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Classical Case

A classical Poincaré inequality on a bounded domain D c RY:

CL(f—ff)destwﬂ?dx

for any nice f. £, f = [, .
dx rescaled on D, becomes a probability measure.



Classical Case

Poincaré’s inequality for a probability measure u on RY with
p>0

2pVar,(f) < f IVf2du, for all nice f. (P(p))

2

Varu(f):f(f—ffdy)zdy:ffzdy—(ffdy) :

Reinterpretations:

Q
2pM<L (P(p))

Var,(f) = (Nf, {2,y Nf=1- ffdy
with I the projection onto the orthogonal to constants and
(L, Dyogu = f VfPdu > 0.

@ spec(L) c {0} U [2p, ). There is a spectral gap of size 2p
between 0 and the rest of spec(L).



Example: The Gaussian
y(dx) = \/%e‘xz/zdx
Hermite functions: ¢n(x) = (:/Qn e¥’2 L2 n>0forma
basis of L2(y).

flf’lzdy = (Lf,f)2y, LI(X) = —1"(x) + xf'(x), Lpn= nen.

and for f == ZFIZO an(Pns

Var, (f) < f|f’|2dy
(Nf, D2(y) < (LF Pz
Z a% < Z na%.
n>1 n>1

Hence

Var, () < f (f)2dy. (P(1/2))



Example: the Gaussian in R°

1 2
ya(dx) = ——=e™"2dx, x = (xy, X2, ..., Xq).
oy (X1, X2 )

Hermite functions: ¢n(x) = ¢pn(X1)Pn(X2) ... Pn(Xq), n > 0 form
a basis of L2(yq).

(Lf, P20y = f IV2dyq
Lf(x) = —=Af(x) + (x, Vi(x))
Lon = nen.

Var,,(f) < f IV2dyg. (P(1/2))



Example: u(dx) = e~"®dx

If u(dx) = e~V dx with HessV > p, then

2ovar,(f) < [ fPd (P(p))



Other Members of the Family

The Wasserstein distance on R" is defined as

W2(w,v) ;= inf f Ix — yI2r(dx, dy),

nel(u,v)

M(u,v) : probability on R" x R" with marginals p and v.

@ This is a metric for the weak convergence on measure with
finite second moment.

© If v does not give mass to “small” sets, then there is a
unique map T such that T,v = pand = (T, Id) v is the
optimal plan:

W2 (u,v f IT(x) - xv(dx).



Talagrand, Log-Sobolev and HWI

@ A measure u is said to satisfy T(p) if for any probability v
pWE (v, 1) < 2H(vIp).



Talagrand, Log-Sobolev and HWI

@ A measure u is said to satisfy T(p) if for any probability v
pWE (v, 1) < 2H(vIp).

Q . satisfies LSI(p) if for any v,

2pH(vlu) < I(v]u)

where I(v|y) = 4 [ 'v \/g:“

2
du.




Talagrand, Log-Sobolev and HWI

@ A measure u is said to satisfy T(p) if for any probability v
pWE (v, 1) < 2H(vIp).

Q . satisfies LSI(p) if for any v,

2pH(vlu) < I(v]u)

2
where I(vlu) =4 [ |V \[%[ dy.
© u satisfies HWI(p) inequality if for any v:

H(vIi) < 101 Walv, 1) - WA, ).

Notice that if p > 0, then HWI(p) = LSI(p).



T(p), LSI(p), HWI(p) = P(p) for p >0

Example: LSI(p) = P(p)
u(dx) = eVdx and f € C}, such that [ fdy 0. Then for t

small uy = (1 + tf)u and LSI(p) for ps, ( =1+1f)

2pH(utlu) < I(utlu)
2pf 1 4 tf) log(1 +tf)dy§4f|V\/1 tf2du

2pf + t)(tf + O(t?) dy<4f|V )+O(t2)|2dy
2pt2ff2dy+o(t2)st2f|Vf|2dy+o(t2).

Similarly T(p) implies P(p) in dual form.



One Dimensional Free Entropy

V smooth such that limy % — oo,

Ev() = [ V900 - [ [ loghx - yiu(du(ay).
There is a unique probability measure uy such that

E = inf E(u).
v(uv) HE'Q(IR) (1)

In addition, 1y has compact support.



One Dimensional Free Entropy

V smooth such that limy % — oo,

Ev() = [ V900 - [ [ loghx - yiu(du(ay).
There is a unique probability measure uy such that

E = inf E(u).
v(uv) HE'Q(]R) (1)

In addition, 1y has compact support.
The variational characterization of py:

V(x) > 2f|og Ix = yluv(dx)+ C with equality for x € supp(u).

In particular, if the support of u is a union of intervals, then for
a.e. X € supp(u):

V’(X) = fXEyIle(dX).



The relative free entropy is defined as

Ev(ulpv) = Ev(u) — Ev(pv).

It is always positive, unless y = uy.



The relative free entropy is defined as

Ev(ulpv) = Ev(u) — Ev(pv).

It is always positive, unless y = uy.

If V(x) = x2/2, then the minimizer of the free entropy py is
given by the semicircular law

pv(dx) = 21—7_(11[_2,2](x) V4 — x2dx.

with E(uy) = 3/4.



One Dimensional Free Information

Whav) = [ (Hulx) = V') ()

where Hu(x) = f%y(dx) in the principal value sense.
In the case V(x) = x2/2,

(uli) = [ (H(0 - 02u(e).



Free Talagrand and Log-Sobolev

Theorem (Biane & Speicher)

If V(x) — px? is convex for p > 0, then

Ev(lpy) < ;—p/v(}ilyv)- (LSI(p))

Theorem (Biane & Voiculescu)
If V(x) = x?/2 then

%sz(y,uv) < Ev(pluv). (T(1/2))

Theorem (Hiai & Ueda & Petz)

If V(x) — px2 is convex for p > 0, then

pWE(w, uv) < Ev(uluv). (T(p))




One proof: Classical counterparts to random matrices of size n
and let the dimension n grow to infinity.

Second proof: Using mass transport tools (no random
matrices).



A First version of free Poincaré

Theorem (Biane (2003))

If a(dx) = L_gz)(x)455%, then

Var,(f f f ( _f(y ) a(dx)a(dy)

Essentially the same as the classical one with the derivative
replaced by the non-commutative derivative.

The proof: The operator M, whose Dirichlet form is given by
the right had side is the counting number operator for the
Chebyshev polynomials of the second kind.



A second version of free Poincaré

Theorem (M. Ledoux and I.P. (2009))

[ [y tomdd . [y o

First proof: Poincaré+Fluctuations for random matrices.

Second Proof: If N is the counting number operator for the
Chebyshev polynomials of the first kind, then (*) is the same as

dx
nVd—x2

and Lf = N2f = —(4 — x?)f"'(x) + xf'(x) a Jacobi type operator.

<Nf, f>L2(ﬁ) < <.£f, f>L2(ﬁ)/ with ﬁ(dX) = ]l[_zlz](dX)



Which version is the true one

The judge: The other functional inequalities (transportation and

Log-Sobolev).

Technically this requires handling the free relative entropy:
Ev(uluv) = Ev(p) - Ev(uv).

Ev() = [ Vutx) - [ [ logix - yu(ax)u(a).

and uy is the minimizer of Ey over all probabilities of IR.



The One dimensional Free Poincaré

We say that the probability measure p supported on [-2, 2]
satisfies P(p), p > 0, if

f(x) - f(y)\* (4 - xy)dxdy "2
1 i e
p

If 1 has P(p), then necessarily its support is the whole [-2, 2].
Theorem (M.Ledoux and I.P. (2011))

If uy is the equilibrium measure of Ey for a C® potential V such
that uy has support [-2,2], then T(p) and LSI(p) imply P(p) for

H.




Haagerup’s Lemma

For any real x,y € [-2,2], x # y, then

(]

corn--E n(3)nly

n=1

where the series here is convergenton x # y.
Ifx >2andy e [-2,2], then

X+ V-4 & 2(x-Vx2—4)
logx = yI = log T‘_ZE(T) Tn(%)
=

where the series is absolutely convergent.

Here T, is the n'" Chebysev polynomial: T,(cos x) = cos(nx).

Orthogonal polynomials w.r.t. w(dx) = 1[‘2'2]()()71\/%'




Proof of Haagerup’s Formula

x=2cosuandy =2cosv withu,ve(0,nr),u#v

X —y = 2(Cos U —cos V) :4sin(uJ2rv)sin(U; v),

7| +legpsin(*5)

=log|1 — '(“tV)| + log |1 — e(t=V)|
=Re (Iog(1 — e\t")) 4 log(1 - e’(“‘v)))

log |x — y| :Iog'23in(u+v

n

log(1-2)=-Xo 1 &5 — _

gk
S

Re (ein(u+v) + ein(u—v))

>
Il
o

I
|

1

S1=

(cos(n(u+ v)) + cos(n(u — v)))

cos(nu) cos(nv) i%T”( ) (}—2/)

n=

3
Il
-

M8
1w

>
Il

o
N



Working with measures on [-2, 2]

Corollary

The logarithmic potential of a measure on [-2, 2] is given by

flog X = ylu(dx) = —Z%Tn(g)f'rn(y)#(d}’)

where this series makes sense pointwise.

[ 1oaix = uteutar) = Z ( [m(% )u(dx))z.

In particular [ log|x - yly(dx)y(dy) is finite if and only if
Y1 ([ Ta(3) y(dx)) is finite.




Working with measures on [-2, 2]

Corollary

If u e P([-2,2]) and V is a C? potential on [-2,2], then

W = [ v~ [[ logix - yiu(axu(ay)
= po(V +2Z(ﬁn Jarn + )

where

an:an( ) (dx) and (V) = ﬁ%




Working with measures on [-2, 2]

[e¢]

S 2
() = ﬁo(V)—% oV Z%( + )

1

n=
o]

-3 L,

l\) |

with equality if and only if
1 —Znﬁn(V)Tn( )> 0 forany xe[-22],

in which case

u(dx) = (1 - i nBa(V)Th (g)] %.
n=1 T -



The formula for Ey

If Vis C® and its equilibrium measure pv is [-2,2], then

fZ V(x)dx
Ey =
-2 V4 — x2

_1 V(x) - V(y)\* (4 - xy)dxdy
sz( =Y ) an2\[(4 = x2)(4 - y2)

£ f2 V(x) + tf(x)dx
Vtf W —n T

1 ff ( V(x) = V(y) + t(f(x) - ,«(y)))z (4 - xy)dxdy
2 X=y 4n2 \[(4 = x3)(4 - y?)




The perturbation

Take vt the equilibrium measure of V + tf. Then LSI(p),

4p(Ev(vvitr) — Ev) < I(viluv)

and the expansion to second order in t gives Poincaré’s.



The circle case

Multidimensional case



