ is dense in A.

If A is unital, we also require that the identity 1 is an element of A_r for every positive number r.

The elements of A_r are said to have propagation r.

Exemples

• Roe algebras:

- Σ proper discrete metric space, *H* separable Hilbert space
- C[Σ]_r: space of loc. cpct operators on ℓ²(Σ)⊗H with propagation less than r, i.e T = (T_{x,y})_{(x,y)∈Σ²} with
 - $T_{x,y}$ cpct operator on H;
 - $T_{x,y} = 0$ if d(x, y) > r.
- The Roe algebra of Σ is $C^*(\Sigma) = \overline{\bigcup_{r>0} C[\Sigma]_r} \subset \mathcal{L}(\ell^2(\Sigma) \otimes H)$ (filtered by $(C[\Sigma]_r)_{r>0}$).
- *C**-algebras of groups and cross-products:
 - If Γ is a discrete group finitely generated group equipped with a word metric. Set

 $\mathbb{C}[\Gamma]_r = \{x \in \mathbb{C}[\Gamma] \text{ with support in } B(e, r)\}.$

Then $C^*_{red}(\Gamma)$ and $C^*_{max}(\Gamma)$ are filtered by $(\mathbb{C}[\Gamma]_r)_{r>0}$.

• More generally, if Γ acts on a A by automorphisms, then $A \rtimes_{red} \Gamma$ and $A \rtimes_{max} \Gamma$ are filtered C^* -algebras.

Almost projections and almost unitaries

Let *A* be a unital filtered *C*^{*}-algebra, r > 0 (propagation) and $0 < \varepsilon < 1/4$ (defect):

- $p \in A$ is a ε -*r*-projection if $p \in A_r$, $p = p^*$ and $||p^2 p|| < \varepsilon$.
- $u \in A$ is a ε -*r*-unitary if $u \in A_r$, $||u^* \cdot u I_n|| < \varepsilon$ and $||u \cdot u^* I_n|| < \varepsilon$.
- $P^{\varepsilon,r}(A)$ is the set of ε -*r*-projections of *A*.
- a ε -*r* proj. *p* gives rise by functional calculus to a projection $\kappa_0(p)$.
- $U^{\varepsilon,r}(A)$ is the set of ε -*r*-unitaries of *A*.
- $\mathsf{P}^{\varepsilon,r}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ for $\mathsf{P}^{\varepsilon,r}(M_n(A)) \hookrightarrow \mathsf{P}^{\varepsilon,r}(M_{n+1}(A)); x \mapsto \operatorname{diag}(x,0).$
- $U_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,r}(M_n(A))$ for $U^{\varepsilon,r}(M_n(A)) \hookrightarrow U^{\varepsilon,r}(M_{n+1}(A)); x \mapsto \text{diag}(x, 1).$

Quantitative *K*-semi-groups

We define for a unital filtered *C*^{*}-algebra *A*, r > 0 and $0 < \varepsilon < 1/4$ the equiv. relations on $\mathsf{P}^{\varepsilon,r}_{\infty}(A) \times \mathbb{N}$ and on $\mathsf{U}^{\varepsilon,r}_{\infty}(A)$:

- $(p, l) \sim (q, l')$ if there is $k \in \mathbb{N}$ and $h \in \mathsf{P}^{\varepsilon, r}_{\infty}(C([0, 1], A))$ s.t $h(0) = \operatorname{diag}(p, I_{k+l'})$ and $h(1) = \operatorname{diag}(q, I_{k+l})$.
- $u \sim v$ if there is $h \in U_{\infty}^{\varepsilon,r}(C([0,1],A) \text{ s.t } h(0) = u \text{ and } h(1) = v.$

Definition

- $K_0^{\varepsilon,r}(A)$ is an abelian group for $[p, I]_{\varepsilon,r} + [p', I']_{\varepsilon,r} = [\operatorname{diag}(p, p'), I + I']_{\varepsilon,r};$
- $K_1^{\varepsilon,r}(A)$ is an abelian semi-group for $[u]_{\varepsilon,r} + [v]_{\varepsilon,r} = [\operatorname{diag}(u,v)]_{\varepsilon,r}$;
- if *u* is a ε -*r*-unitary, then $[u]_{3\varepsilon,2r} + [u^*]_{3\varepsilon,2r} = [1]_{3\varepsilon,2r}$.

The non-unital case

Lemma

$$K_0^{\varepsilon,r}(\mathbb{C}) \stackrel{\cong}{\to} \mathbb{Z}; \ [p,l]_{\varepsilon,r} \mapsto \operatorname{rank} \kappa_0(p) - l; \quad K_1^{\varepsilon,r}(\mathbb{C}) \cong \{0\}.$$

Definition

If A is a non unital filtered C^* -algebra and \tilde{A} the unitarization of A,

•
$$K_0^{\varepsilon,r}(A) = \ker : K_0^{\varepsilon,r}(\tilde{A}) \to K_0^{\varepsilon,r}(\mathbb{C}) \cong \mathbb{Z};$$

•
$$K_1^{\varepsilon,r}(A) = K_1^{\varepsilon,r}(\tilde{A});$$

Definition

If A and B are filtered C^{*}-algebras with respect to $(A_r)_{r>0}$ and $(B_r)_{r>0}$, a homomorphism $f : A \to B$ is filtered if $f(A_r) \subset B_r$.

- A filtered $f : A \to B$ induces $f_*^{\varepsilon,r} : K_*^{\varepsilon,r}(A) \to K_*^{\varepsilon,r}(B);$
- $A \hookrightarrow A \otimes \mathcal{K}(H)$; $a \mapsto a \otimes e_{1,1}$ induces $K_*^{\varepsilon,r}(A) \stackrel{\cong}{\to} K_*^{\varepsilon,r}(A \otimes \mathcal{K}(H))$.

Controlled *K*-theory

We have for any filtered *C*^{*}-algebra *A*, $0 < \varepsilon \leq \varepsilon' < 1/4$ and $0 < r \leq r'$ natural semi-group homomorphisms

•
$$\iota_{0}^{\varepsilon,r}: K_{0}^{\varepsilon,r}(A) \longrightarrow K_{0}(A); [p, I]_{\varepsilon,r} \mapsto [\kappa_{0}(p)] - [I_{l}];$$

• $\iota_{1}^{\varepsilon,r}: K_{1}^{\varepsilon,r}(A) \longrightarrow K_{1}(A); [u]_{\varepsilon,r} \mapsto [u];$
• $\iota_{*}^{\varepsilon,r} = \iota_{0}^{\varepsilon,r} \oplus \iota_{1}^{\varepsilon,r};$
• $\iota_{0}^{\varepsilon,\varepsilon',r,r'}: K_{0}^{\varepsilon,r}(A) \longrightarrow K_{0}^{\varepsilon',r'}(A); [p, I]_{\varepsilon,r} \mapsto [p, I]_{\varepsilon',r'};$
• $\iota_{1}^{\varepsilon,\varepsilon',r,r'}: K_{1}^{\varepsilon,r}(A) \longrightarrow K_{1}^{\varepsilon',r'}(A); [u]_{\varepsilon,r} \mapsto [u]_{\varepsilon',r'}.$
• $\iota_{*}^{\varepsilon,\varepsilon',r,r'} = \iota_{0}^{\varepsilon,\varepsilon',r,r'} \oplus \iota_{1}^{\varepsilon,\varepsilon',r,r'}.$

Definition

If A is a filtered C*-algebra, the controlled K-theory for A is the family

$$\mathcal{K}_*(A) = (K^{\varepsilon,r}_*(A))_{0 < \varepsilon < 1/4, r > 0}.$$

Controlled morphisms

A control pair is a pair (λ, h) with $\lambda > 1$ and $h: (0, \frac{1}{4\lambda}) \rightarrow (0, +\infty)$; $\varepsilon \mapsto h_{\varepsilon}$ non-increasing.

Definition

Let (λ, h) be a control pair, and let A and B be filtered C*-algebras. A (λ, h) -controlled morphism $\mathcal{F} : \mathcal{K}_*(\mathbf{A}) \to \mathcal{K}_*(\mathbf{B})$ is a family $\mathcal{F} = (F^{\varepsilon, r})_{0 < \varepsilon < \frac{1}{4\lambda}, r > 0}$ of semi-group homomorphisms

$$F^{\varepsilon,r}: K^{\varepsilon,r}_*(A) o K^{\lambda \varepsilon,h_\varepsilon r}_*(B)$$

s.t for any ε , ε' , r and r' with $0 < \varepsilon \leq \varepsilon' < \frac{1}{4\lambda}$ and $h_{\varepsilon}r \leq h_{\varepsilon'}r'$, we have

$$F^{\varepsilon',r'} \circ \iota^{\varepsilon,\varepsilon',r,r'}_* = \iota^{\lambda\varepsilon,\lambda\varepsilon',h_\varepsilon r,h_{\varepsilon'}r'}_* \circ F^{\varepsilon,r}.$$

 \mathcal{F} induces $F : K_*(A) \to K_*(B)$ defined in a unique way by $F \circ \iota_*^{\varepsilon,r} = \iota_*^{\lambda \varepsilon,h_\varepsilon r} \circ F^{\varepsilon,r}$.

Controlled isomorphism, controlled exacness

Let (λ, h) be a control pair and let $\mathcal{F} : \mathcal{K}_*(A) \to \mathcal{K}_*(B)$ be a $(\alpha_{\mathcal{F}}, k_{\mathcal{F}})$ -controlled morphism.

- \mathcal{F} is (λ, h) -injective if $(\alpha_{\mathcal{F}}, k_{\mathcal{F}}) \leq (\lambda, h)$ and for any $0 < \varepsilon < \frac{1}{4\lambda}$, any r > 0 and any $x \in K_*^{\varepsilon, r}(A)$, then $F^{\varepsilon, r}(x) = 0$ in $K_*^{\alpha_{\mathcal{F}}\varepsilon, k_{\mathcal{F}, \varepsilon}r}(B) \Longrightarrow \iota_*^{\varepsilon, \lambda \varepsilon, r, h_{\varepsilon}r}(x) = 0$ in $K_*^{\lambda \varepsilon, h_{\varepsilon}r}(A)$;
- \mathcal{F} is (λ, h) -surjective, if for any $0 < \varepsilon < \frac{1}{4\lambda\alpha_{\mathcal{F}}}$, any r > 0 and any $y \in K_*^{\varepsilon, r}(B)$, there exists $x \in K_*^{\lambda\varepsilon, h_\varepsilon r}(A)$ s.t. $F^{\lambda\varepsilon, h_{\lambda\varepsilon}r}(x) = \iota_*^{\varepsilon, \alpha_{\mathcal{F}}\lambda\varepsilon, r, k_{\mathcal{F},\lambda\varepsilon}h_\varepsilon r}(y)$ in $K_*^{\alpha_{\mathcal{F}}\lambda\varepsilon, k_{\mathcal{F},\lambda\varepsilon}h_\varepsilon r}(B)$.
- *F* is a (λ, h)-isomorphism if *F* is (λ, h)-injective and (λ, h)-surjective (in this case there exists a controlled inverse).
- In the same way, we can define (λ, h) -exactness for a composition $\mathcal{K}_*(A) \xrightarrow{\mathcal{F}} \mathcal{K}_*(B_1) \xrightarrow{\mathcal{G}} \mathcal{K}_*(B_2).$

Examples

If q is an ε -r-projection in A unital filtered C*-algebra, then $z_q: [0,1] \rightarrow A; t \mapsto qe^{2i\pi t} + 1 - q$ is 5ε -*r*-unitary in SA (with $SA = C_0((0, 1), A)$). Hence $Z^{\varepsilon,r}_{\Lambda}: K^{\varepsilon,r}_{\Omega}(A) \to K^{5\varepsilon,r}_{1}(SA); \ [q,k]_{\varepsilon,r} \to [z_{q}]_{5\varepsilon,r} + [y_{k}]_{5\varepsilon,r}$ with $y_k(t) = e^{-2\pi i kt}$ defines a (5, 1)-controlled morphism $\mathcal{Z}_{\mathcal{A}} = (Z_{\mathcal{A}}^{\varepsilon,r})_{0 < \varepsilon < 1/20, r > 0} : \mathcal{K}_{0}(\mathcal{A}) \to \mathcal{K}_{1}(\mathcal{S}\mathcal{A}).$

Theorem (O-Yu)

There exists a control pair (λ, h) such that $\mathcal{Z}_{\mathcal{A}}$ is a (λ, h) -isomorphism for any filtered C^{*}-algebra A.

If Γ is a discrete group acting by automorphisms on A and B, then elements in $KK_*^{\Gamma}(A, B)$ gives rise to a (λ, h) -controlled morphisms $\mathcal{K}_*(A \rtimes_{red} \Gamma) \to \mathcal{K}_*(B \rtimes_{red} \Gamma)$ (for some universal control pair (λ, h)) compatible with Kasparov products. In particular KK-equiv. provide controlled isomorphisms. Oyono-Oyono (Université Paul Verlaine) Propagation and controlled K-theory

Extension of filtered C*-algebra

Let A be a C*-algebra filtered by $(A_r)_{r>0}$ and let J be an ideal of A. Then A/J is filtered by $((A/J)_r)_{r>0}$, where $(A/J)_r$ is the image of A_r in A/J.

Definition

An extension of C*-algebras

0
ightarrow J
ightarrow A
ightarrow A/J
ightarrow 0

is filtered and semi-split if there exists a completely positive cross-section $s : A/J \rightarrow A$ such that $s((A/J)_r) \subset A_r$ for any r > 0. In this case, J is filtered by $(J \cap A_r)_{r>0}$.

Example: If $0 \to J \to A \to A/J \to 0$ is a semi-split extension of Γ - C^* -algebras for a discrete group Γ , then $0 \to J \rtimes_{red} \Gamma \to A \rtimes_{red} \Gamma \to A/J \rtimes_{red} \Gamma \to 0$ is filtered and semi-split (the same holds for max. cross-products).

The six term (α, h) -exact sequence

Theorem

There exists a control pair (λ, h) such that for any semi-split extension of filtered C^{*}-algebras

$$0\longrightarrow J\stackrel{\jmath}{\longrightarrow} A\stackrel{q}{\longrightarrow} A/J\longrightarrow 0,$$

there is a six-term (λ, h) -exact sequence

Consequence : Suspension controlled isomorphism $\mathcal{K}_1(A) \stackrel{\cong}{\to} \mathcal{K}_0(SA)$, controlled Bott periodicity $\mathcal{K}_*(A) \stackrel{\cong}{\to} \mathcal{K}_*(S^2A)$...

Application to *K*-amenability

Definition

A discrete group Γ is K-amenable if $K^0(C^*_{red}(\Gamma)) \to K^0(C^*_{max}(\Gamma))$ (induced by the regular representation) is an isomorphism.

Examples :

- \mathbb{F}_n , $SL_2(\mathbb{Z})$ and group with Haagerup prop. (Higson-Kasparov);
- Γ satisfying the strong Baum-Connes conj. i.e with $\gamma = 1$ (Tu),
- π_1 of compact oriented 3-manifold (Matthey-O-Pitsch).

For any action of Γ on a C^* -algebra A, there is epimorphism $\lambda_{\Gamma,A} : A \rtimes_{max} \Gamma \to A \rtimes_{red} \Gamma$.

Theorem

There exists a control pair (λ, h) s.t for any K-amenable discr. group Γ ,

$$\lambda_{\Gamma,\mathcal{A},*}:\mathcal{K}_*(\mathcal{A}\rtimes_{\mathit{max}}\Gamma)\to\mathcal{K}_*(\mathcal{A}\rtimes_{\mathit{red}}\Gamma)$$

is a (λ, h) -isomorphism for any Γ -algebra A