Feynman-Kac formula for left continuous additive functionals
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Abstract. We establish a Feynman-Kac formula associated with measures charging no polar set and belonging
to an extended Kato class. A main tool of this approach is the validity of a Khas’minskii Lemma for Stieltjes
exponentials of positive left continuous additive functionals.
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Introduction

Let £ be the infinitesimal operator of the strongly continuous sub-Markovian semigroup of contractions
on LP(E,m), induced by a Borel right process X with state space E, where m is a fixed excessive
measure and p € [1,00). In this frame one can consider measure perturbations of £, namely the following
Schrodinger type equation may be stated

(*) (¢ = Lyu+pu=f

where p is a signed measure on E, y = p*t — p~, and f € LP(E,m). The problem is to find the
convenient class of measures p which ensure existence and uniqueness (in a weak sense) of the solutions
for the equation (x).

In the classical case (e.g. if £ = A and p has a density g with respect to the Euclidean Lebesgue
measure m) the appropriate class is the well known Kato class (see e.g. [ChZa 95]) and a probabilistic
tool is the continuous additive functional A; = fg go Xsds. In order to show that the Feynman-Kac
semigroup

Qif(x) = E¥(exp(—A:) fo X;), z€E,

has A — i as infinitesimal generator, a main argument is the so called " Khas'minskii Lemma” which gives
evaluations for the mean of the exponential exp(A4;). Notice that a central result is the characterization
of the Kato class (given by M. Aizenman and B. Simon [AiSi 82]) using the potential of the continuous

additive functional (A;)i>0: Ual = E / go Xsds, g > 0. This technique has been extended by
0

R.K. Getoor [Ge 99] to the frame given by a right process (see the references therein for many other
contributions), the extended Kato class is replacing here the classical one. Recall that in particular these
measures charge no m-semipolar set.

In this paper we establish the Feynman-Kac formula associated with the equation (x) for the essentially
larger class of measures charging no m-polar set, such a measure may be even carried by an m-semipolar
set and therefore the methods based on continuous additive functionals fail. Our technique applies to the
typical example given by the heat operator

0
L=A 5
in R"*!, where A is the Laplacean in R™ and p is the n-dimensional Lebesgue measure on a horizontal
hyperplane in R"*1, which is a semipolar set for the process in R"*! having the generator A — %. Notice
that this example is out of rich using the known Feynman-Kac formula methods.
The measures we are considering are precisely the Revuz measures of the positive left (continuous)
additive functionals (abbreviated PLAFs); see [FiGe 03] and [BeBo 04].
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We show that the Feynman-Kac formula holds for PLAFs, however it is necessary to replace the usual
exponential exp(A;) by two types of ”Stieltjes exponentials”, denoted by Exp(A); and Exp(A);:
Exp(A”)

= f OXt)7

Qtf(x) = Er( EXp(AJr)t

where AT (resp. A7) is the PLAF having u™ (resp. x~) as Revuz measure.

1 Preliminaries

Let X = (Q, F,Fi, X4, 0:,¢) be a Borel right process with state space F, a metrizable Lusin topological
space. Let further U = (U, )a>0 be the resolvent of kernels associated with X, i.e.,

Unf(z) = Em/ e fo X,dt,
0

forall « > 0, x € E and f € pB; here B denotes the Borel o-algebra on E and pB the set of all positive
numerical B-measurable functions on E.

Recall that a function v € pB* (B* is the universally completion of B) is named U-supermedian if
aUyv < v for all & > 0. A U-supermedian function is named U -excessive if in addition sup aU,v = v.

«
We denote by E(U) the set of all U-excessive functions on E. If v is U-supermedian then the function

v := sup aU,v is U-excessive.
a>0
A o-finite measure £ on (F, B) is termed U-excessive provided that £ o alU, < £ for all « > 0. We

denote by Exc(U) the set of all U-excessive measures on E. A U-excessive measure of the form po U
(where u is a positive o-finite measure) is called potential.

If ¢ > 0 we consider the bounded sub-Markovian resolvent of kernels U, = (Uy+a)a>o0- Since U, is
the resolvent associated with a transient Borel right process with state space E (the g-subprocess of X)
it follows that E is semisaturated with respect to Uy, i.e., every U,-excessive measure dominated by a
potential Ug-excessive measure is also a potential.

For each v € £(Uy) and every subset M of E let

Réwv = inf{u € EUy)/u>von M}

be the reduced function of v on M (with respect to £(U,)). It is known that if M € B then R)'v is a

universally B-measurable U/;-supermedian function and we put Bé\/f v = ngM\v.

Let p be a o-finite measure on E. A subset M of E is called u-polar if there exists My € B, My D M
such that Bé\/[‘)l = 0 p-a.e. The set M is named nearly Borel if for every finite measure g on E there
exists a set My C M, My € B, such that the set M\M;is p-polar and p-negligible.

We denote by B™ the o-algebra of all nearly Borel subsets of E. We have B C B® C B" and
EU,) C pB".

In the sequel m will be a fixed U-excessive measure. Clearly the measure m is U,-excessive for all
q > 0. We denote by A(m) the set of all nearly Borel sets which are m-polar.

Let 0, be the set of all positive o-finite measures charging no set from N (m).

A set N € B" is m-inessential if it belongs to N'(m) and R)'1 = 0 on E\N. We remark that every
m-~polar set is the subset of a Borel measurable m-inessential set.

A property depending on = € F is said to hold m-quasi everywhere (abbreviated m-q.e.) if the set of
all z € E for which it does not hold is m-polar.

Recall that the fine topology is the topology on E generated by all U;-excessive functions. A function
f € pB" is called m-finely continuous if it is finely continuous outside a set from N (m). If g € pB™ then
a m-fine version of g is a function f which is m-finely continuous and f = g m-a.e.

By Theorem 4.4.2 in [BeBo 04] it follows that if £ € Exc(U,) and & < m then there exists a m-fine
version of the Radon-Nikodym derivative d¢/dm.

If w € 0y and g > 0 then by Theorem 6.1.2 in [BeBo 04] there exists a kernel VI on (E, B") which
is regular strongly supermedian with respect to U, such that u(f) = Ly(m, V] f) for all f € pB, where
L, denotes the energy functional associated with U,; see (A1) in Appendix. The kernel V¢ is uniquely
determined m-q.e. and for every £ € Exc(U,) such that & < m the following Revuz formula holds:

Ly(&, Vi f) = Lg(m, Vi(tf)), for all f € pB",



where ¢ is a m-fine version of the Radon-Nikodym derivative d¢/dm. The map pu —— V1 is called the
Revuz correspondence.
The following assertion follows by Proposition 2.2 and the proof of Theorem 3.1 in [BeBo 05].

(1.1) If p € O, then there exists a m-inessential set N € B such that for all ¢,¢’ > 0, ¢’ > g we have
on E\N : Vg = Vi + (¢ — U,V

Let U* = (Uj)a>0 be a sub-Markovian resolvent of kernels on (£, B) such that o(pB N EU;)) = B,
E(Uy) is min-stable, 1 € E(Uy) (for one ¢ > 0) and /fUagdm = /gU;:fdm for all f,g € pB and o > 0;

see Corollary 2.4 in [BeBoR6 06] for the existence of such a resolvent. Notice that if g € p3 is such that
Uyg < 0o m-a.e. then Ujg-m is a Ug-excessive measure which is a potential, Uyg-m = (g-m) o U,.
Particularly U; g has a m-fine version denoted by Uzg.

Lemma 1.1. If p € Oy, f,g € pB"™ and q > 0 is such that U;g < 0o m-a.e. then

[ avisam= [ T7gan

Proof. The assertion follows by the Revuz formula,

[ Tzadu = Lo V(T30 = Lo(Usg - m. Vi) = Lallg - m) o Up Vi) = [ gV gam.
O

A measure p € O, is called smooth provided that there exists an increasing sequence (Ag)r C B™
such that u(Ay) < oo for all k and ir’if Rf\Ak U,1 = 0 m-a.e. for one (and therefore for all) ¢ > 0.

(1.2) By Theorem 6.3.1 in [BeBo 04] it follows that a measure u € 0, is smooth if and only if there
exists an increasing sequence (Ay)r C B™ such that i%f Rf\A’f Uyl =0 m-ae. and ViI(14,) < 0o m-a.e.

for all k. In particular if V71 < co m-a.e. for one ¢ > 0 then the measure x is smooth.

Extended Kato class
For p € 0, and ¢ > 0 we define

Cq(p) = inf{a >0/ Vil <a m-qe.}.
Clearly the function ¢ — ¢,(u) is decreasing and we put

c(p) := inf ¢q(p) = lim Cq(p).

q>0 q—o00
For p € [1, 00| we denote by || - ||, the norm in LP = LP(E, m).

Proposition 1.2. The following assertions hold for a measure p € O .
i) If p charges no m-semipolar set then for all ¢ > 0 we have

q(p) = IV1]leo = sup{p(Ugsg)/g € pB", |lgllL < 1}.
1) We have ¢(u) < oo if and only if ¢;(p) < oo for all ¢ > 0. In this case p will be a smooth measure.

Proof. i) If i charges no m-semipolar set then the function V1 is finely continuous and therefore ¢, (1) =

[Vii1]lsc. By Lemma 1.1 we have Sup{/gV;’ldm/g € pB", |lglly < 1} = sup{u(Usg)/g € pB", |lgllx < 1}.

i1) Assume that ¢,(u) is finite for one ¢ > 0, then by (1.1) it follows that it is finite for all ¢ > 0.
From V{1 < co m-a.e. and by (1.2) we conclude that the measure y is smooth. O

If w € 0, and ¢ > 0, following [Ge 99], we define dually

cq(p) = sup{u(Uyg)/g € pB", |lgl1 < 1}



and let
c(p) == inf cq(p) = lm cq(p).

q>0 q— o0

Analogously (as in Proposition 1.2) one can see that: ¢(u) < oo if and only if ¢,(1) < oo for all ¢ > 0. In
this case p will be a smooth measure.

Remark. @) Proposition 1.2 i) shows that our definition of ¢,(u) agrees with that one considered in
[Ge 99] (see also [StVo 96]) in the particular case when the measure p charges no m-semipolar set.

1) The "extended Kato class” we shall consider in Section 4 will be that of all measures p € G,
such that ¢(u) < 1 and ¢(u) < oo; as in [Ge 99] two conditions are occurring, since we are not in the
symmetric case. Notice that condition ¢,(x) < oo is merely a boundedness property of the ”potential”
V11, the classical Kato class being rather a boundedness and continuity property of V/71.

2 Stieltjes exponentials of a positive left additive functional

Throughout this section we assume that the given right process is transient, that is the kernel U := sup U,
a>0

is proper (i.e., there exists f € bpB, f > 0, such that Uf < 1).

Let further m be a U-excessive measure on E. Recall that a positive left additive functional (abbre-
viated PLAF) of the process X with respect to m is a family A = (A;);>¢ of F;-measurable functions,
Ay i Qg — [0,00], where Q4 € F (24 is called defining set for A), and there exists a m-inessential set
N4 (called exceptional set for A), such that the following assertions hold:

e P(Q24) =1for all x € E\Ny4 and 6;(Q4) C Q4 for all t > 0;

e For all w € Q4 the map t — A;(w) is increasing and left continuous on [0, 0], finite valued on
[0, ((w)), with Ag(w) =0 and A;([A]) =0 for all t > 0;

e There exists a function a € pB™ such that for every w € Q4 we have Agy (w) = a(Xp(w));

o Apys(w) = A(w) + As(0(w)) for all w € Q4 and s,t > 0.

The following assertion hold for a PLAF A = (A;);>¢ of X with respect to m.
a) The exceptional set N4 may be replaced by a second one of the same type, which in addition
belongs to B.
b) If A = (A¢)i>0 is a PLAF such that ¢ — A;(w) is continuous on [0, ((w)) for all w € Q4, then A
is called positive continuous additive functional (abbreviated PCAF).
¢) We denote by A = (4);>0 (resp. A = (%;);>0) the continuous (resp. discontinuous) part of A,
ie.,
0, it t=0
g _
A= > AA,, i >0,

0<s<t

where AA, = A,, — A, and A; := A; — U,. Tt is easy to check (see e.g. page 182 in [Sh 88]) that U
(resp. 4) is a PLAF of X (resp. a PCAF of X), having the same defining and exceptional sets as A.
d) We denote by A = (A;)¢>0 the family of maps A; : Q4 — [0, 00] defined for all ¢ > 0 and w € Q4
by
Ay(w) = Ay (w) = [ ]dAs(w).
0,t

Clearly ¢ — gt (w) is increasing, right continuous, and for all s > 0 and ¢ > 0 we have
Aore(w) = Ay(w) + A(0,(w)).

e) For all n > 1 we shall define now inductively two types of ”compensated nth powers” of the PLAF
A = (Ay)¢>0: the Fi-measurable functionals A" = (Al[gn])tzo and A" = (AL”])QO, Al[fn], A,E"] 1 Q4 —
[0, 0] given by, ALO] = ELO] =1 and

A£n+1] —(n+ 1)/ AL"]dAS7 A“£n+1] =(n+1) Agn}dAs.
[0,1) [0.%]



It is easy to see that for allw € 24 and n > 1 the map t — Ag"] (w) (resp. t — ZL”} (w)) is increasing and

left continuous (resp. right continuous). Notice that if ¢ > 0 then Et, = sup dA, = dA, = Ay
s<t J[0,s] [0,t)

We have also C£~4t = Z AA,.

0<s<t

The proofs of the following three propositions will be presented in (A2) in Appendix.
Proposition 2.1. For every n € N* and t > 0 we have

Al = ZOkA[kA[" N, if s>0 Zcﬁ AW A (g,) if s>o.
k=0

Proposition 2.2. For every n € N* and t > 0 we have

caln "'[”] c n
A£ ] = %t = (At) )

Qi = ) > AAGAA, A4, AT =S chalur]
0<51<52<...<s5,<t k=0
ke n k] [n]
ZC’ A , U, > AA, AA,, ... AA,, .

0<s51<s2<...<sp <t

Stieltjes exponentials

In the sequel we shall consider the Stieltjes exponentials of the positive left continuous additive func-
tional A = (A)¢>0, corresponding to the two compensated nth powers Al and Al respectively (Stieltjes
exponentials for right continuous additive functionals have been considered in [Yi 97] and [StumSt 00]).

The functionals Exp(A) = (Exp(A))e>0 and Exp(A) = (Exp(A);)s>0 , Exp(A);, Bxp(A); : Q4 — [0, 00
are defined by
EXp Z A ) EXp Z

Clearly, for w € €4 the functionals ¢ — Exp(A);(w) and ¢t +— Exp(A)t(w) are increasing, and

oo

Exp(A)o(w) =1, E’))\(TD(A)O(w) = Z a(Xo(w))™ > 1. By Proposition 2.1 we obtain
n=0

Exp(A), s = Exp(A), - Exp(A); 0 0,, Exp(A),; = Exp(A),_ - Exp(A); o 6,
with the convention E}E)(A)O_ = 1. From Proposition 2.2 we get
Exp(A4); = e
and since
cqlkldy l : Ly c
Exp(A) Z S ockaal = Z o AN ﬁ%] = Exp(4), - Exp(4),
=0 " kii=n l 0

we get
Exp(A); = ¢ Exp(4),

and analogously o L
Exp(A); = e *Exp(4);.

Proposition 2.3. Fort > 0 we have

Exp(A), = e [[ (1+44,) 722(_1)"%& ,

0<s<t



L dA;. If w € Qg is such that E/]va(A)t(w) < 00 then

. 1 _
and particularly d (M) = " Expa.

1
[T 0 -adw)

0<s<t

Exp(A); (w) = ™)

Corollary 2.4. For every real number p > 1 and t > 0 we have (E—;p(A)t)p < E—;(B(pA)t.

Proof. Assume that w € Q4 is such that I:];(E)(pA)t(w) < 00. In this case we get pAAy(w) < 1 and the
assertion follows from Proposition 2.3 and since

1 1

0< , <l= < .
v b (1—2) ~ 1—px

3 Feynman-Kac formula for PLAF's

In this section we assume, as in Section 2, that the process X is transient.
Let A = (A¢)i>0 be a PLAF of X. If ¢ > 0 we consider the kernel U4 on (E\N4, B" |p\n,) defined
by
Uif(z) = E"L/ e 1foXydA;, € E\Na.
[0,¢)
The kernel Uy = U3, is called the potential kernel of A.
The Revuz measure of A with respect to m is the o-finite measure on (E, B) defined by

va(M) = sup{p(Ua(Lar)) /o U < m}, M € B.

One can show that (cf. [BeBo 04]):
- The Revuz measure v4 of A is a smooth measure.
- Every smooth measure is the Revuz measure of a PLAF.

Let B = (By);>0 be a second PLAF of X. In the sequel, considering the restriction of X to E\(Na U
Npg), we may assume that Nga = Np = ). It is known (see Theorem 6.5.8 in [BeBo 04]) that for each
q > 0 the kernel Uf is regular strongly supermedian (with respect to i) and there exists a sub-Markovian
resolvent of kernels V7 = (V)¢ on (E,B") having UY as initial kernel (i.e., U} = sup V7).

a>0

For each o > 0 we consider the following kernels on (E, B™):

WEe = UL — VUL | WP = U, —aVil,

Wi = S, W = S (UL,
n=0 n=0

Proposition 3.1. If ¢ > 0 and o > 0 then the following assertions hold.
Z) Uy = Ugl —‘quqUA.

e~ . e~

fOXt dAt7 Wé)af(l') = EL/ fOXt dBt

Vif(z) = E / _er
( ) [0,¢) EXp(O[A)t+

0,¢) Exp(@A) iy
iii) Assume further that the jump moments of A and B are disjoint a.s., i.e., P*-a.s. we have
inf(AAt, ABt) = 0, t Z 0.

Then for all n > 1 we have

[n—1] —~[n—1]

efqt Bt
o Xy dBy = Em/
f ¢ t [0,¢) (n — 1)' EXp(OZA)t

(W5 f () = B / S

X;dB
[0,6) (n — 1) Exp(ad)+ foXidbB;,



eiqt A’L’n—l]
xT) = —— ] 0 X4 te
(UR)"f(x) = E* foXidA

iv) W f(z) = Er/ e " Exp(B): foX,dt.

e~ Exp(B),
f o Xdt = E7 / ¢ " ExplB)
0,¢) Exp(ad)ey !

[0,¢) EXp(QA)t
In particular we have

W f(a) = E/ e 1"Exp(B), f o X,dt.
[0.0)

v) With the notation W = W];q’l we have
W +USWy =U, + UpWy < Wy

Proof. i) and ii). Let R be the right hand side of the first equality of i7). If f € pB is such that
UL f < oo, then using also Proposition 2.3 we have

1
RIUL f(z) = E® / [ P— / e % foX,dB, | dA; | =
5/ (@) < ¢  Explad) [0,¢) '

1 1
E””/ - / e % foX,dB, | dA :EI/ e fo X, / — — _ 4A,|dB, =
0,¢) Exp(ad)4 ( [t.0) ) ' 0,0) 0.5 Explad)ey

1 1 1 1
—E’“’/ e‘qsfoXs<1—>dBS: UL f(x —Ew/ e 1 foX.dB.|.
@ [0,0) EXp(aA)S+ « B ( ) [0,0) EXp(OlA)t_;,_

Taking B = A we get U = R4 + aRLUY and therefore (R%),0 is a sub-Markovian resolvent of kernels
having U§ as initial kernel, i.e., R1 = V4 for all @ > 0. Consequently assertion 7) holds. Assertion 7) is a
consequence of i7), letting & — 0 and using the equality E* f[O,C) e foXydAy =Uaf(z) — qUyUaf(z).
i7i) The second equality is a particular case of the first one. To prove this one we shall proceed by
induction. By i) the assertion holds for n = 1. If we assume that it holds for n then we have

~ 1]
-t e—1s

Wq,a ’n—‘rlf ) = E~ / € t EXt / 7fOXS dBS dB;) =
W™y /) ( 0.¢) (n — 1)1 Exp(ad)e ( 0.¢) Exp(ad)st 45

—~[n—1]

B, Exp(ad) / e

B o XsdBs)dB;) =
(/[o,c) (n— 1)!EXP(0~4)t+( [£.€) Bxp(ad),. ! e

e 98 Exp(ad), —~[n—1]
E* / — fo X, / B dBy)dByg) =
( 0.¢c) Exp(ad)s ( 0.5 (n— D! Exp(ad) ' ) dB.)

e 1 —~[n]
E* ¢ foX,B, dB..
/[074) n!Exp(ad)st fo

00 —qs ——
iv) By ii1) we get Z(Wga)”f(x) =E” /[0 5 m [ oXsdBs and so
n=1 ’ S

> ~45 Exp(B)s . .x eat
WL W f(z :Ex/ € s / — _ foX,dt)dB,) =
S WE) @ = e T, e {0 dB)

n=1

— efqt
E””/ EXsz/ ——  foXdt)dB,) =
( [0.0) (Bl [s,¢) Exp(aA)iy vdt) dBs)
E(/ e " f X(/ Exp(B), dB,)dt) = E e fo X, (Exp(B); — 1)d
: Fxolad 4 ° Xpsstz’”/io xp(B), — 1)dt.
0.0) Exp(ad)ey ' [0,¢] 0,¢) Exp(ad); t t

It follows that

Wi f(z) = W f(x) + Z(Wg’a)an’af(x) = E:v/ e~ 9" Exp(B);

f o X,dt.
0,c) Exp(ad)iy '

n=1



v) We have

- ~45Exp(B),
UQW’Qf ) = E* / e It pXt / eifoXsds dA;) =
AW f(z) ( 0.0) ( 0¢) Exp(A)st Jaa)

Exp(A4); e~% Exp(B),
E* — o Xs d dAt =
(/[o,o Exp(B)— (/[t,c) Exp(A)s+ f 5)dA:)

—qs ——
E:E(/ € EXp(B)S fOXé(/ EXp(A)t dAt)dS),
[0,9) [0,5]

Exp(A)s+ Exp(B);_
W’q UAW/Q — E* e E:(E)(B)S OXS Efp(A)t dAt d
95 () + UPW () = E7( /m i fo Xl + /H o dAs) <

Em/ =% Exp(B), f o X, ds = Wi f(x).
[0.0)

Further we get

L dB,)ds)

UsWE (@) =E"(| foX, —
0,s] EXp(B)t_

% Exp(B), / Exp(A)
0,0) Exp(A)st

and therefore

Uqf(z)+Ugng(x):Em(/ e f o X, (1 4 B /[0 B0(A): 15 as).

[0,) Exp(A)s+ 8] ﬁ(/p(B)t_
1
From d Exp(A); = Exp(A): dA;, d(—— )= —
Exp(B):  Exp(B):

[ B p [ BRU [B | Bad,
[0,s] EXp(B)t, [0,s] EXp(B)t, [0,s] EXp(B)t, EXp(B)S,
We conclude that

dB; it follows that

Uygf () + URWE f(z) = B*(|  foX,

t
— dB;)ds) =
0,) Exp(A)s Exp(B)s— t)ds)

Exp(B); -

e_qsﬁ)\i)(B)s, Exp(A)s +/ Exp(A)
[0.5]

E* OXSM /E\bjpi(A)tdAtd :W/q UqW/q .
o7 % . = 0 [, gy 4019 = Wil (2)+ VWit (o)

Remark. For the first equality of assertion 4z) in Proposition 3.1 see also Theorem 7.3 in [FiGe 03].

The next result is a "Khas’'minskii Lemma” for Stieltjes exponentials of positive left additive func-
tionals.

Proposition 3.2. The following assertion hold for ¢ > 0.
i) We have éy(va) = inf{a > 0/U%1 < a m-g.e.}.
1) If ¢g(va) < v < 1 then the following inequalities hold m-q.e. (in x) on E for each t > 0:

elt
1—7
Proof. i) By Proposition 2.2 in [BeBo 05] and assertion i) of Proposition 3.1 we have VI = U}.

ii) Since U%1 < v m-qg.e. we deduce inductively that we have (U%)"1 <" m-q.e. and therefore by
Proposition 3.1 #it) we get m-q.e. (in x)

E“’(/ﬂn]) <nly"e?  for alln € N*, EI(E;E)(A)t) <

ALNdA, < (n+ 1) E” / e AldA, <
0.1

[0,¢]
(n+ D! (U1 < (n+ 1)14" e,

Consequently the second inequality of assertion #i) also holds. O



We can present now the perturbed semigroup defined by a Feynman-Kac formula. For each t > 0 we
define the kernel @; on (E,B*) by

Q:+f(x) := E*( — foXy), fepBY, xz€E,

Exp(A);

where recall that E}E)(B)O, = 1. Notice that by Proposition 3.1 iv) we have for every f € B* and ¢ > 0:

Wif = / e Q. f dt.
0

Proposition 3.3. The following assertions hold.
i) The family (Q¢)i>o0 is a semigroup of kernels on (E,BY).

i) Assume that qo is such that ¢, (vg) < 1 and let po > 1 be such that o := Z%qu(ug) < 1.

Then for each p € [py, 0], t > 0, g > qo, the kernels Q, Wg,] and W];q are bounded linear operators on
LP(E,m) and

1QellLr—rr < IWg o —rr < IWgllLo—rr <

L=’ (1 =7)(g—q0)

Ifp € [po, 00) and f € L then lim [|Qcf — fll, = 0, s laWg f — fll, = 0.

Exp(B),_

EXp(A). is a multiplicative

Proof. i) The semigroup property follows since the functional ¢t — N; :=

functional:
Qi(Qsf)(x) = E*(N; - EX*(Ny - fo X)) = E*(N; - Nyo 8y foXips = E*(Nyys - f o Xivs) = Quysf ().

1 1 — ;e
ii) If p < co and p’ > 1 is such that — 4+ — = 1 then by Corollary 2.4 we get (Exp(B);- )" < Exp(p'B);-
and we have also ¢, (vpy B) = p'¢y, (vB) < 1. Therefore by Proposition 3.2 i) we obtain

edot

’

E*((Exp(B)—)") <

m-q.e. (in x).
L= (in =)

Hence if f € pB™ N LP(E,m) and t > 0 then
edot
-7

It follows that if f = 0 m-a.e. then Q;f = 0 m-a.e. We conclude that if f € LP(E,m) then Q.f €
LP(FE,m) and

|Qef (2)P < |E*(Exp(B)i— - f o X)|P < E*(|fIP 0 X) - E*((Exp(B):- )" )P~ < Ri(|f[P)() - ( P

1Qeflp <

1-

The case p = oo follows by Proposition 3.2 7).

By assertion iv) of Proposition 3.1 it follows that the family (V[/}’Jq B)g>1 is dominated by the resolvent
of kernels associated with the semigroup (Q7):>0 (where (QF)¢>0 is (Q¢)r>0 in the case A =0) and by v)

we have Wg’ < W];q. Consequently we get

Willlpr—rr < IWHllLr—1 g/ e QS| Lo— rrdt < / eT Ittt = —
IW5llLe—rr < |[WgllLe—1r ; 1Q¢ |l r— v A =00 =)

If p € [po, o) then

Quf (@) - Pof()] < B* <|m —1]-Iflo Xt> <

Exp(B):—

B ((E”xpw)t i

)Iflo >+Ew((Exp<> Diffe X:).



edot

1/p’ PY(2))1/P
%) (Pe(|f17) (@)™,

zw@%w»u -

—; o T ((Exp ' \\1/p’ PY(z))1/P
EWMQVE)S@«EMEH>><HUH<» <

edot

E*((Exp(B)-—1)| floXy) < (E"((Exp(B)e-—1)" )7 (P(If|) ()7 < (7)1/”'~(Pt(|f|”)(fv))1/”~

1—
Since we have m-a.e. (in x)

/

B Exp(A): ")

’

lim B (Exp(p'B), - (1 =0, lim B*((Exp(B),- — 1)"') =0

it follows that }1_1%/|Qtf — P,f[Pdm = 0 and because [|Q¢f — flp, < |Qcf — Pifll, + |1Pef — fllp,
lim;_o || P.f — fllp = 0, we deduce that %in(l) 1Qef — fll, = 0. From W/ f = / e ' Q; fdt we conclude
- 0
that lim ||[¢gWgf — f|l, = 0. O
q— o0

The strongly continuous semigroup of bounded operators on L?(E,m) given by Proposition 3.3 is
called Feynman-Kac semigroup.
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