The One Dimensional Free Poincaré Inequality

Ionel Popescu

IMAR and Georgia Tech

joint work with Michel Ledoux

Classical Case

A classical Poincaré inequality on a bounded domain $D \subset \mathbb{R}^d$:

$$C\int_{D} \left(f - \int f \right)^{2} dx \le \int_{D} |\nabla f|^{2} dx$$

for any nice f. $\oint_D f = \frac{1}{|D|} \int_D f$. dx rescaled on D, becomes a probability measure.

Classical Case

Poincaré's inequality for a probability measure μ on \mathbb{R}^d with $\rho > 0$

$$2\rho \operatorname{Var}_{\mu}(f) \leq \int |\nabla f|^2 d\mu$$
, for all nice f . $(P(\rho))$

$$\operatorname{Var}_{\mu}(f) = \int \left(f - \int f d\mu \right)^2 d\mu = \int f^2 d\mu - \left(\int f d\mu \right)^2.$$

Reinterpretations:

$$2\rho\Pi \le L$$
 $(P(\rho))$

$$\operatorname{Var}_{\mu}(f) = \langle \Pi f, f \rangle_{L^{2}(\mu)} \quad \Pi f = f - \int f d\mu$$

with Π the projection onto the orthogonal to constants and

$$\langle Lf,f\rangle_{L^2(\mu)}=\int |\nabla f|^2d\mu\geq 0.$$

② $spec(L) \subset \{0\} \cup [2\rho, \infty)$. There is a spectral gap of size 2ρ between 0 and the rest of spec(L).

Example: The Gaussian

$$\gamma(dx) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

Hermite functions: $\phi_n(x) = \frac{(-1)^n}{\sqrt{n!}} e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}$ $n \ge 0$ form a basis of $L^2(\gamma)$.

$$\int |f'|^2 d\gamma = \langle Lf, f \rangle_{L^2(\gamma)}, \quad Lf(x) = -f''(x) + xf'(x), \quad L\phi_n = n\phi_n.$$

and for $f = \sum_{n \geq 0} \alpha_n \phi_n$,

$$\operatorname{Var}_{\gamma}(f) \leq \int |f'|^{2} d\gamma$$

$$\langle \Pi f, f \rangle_{L^{2}(\gamma)} \leq \langle L f, f \rangle_{L^{2}(\gamma)}$$

$$\sum_{n \geq 1} \alpha_{n}^{2} \leq \sum_{n \geq 1} n \alpha_{n}^{2}.$$

Hence

$$\operatorname{Var}_{\gamma}(f) \le \int (f')^2 d\gamma.$$
 $(P(1/2))$

Example: the Gaussian in \mathbb{R}^d

$$\gamma_d(dx) = \frac{1}{\sqrt{(2\pi)^d}} e^{-|x|^2/2} dx, \ x = (x_1, x_2, \dots, x_d).$$

Hermite functions: $\phi_n(x) = \phi_n(x_1)\phi_n(x_2)\dots\phi_n(x_d)$, $n \ge 0$ form a basis of $L^2(\gamma_d)$.

$$\langle Lf, f \rangle_{L^{2}(\gamma_{d})} = \int |\nabla f|^{2} d\gamma_{d}$$

$$Lf(x) = -\Delta f(x) + \langle x, \nabla f(x) \rangle$$

$$L\phi_{n} = n\phi_{n}.$$

$$\operatorname{Var}_{\gamma_d}(f) \le \int |\nabla f|^2 d\gamma_d.$$
 $(P(1/2))$

Example:
$$\mu(dx) = e^{-V(x)}dx$$

If
$$\mu(dx) = e^{-V(x)}dx$$
 with $HessV \ge \rho$, then

$$2\rho \operatorname{Var}_{\mu}(f) \leq \int |\nabla f|^2 d\mu.$$
 $(P(\rho))$

Other Members of the Family

The *Wasserstein distance* on \mathbb{R}^n is defined as

$$W_2^2(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint |x-y|^2 \pi(dx,dy),$$

 $\Pi(\mu, \nu)$: probability on $\mathbb{R}^n \times \mathbb{R}^n$ with marginals μ and ν .

- This is a metric for the weak convergence on measure with finite second moment.
- ② If ν does not give mass to "small" sets, then there is a unique map T such that $T_{\#}\nu = \mu$ and $\pi = (T, Id)_{\#}\nu$ is the optimal plan:

$$W_2^2(\mu,\nu) = \int |T(x) - x|^2 \nu(dx).$$

Talagrand, Log-Sobolev and HWI

• A measure μ is said to satisfy $T(\rho)$ if for any probability ν $\rho W_2^2(\nu,\mu) \le 2H(\nu|\mu).$

Talagrand, Log-Sobolev and HWI

• A measure μ is said to satisfy $T(\rho)$ if for any probability ν

$$\rho W_2^2(\nu,\mu) \le 2H(\nu|\mu).$$

2 μ satisfies $LSI(\rho)$ if for any ν ,

$$2\rho H(\nu|\mu) \le I(\nu|\mu)$$

where
$$I(\nu|\mu) = 4 \int \left| \nabla \sqrt{\frac{d\nu}{d\mu}} \right|^2 d\mu$$
.

Talagrand, Log-Sobolev and HWI

• A measure μ is said to satisfy $T(\rho)$ if for any probability ν

$$\rho W_2^2(\nu,\mu) \le 2H(\nu|\mu).$$

2 μ satisfies $LSI(\rho)$ if for any ν ,

$$2\rho H(\nu|\mu) \le I(\nu|\mu)$$

where
$$I(\nu|\mu) = 4 \int \left| \nabla \sqrt{\frac{d\nu}{d\mu}} \right|^2 d\mu$$
.

3 μ satisfies $HWI(\rho)$ inequality if for any ν :

$$H(\nu|\mu) \leq \sqrt{I(\nu|\mu)} W_2(\nu,\mu) - \frac{\rho}{2} W_2^2(\nu,\mu).$$

Notice that if $\rho > 0$, then $HWI(\rho) \Longrightarrow LSI(\rho)$.

$T(\rho)$, $LSI(\rho)$, $HWI(\rho) \implies P(\rho)$ for $\rho > 0$

Example: $LSI(\rho) \Longrightarrow P(\rho)$ $\mu(dx) = e^{-V}dx$ and $f \in C_0^1$, such that $\int fd\mu = 0$. Then for t small $\mu_t = (1 + tf)\mu$ and $LSI(\rho)$ for μ_t , $(\frac{d\mu_t}{d\mu} = 1 + tf)$

$$\begin{split} 2\rho H(\mu_t | \mu) &\leq I(\mu_t | \mu) \\ 2\rho \int (1+tf) \log(1+tf) d\mu &\leq 4 \int |\nabla \sqrt{1+tf}|^2 d\mu \\ 2\rho \int (1+tf) (tf+O(t^2)) d\mu &\leq 4 \int |\nabla (1+\frac{t}{2}f) + O(t^2)|^2 d\mu \\ 2\rho t^2 \int f^2 d\mu + o(t^2) &\leq t^2 \int |\nabla f|^2 d\mu + o(t^2). \end{split}$$

Similarly $T(\rho)$ implies $P(\rho)$ in dual form.

One Dimensional Free Entropy

V smooth such that $\lim_{|x|\to\infty}\frac{V(x)}{\log(1+|x|^2)}=\infty$.

$$E_V(\mu) = \int V(x)\mu(x) - \iint \log|x-y|\mu(dx)\mu(dy).$$

There is a unique probability measure μ_V such that

$$E_V(\mu_V) = \inf_{\mu \in \mathcal{P}(\mathbb{R})} E(\mu).$$

In addition, μ_V has compact support.

One Dimensional Free Entropy

V smooth such that $\lim_{|x|\to\infty} \frac{V(x)}{\log(1+|x|^2)} = \infty$.

$$E_V(\mu) = \int V(x)\mu(x) - \iint \log|x-y|\mu(dx)\mu(dy).$$

There is a unique probability measure μ_V such that

$$E_V(\mu_V) = \inf_{\mu \in \mathcal{P}(\mathbb{R})} E(\mu).$$

In addition, μ_V has compact support. The variational characterization of μ_V :

$$V(x) \ge 2 \int \log |x-y| \mu_V(dx) + C$$
 with equality for $x \in supp(\mu)$.

In particular, if the support of μ is a union of intervals, then for a.e. $x \in supp(\mu)$:

$$V'(x) = \int \frac{2}{x - v} \mu_V(dx).$$

The relative free entropy is defined as

$$E_V(\mu|\mu_V) = E_V(\mu) - E_V(\mu_V).$$

It is always positive, unless $\mu = \mu_V$.

The relative free entropy is defined as

$$E_V(\mu|\mu_V) = E_V(\mu) - E_V(\mu_V).$$

It is always positive, unless $\mu = \mu_V$.

If $V(x) = x^2/2$, then the minimizer of the free entropy μ_V is given by the semicircular law

$$\mu_V(dx) = \frac{1}{2\pi} \mathbb{1}_{[-2,2]}(x) \sqrt{4-x^2} dx.$$

with $E(\mu_V) = 3/4$.

One Dimensional Free Information

$$I_V(\mu|\mu_V) = \int (H\mu(x) - V'(x))^2 \mu(dx)$$

where $H\mu(x)=\int \frac{2}{x-y}\mu(dx)$ in the principal value sense. In the case $V(x)=x^2/2$,

$$I(\mu|\mu_V) = \int (H\mu(x) - x)^2 \mu(dx).$$

Free Talagrand and Log-Sobolev

Theorem (Biane & Speicher)

If $V(x) - \rho x^2$ is convex for $\rho > 0$, then

$$E_V(\mu|\mu_V) \le \frac{1}{4\rho} I_V(\mu|\mu_V). \tag{LSI(\rho)}$$

Theorem (Biane & Voiculescu)

If $V(x) = x^2/2$ then

$$\frac{1}{2}W_2^2(\mu,\mu_V) \le E_V(\mu|\mu_V). \tag{T(1/2)}$$

Theorem (Hiai & Ueda & Petz)

If $V(x) - \rho x^2$ is convex for $\rho > 0$, then

$$\rho W_2^2(\mu, \mu_V) \le E_V(\mu | \mu_V). \tag{T(\rho)}$$

Proofs

One proof: Classical counterparts to random matrices of size n and let the dimension n grow to infinity.

Second proof: Using mass transport tools (no random matrices).

A First version of free Poincaré

Theorem (Biane (2003))

If
$$\alpha(dx) = \mathbbm{1}_{[-2,2]}(x) \frac{\sqrt{4-x^2}dx}{2\pi}$$
, then
$$\mathrm{Var}_{\alpha}(f) \leq \iint \left(\frac{f(x)-f(y)}{x-y}\right)^2 \alpha(dx)\alpha(dy)$$

Essentially the same as the classical one with the derivative replaced by the non-commutative derivative.

The proof: The operator \mathcal{M} , whose Dirichlet form is given by the right had side is the counting number operator for the Chebyshev polynomials of the second kind.

A second version of free Poincaré

Theorem (M. Ledoux and I.P. (2009))

$$\int_{-2}^{2} \int_{-2}^{2} \left(\frac{f(x) - f(y)}{x - y} \right)^{2} \frac{(4 - xy) dx dy}{4\pi^{2} \sqrt{(4 - x^{2})(4 - y^{2})}} \le \int (f')^{2} d\alpha \quad (*)$$

First proof: Poincaré+Fluctuations for random matrices.

Second Proof: If N is the counting number operator for the Chebyshev polynomials of the first kind, then (*) is the same as

$$\langle \mathcal{N}f, f \rangle_{\mathsf{L}^2(\beta)} \leq \langle \mathcal{L}f, f \rangle_{\mathsf{L}^2(\beta)}, \quad \text{with} \quad \beta(dx) = \mathbb{1}_{[-2,2]}(dx) \frac{dx}{\pi \sqrt{4-x^2}},$$

and $\mathcal{L}f = \mathcal{N}^2 f = -(4 - x^2)f''(x) + xf'(x)$ a Jacobi type operator.

Which version is the true one

The judge: The other functional inequalities (transportation and Log-Sobolev).

Technically this requires handling the free relative entropy:

$$E_V(\mu|\mu_V) = E_V(\mu) - E_V(\mu_V).$$

$$E_V(\mu) = \int V(x)\mu(x) - \iint \log|x - y|\mu(dx)\mu(dy).$$

and μ_V is the minimizer of E_V over all probabilities of \mathbb{R} .

The One dimensional Free Poincaré

We say that the probability measure μ supported on [-2,2] satisfies $P(\rho)$, $\rho > 0$, if

$$2\rho \iint \left(\frac{f(x) - f(y)}{x - y}\right)^{2} \frac{(4 - xy)dxdy}{4\pi^{2} \sqrt{(4 - x^{2})(4 - y^{2})}} \le \int (f')^{2} d\mu$$

$$(P(\rho))$$

If μ has $P(\rho)$, then necessarily its support is the whole [-2,2].

Theorem (M.Ledoux and I.P. (2011))

If μ_V is the equilibrium measure of E_V for a C^3 potential V such that μ_V has support [-2,2], then $T(\rho)$ and $LSI(\rho)$ imply $P(\rho)$ for μ_V .

Haagerup's Lemma

Lemma

For any real $x, y \in [-2, 2], x \neq y$, then

$$\log|x - y| = -\sum_{n=1}^{\infty} \frac{2}{n} T_n \left(\frac{x}{2}\right) T_n \left(\frac{y}{2}\right)$$

where the series here is convergent on $x \neq y$. If x > 2 and $y \in [-2, 2]$, then

$$\log|x - y| = \log\left|\frac{x + \sqrt{x^2 - 4}}{2}\right| - \sum_{n=1}^{\infty} \frac{2}{n} \left(\frac{x - \sqrt{x^2 - 4}}{2}\right)^n T_n\left(\frac{y}{2}\right)$$

where the series is absolutely convergent.

Here T_n is the n^{th} Chebysev polynomial: $T_n(\cos x) = \cos(nx)$. Orthogonal polynomials w.r.t. $\omega(dx) = \mathbb{1}_{[-2,2]}(x) \frac{dx}{\pi \sqrt{4-x^2}}$.

Proof of Haagerup's Formula

$$x = 2\cos u$$
 and $y = 2\cos v$ with $u, v \in (0, \pi), u \neq v$

$$x-y=2(\cos u-\cos v)=4\sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right),$$

$$\begin{aligned} \log|x - y| &= \log\left|2\sin\left(\frac{u + v}{2}\right)\right| + \log\left|2\sin\left(\frac{u - v}{2}\right)\right| \\ &= \log|1 - e^{i(u + v)}| + \log|1 - e^{i(u - v)}| \\ &= Re\left(\log(1 - e^{i(u + v)}) + \log(1 - e^{i(u - v)})\right) \end{aligned}$$

$$\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n} = -\sum_{n=1}^{\infty} \frac{1}{n} Re \left(e^{in(u+v)} + e^{in(u-v)} \right)$$

$$= -\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n(u+v)) + \cos(n(u+v)) + \cos(n(u+v)$$

$$= -\sum_{n=1}^{\infty} \frac{1}{n} \left(\cos(n(u+v)) + \cos(n(u-v)) \right)$$
$$= -\sum_{n=1}^{\infty} \frac{2}{n} \cos(nu) \cos(nv) = -\sum_{n=1}^{\infty} \frac{2}{n} T_n \left(\frac{x}{2} \right) T_n \left(\frac{y}{2} \right).$$

Working with measures on [-2,2]

Corollary

The logarithmic potential of a measure on [-2,2] is given by

$$\int \log |x-y| \mu(dx) = -\sum \frac{2}{n} T_n\left(\frac{x}{2}\right) \int T_n\left(\frac{y}{2}\right) \mu(dy)$$

where this series makes sense pointwise.

$$\iint \log|x-y|\mu(dx)\mu(dy) = -\sum_{n=1}^{\infty} \frac{2}{n} \left(\int T_n\left(\frac{x}{2}\right)\mu(dx) \right)^2.$$

In particular $\iint \log |x - y| \mu(dx) \mu(dy)$ is finite if and only if $\sum_{n=1}^{\infty} \frac{2}{n} \left(\int T_n \left(\frac{x}{2} \right) \mu(dx) \right)^2$ is finite.

Working with measures on [-2,2]

Corollary

If $\mu \in \mathcal{P}([-2,2])$ and V is a \mathbb{C}^3 potential on [-2,2], then

$$I_{V}(\mu) = \int V d\mu - \iint \log|x - y| \mu(dx) \mu(dy)$$
$$= \beta_{0}(V) + 2 \sum_{n=1}^{\infty} \left(\beta_{n}(V) \alpha_{n} + \frac{\alpha_{n}^{2}}{n} \right)$$

where

$$\alpha_n = \int T_n\left(\frac{x}{2}\right)\mu(dx) \text{ and } \beta_n(V) = \int_{-2}^2 \frac{V(x)T_n\left(\frac{x}{2}\right)dx}{\pi\sqrt{4-x^2}}.$$

Working with measures on [-2,2]

$$I_{V}(\mu) = \beta_{0}(V) - \frac{1}{2} \sum_{n=1}^{\infty} n\beta_{n}(V)^{2} + 2 \sum_{n=1}^{\infty} \frac{1}{n} \left(\alpha_{n} + \frac{n\beta_{n}(V)}{2} \right)^{2}$$
$$\geq \beta_{0}(V) - \frac{1}{2} \sum_{n=1}^{\infty} n\beta_{n}(V)^{2}$$

with equality if and only if

$$1 - \sum_{n=1}^{\infty} n\beta_n(V) T_n\left(\frac{x}{2}\right) \ge 0 \quad \text{for any} \quad x \in [-2, 2],$$

in which case

$$\mu(dx) = \left(1 - \sum_{n=1}^{\infty} n\beta_n(V) T_n\left(\frac{x}{2}\right)\right) \frac{dx}{\pi \sqrt{4 - x^2}}.$$

The formula for E_V

If V is C^3 and its equilibrium measure μ_V is [-2,2], then

$$E_{V} = \int_{-2}^{2} \frac{V(x)dx}{\pi \sqrt{4 - x^{2}}} - \frac{1}{2} \iint \left(\frac{V(x) - V(y)}{x - y} \right)^{2} \frac{(4 - xy)dxdy}{4\pi^{2} \sqrt{(4 - x^{2})(4 - y^{2})}}.$$

$$E_{V+tf} = \int_{-2}^{2} \frac{V(x) + tf(x)dx}{\pi \sqrt{4 - x^2}}$$
$$-\frac{1}{2} \iint \left(\frac{V(x) - V(y) + t(f(x) - f(y))}{x - y} \right)^2 \frac{(4 - xy)dxdy}{4\pi^2 \sqrt{(4 - x^2)(4 - y^2)}}.$$

The perturbation

Take v_t the equilibrium measure of V + tf. Then $LSI(\rho)$,

$$4\rho(E_V(v_{V+tf})-E_V)\leq I(v_t|\mu_V)$$

and the expansion to second order in *t* gives Poincaré's.

More?

The circle case

Multidimensional case