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Introduction

Let L be the infinitesimal operator of the strongly continuous sub-Markovian semigroup of contractions
on Lp(E,m), induced by a Borel right process X with state space E, where m is a fixed excessive
measure and p ∈ [1,∞). In this frame one can consider measure perturbations of L, namely the following
Schrödinger type equation may be stated

(∗) (q − L)u + µu = f

where µ is a signed measure on E, µ = µ+ − µ−, and f ∈ Lp(E,m). The problem is to find the
convenient class of measures µ which ensure existence and uniqueness (in a weak sense) of the solutions
for the equation (∗).

In the classical case (e.g. if L = ∆ and µ has a density g with respect to the Euclidean Lebesgue
measure m) the appropriate class is the well known Kato class (see e.g. [ChZa 95]) and a probabilistic
tool is the continuous additive functional At =

∫ t

0
g ◦ Xs ds. In order to show that the Feynman-Kac

semigroup
Qtf(x) = Ex(exp(−At) f ◦Xt), x ∈ E,

has ∆−µ as infinitesimal generator, a main argument is the so called ”Khas’minskii Lemma” which gives
evaluations for the mean of the exponential exp(At). Notice that a central result is the characterization
of the Kato class (given by M. Aizenman and B. Simon [AiSi 82]) using the potential of the continuous

additive functional (At)t≥0: UA1 = E·
∫ ∞

0

g ◦ Xs ds, g ≥ 0. This technique has been extended by

R.K. Getoor [Ge 99] to the frame given by a right process (see the references therein for many other
contributions), the extended Kato class is replacing here the classical one. Recall that in particular these
measures charge no m-semipolar set.

In this paper we establish the Feynman-Kac formula associated with the equation (∗) for the essentially
larger class of measures charging no m-polar set, such a measure may be even carried by an m-semipolar
set and therefore the methods based on continuous additive functionals fail. Our technique applies to the
typical example given by the heat operator

L = ∆− ∂

∂t

in Rn+1, where ∆ is the Laplacean in Rn and µ is the n-dimensional Lebesgue measure on a horizontal
hyperplane in Rn+1, which is a semipolar set for the process in Rn+1 having the generator ∆− ∂

∂t . Notice
that this example is out of rich using the known Feynman-Kac formula methods.

The measures we are considering are precisely the Revuz measures of the positive left (continuous)
additive functionals (abbreviated PLAFs); see [FiGe 03] and [BeBo 04].
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We show that the Feynman-Kac formula holds for PLAFs, however it is necessary to replace the usual
exponential exp(At) by two types of ”Stieltjes exponentials”, denoted by Exp(A)t and Ẽxp(A)t:

Qtf(x) = Ex(
Ẽxp(A−)t−

Exp(A+)t
f ◦Xt),

where A+ (resp. A−) is the PLAF having µ+ (resp. µ−) as Revuz measure.

1 Preliminaries

Let X = (Ω,F ,Ft, Xt, θt, ζ) be a Borel right process with state space E, a metrizable Lusin topological
space. Let further U = (Uα)α>0 be the resolvent of kernels associated with X, i.e.,

Uαf(x) = Ex

∫ ∞

0

e−αtf ◦Xtdt,

for all α > 0, x ∈ E and f ∈ pB; here B denotes the Borel σ-algebra on E and pB the set of all positive
numerical B-measurable functions on E.

Recall that a function v ∈ pBu (Bu is the universally completion of B) is named U-supermedian if
αUαv ≤ v for all α > 0. A U-supermedian function is named U-excessive if in addition sup

α
αUαv = v.

We denote by E(U) the set of all U-excessive functions on E. If v is U-supermedian then the function
v̂ := sup

α>0
αUαv is U-excessive.

A σ-finite measure ξ on (E,B) is termed U-excessive provided that ξ ◦ αUα ≤ ξ for all α > 0. We
denote by Exc(U) the set of all U-excessive measures on E. A U-excessive measure of the form µ ◦ U
(where µ is a positive σ-finite measure) is called potential.

If q > 0 we consider the bounded sub-Markovian resolvent of kernels Uq = (Uq+α)α>0. Since Uq is
the resolvent associated with a transient Borel right process with state space E (the q-subprocess of X)
it follows that E is semisaturated with respect to Uq, i.e., every Uq-excessive measure dominated by a
potential Uq-excessive measure is also a potential.

For each v ∈ E(Uq) and every subset M of E let

RM
q v := inf{u ∈ E(Uq)/u ≥ v on M}

be the reduced function of v on M (with respect to E(Uq)). It is known that if M ∈ B then RM
q v is a

universally B-measurable Uq-supermedian function and we put BM
q v = R̂M

q v.
Let µ be a σ-finite measure on E. A subset M of E is called µ-polar if there exists M0 ∈ B, M0 ⊃ M

such that BM0
q 1 = 0 µ-a.e. The set M is named nearly Borel if for every finite measure µ on E there

exists a set M1 ⊂ M , M1 ∈ B, such that the set M\M1is µ-polar and µ-negligible.
We denote by Bn the σ-algebra of all nearly Borel subsets of E. We have B ⊂ Bn ⊂ Bu and

E(Uq) ⊂ pBn.
In the sequel m will be a fixed U-excessive measure. Clearly the measure m is Uq-excessive for all

q > 0. We denote by N (m) the set of all nearly Borel sets which are m-polar.
Let σm be the set of all positive σ-finite measures charging no set from N (m).
A set N ∈ Bn is m-inessential if it belongs to N (m) and RN

q 1 = 0 on E\N . We remark that every
m-polar set is the subset of a Borel measurable m-inessential set.

A property depending on x ∈ E is said to hold m-quasi everywhere (abbreviated m-q.e.) if the set of
all x ∈ E for which it does not hold is m-polar.

Recall that the fine topology is the topology on E generated by all Uq-excessive functions. A function
f ∈ pBn is called m-finely continuous if it is finely continuous outside a set from N (m). If g ∈ pBn then
a m-fine version of g is a function f which is m-finely continuous and f = g m-a.e.

By Theorem 4.4.2 in [BeBo 04] it follows that if ξ ∈ Exc(Uq) and ξ � m then there exists a m-fine
version of the Radon-Nikodym derivative dξ/dm.

If µ ∈ σm and q > 0 then by Theorem 6.1.2 in [BeBo 04] there exists a kernel V q
µ on (E,Bn) which

is regular strongly supermedian with respect to Uq such that µ(f) = Lq(m,V q
µ f) for all f ∈ pB, where

Lq denotes the energy functional associated with Uq; see (A1) in Appendix. The kernel V q
µ is uniquely

determined m-q.e. and for every ξ ∈ Exc(Uq) such that ξ � m the following Revuz formula holds:

Lq(ξ, V q
µ f) = Lq(m,V q

µ (tf)), for all f ∈ pBn,
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where t is a m-fine version of the Radon-Nikodym derivative dξ/dm. The map µ 7−→ V q
µ is called the

Revuz correspondence.
The following assertion follows by Proposition 2.2 and the proof of Theorem 3.1 in [BeBo 05].

(1.1) If µ ∈ σm then there exists a m-inessential set N ∈ B such that for all q, q′ > 0, q′ > q we have
on E\N : V q

µ = V q′

µ + (q′ − q)UqV
q′

µ .

Let U∗ = (U∗
α)α>0 be a sub-Markovian resolvent of kernels on (E,B) such that σ(pB ∩ E(U∗q )) = B,

E(U∗q ) is min-stable, 1 ∈ E(U∗q ) (for one q > 0) and
∫

fUαgdm =
∫

gU∗
αfdm for all f, g ∈ pB and α > 0;

see Corollary 2.4 in [BeBoRö 06] for the existence of such a resolvent. Notice that if g ∈ pB is such that
U∗

q g < ∞ m-a.e. then U∗
q g · m is a Uq-excessive measure which is a potential, U∗

q g · m = (g · m) ◦ Uq.
Particularly U∗

q g has a m-fine version denoted by U∗
q g.

Lemma 1.1. If µ ∈ σm, f, g ∈ pBn and q > 0 is such that U∗
q g < ∞ m-a.e. then∫

gV q
µ fdm =

∫
fU∗

q gdµ.

Proof. The assertion follows by the Revuz formula,∫
fU∗

q gdµ = Lq(m,V q
µ (fU∗

q g)) = Lq(U∗
q g ·m,V q

µ f) = Lq((g ·m) ◦ Uq, V
q
µ f) =

∫
gV q

µ fdm.

A measure µ ∈ σm is called smooth provided that there exists an increasing sequence (Ak)k ⊂ Bn

such that µ(Ak) < ∞ for all k and inf
k

RE\Ak
q Uq1 = 0 m-a.e. for one (and therefore for all) q > 0.

(1.2) By Theorem 6.3.1 in [BeBo 04] it follows that a measure µ ∈ σm is smooth if and only if there
exists an increasing sequence (Ak)k ⊂ Bn such that inf

k
RE\Ak

q Uq1 = 0 m-a.e. and V q
µ (1Ak

) < ∞ m-a.e.

for all k. In particular if V q
µ 1 < ∞ m-a.e. for one q > 0 then the measure µ is smooth.

Extended Kato class
For µ ∈ σm and q > 0 we define

ĉq(µ) := inf{α > 0/ V q
µ 1 ≤ α m-q.e.}.

Clearly the function q 7−→ ĉq(µ) is decreasing and we put

ĉ(µ) := inf
q>0

ĉq(µ) = lim
q→∞

ĉq(µ).

For p ∈ [1,∞] we denote by ‖ · ‖p the norm in Lp = Lp(E,m).

Proposition 1.2. The following assertions hold for a measure µ ∈ σm.
i) If µ charges no m-semipolar set then for all q > 0 we have

ĉq(µ) = ‖V q
µ 1‖∞ = sup{µ(U∗

q g)/g ∈ pBn, ‖g‖1 ≤ 1}.

ii) We have ĉ(µ) < ∞ if and only if ĉq(µ) < ∞ for all q > 0. In this case µ will be a smooth measure.

Proof. i) If µ charges no m-semipolar set then the function V q
µ 1 is finely continuous and therefore ĉq(µ) =

‖V q
µ 1‖∞. By Lemma 1.1 we have sup{

∫
gV q

µ 1dm/g ∈ pBn, ‖g‖1 ≤ 1} = sup{µ(U∗
q g)/g ∈ pBn, ‖g‖1 ≤ 1}.

ii) Assume that ĉq(µ) is finite for one q > 0, then by (1.1) it follows that it is finite for all q > 0.
From V q

µ 1 < ∞ m-a.e. and by (1.2) we conclude that the measure µ is smooth.

If µ ∈ σm and q > 0, following [Ge 99], we define dually

cq(µ) := sup{µ(Uqg)/g ∈ pBn, ‖g‖1 ≤ 1}
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and let
c(µ) := inf

q>0
cq(µ) = lim

q→∞
cq(µ).

Analogously (as in Proposition 1.2) one can see that: c(µ) < ∞ if and only if cq(µ) < ∞ for all q > 0. In
this case µ will be a smooth measure.

Remark. i) Proposition 1.2 i) shows that our definition of ĉq(µ) agrees with that one considered in
[Ge 99] (see also [StVo 96]) in the particular case when the measure µ charges no m-semipolar set.

ii) The ”extended Kato class” we shall consider in Section 4 will be that of all measures µ ∈ σm

such that ĉ(µ) < 1 and c(µ) < ∞; as in [Ge 99] two conditions are occurring, since we are not in the
symmetric case. Notice that condition ĉq(µ) < ∞ is merely a boundedness property of the ”potential”
V q

µ 1, the classical Kato class being rather a boundedness and continuity property of V q
µ 1.

2 Stieltjes exponentials of a positive left additive functional

Throughout this section we assume that the given right process is transient, that is the kernel U := sup
α>0

Uα

is proper (i.e., there exists f ∈ bpB, f > 0, such that Uf ≤ 1).
Let further m be a U-excessive measure on E. Recall that a positive left additive functional (abbre-

viated PLAF) of the process X with respect to m is a family A = (At)t≥0 of Ft-measurable functions,
At : ΩA → [0,∞], where ΩA ∈ F (ΩA is called defining set for A), and there exists a m-inessential set
NA (called exceptional set for A), such that the following assertions hold:

• P x(ΩA) = 1 for all x ∈ E\NA and θt(ΩA) ⊂ ΩA for all t > 0;
• For all ω ∈ ΩA the map t 7→ At(ω) is increasing and left continuous on [0,∞], finite valued on

[0, ζ(ω)), with A0(ω) = 0 and At([∆]) = 0 for all t ≥ 0;
• There exists a function a ∈ pBn such that for every ω ∈ ΩA we have A0+(ω) = a(X0(ω));
• At+s(ω) = At(ω) + As(θt(ω)) for all ω ∈ ΩA and s, t ≥ 0.

The following assertion hold for a PLAF A = (At)t≥0 of X with respect to m.
a) The exceptional set NA may be replaced by a second one of the same type, which in addition

belongs to B.
b) If A = (At)t≥0 is a PLAF such that t 7−→ At(ω) is continuous on [0, ζ(ω)) for all ω ∈ ΩA, then A

is called positive continuous additive functional (abbreviated PCAF).
c) We denote by cA = (cA)t≥0 (resp. dA = (dAt)t≥0) the continuous (resp. discontinuous) part of A,

i.e.,

dAt =


0, if t = 0∑
0≤s<t

∆As, if t > 0,

where ∆As = As+ − As, and cAt := At − dAt. It is easy to check (see e.g. page 182 in [Sh 88]) that dA
(resp. cA) is a PLAF of X (resp. a PCAF of X), having the same defining and exceptional sets as A.

d) We denote by Ã = (Ãt)t≥0 the family of maps Ãt : ΩA → [0,∞] defined for all t ≥ 0 and ω ∈ ΩA

by

Ãt(ω) := At+(ω) =
∫

[0,t]

dAs(ω).

Clearly t 7−→ Ãt(ω) is increasing, right continuous, and for all s > 0 and t ≥ 0 we have

Ãs+t(ω) = As(ω) + Ãt(θs(ω)).

e) For all n ≥ 1 we shall define now inductively two types of ”compensated nth powers” of the PLAF
A = (At)t≥0: the Ft-measurable functionals A[n] = (A[n]

t )t≥0 and Ã[n] = (Ã[n]
t )t≥0, A

[n]
t , Ã

[n]
t : ΩA →

[0,∞] given by, A
[0]
t = Ã

[0]
t = 1 and

A
[n+1]
t = (n + 1)

∫
[0,t)

A[n]
s dAs, Ã

[n+1]
t = (n + 1)

∫
[0,t]

Ã[n]
s dAs.
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It is easy to see that for all ω ∈ ΩA and n ≥ 1 the map t 7−→ A
[n]
t (ω) (resp. t 7−→ Ã

[n]
t (ω)) is increasing and

left continuous (resp. right continuous). Notice that if t > 0 then Ãt− = sup
s<t

∫
[0,s]

dAu =
∫

[0,t)

dAu = At.

We have also d̃At =
∑

0≤s≤t

∆As.

The proofs of the following three propositions will be presented in (A2) in Appendix.

Proposition 2.1. For every n ∈ N∗ and t ≥ 0 we have

A
[n]
s+t =

n∑
k=0

Ck
nA[k]

s A
[n−k]
t (θs) if s ≥ 0 , Ã

[n]
s+t =

n∑
k=0

Ck
nÃ

[k]
s−Ã

[n−k]
t (θs) if s > 0.

Proposition 2.2. For every n ∈ N∗ and t > 0 we have

cA
[n]
t = c̃A

[n]

t = (cAt)
n

,

dA
[n]
t = n!

∑
0≤s1<s2<...<sn<t

∆As1∆As2 · . . . ·∆Asn , A
[n]
t =

n∑
k=0

Ck
n

cA
[k]
t

dA
[n−k]
t ,

Ã
[n]
t =

n∑
k=0

Ck
n

cA
[k]
t

d̃A
[n−k]

t , d̃A
[n]

t = n!
∑

0≤s1≤s2≤...≤sn≤t

∆As1∆As2 · . . . ·∆Asn
.

Stieltjes exponentials
In the sequel we shall consider the Stieltjes exponentials of the positive left continuous additive func-

tional A = (At)t≥0, corresponding to the two compensated nth powers A[n] and Ã[n] respectively (Stieltjes
exponentials for right continuous additive functionals have been considered in [Yi 97] and [StumSt 00]).
The functionals Exp(A) = (Exp(A)t)t≥0 and Ẽxp(A) = (Ẽxp(A)t)t≥0 , Exp(A)t, Ẽxp(A)t : ΩA → [0,∞]
are defined by

Exp(A)t(ω) :=
∞∑

n=0

1
n!

A
[n]
t (ω) , Ẽxp(A)t(ω) :=

∞∑
n=0

1
n!

Ã
[n]
t (ω).

Clearly, for ω ∈ ΩA the functionals t 7−→ Exp(A)t(ω) and t 7−→ Ẽxp(A)t(ω) are increasing, and

Exp(A)0(ω) = 1, Ẽxp(A)0(ω) =
∞∑

n=0

a(X0(ω))n ≥ 1. By Proposition 2.1 we obtain

Exp(A)s+t = Exp(A)s · Exp(A)t ◦ θs, Ẽxp(A)s+t = Ẽxp(A)s− · Ẽxp(A)t ◦ θs

with the convention Ẽxp(A)0− = 1. From Proposition 2.2 we get

Exp(cA)t = e
cAt

and since

Exp(A)t =
∞∑

n=0

1
n!

∑
k+l=n

Ck
n

cA
[k]
t

dA
[l]
t = (

∞∑
k=0

1
k!

cA
[k]
t )

∞∑
l=0

1
l!

dA
[l]
t = Exp(cA)t · Exp(dA)t

we get
Exp(A)t = e

cAtExp(dA)t

and analogously
Ẽxp(A)t = e

cAtẼxp(dA)t.

Proposition 2.3. For t > 0 we have

Exp(A)t = e
cAt

∏
0≤s<t

(1 + ∆As) ,
1

Exp(A)t+
=

∞∑
n=0

(−1)n 1
n!

Ã
[n]
t ,
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and particularly d
(

1

Exp(A)t+

)
= − 1

Exp(A)t+
dAt. If ω ∈ ΩA is such that Ẽxp(A)t(ω) < ∞ then

Ẽxp(A)t(ω) = e
cAt(ω) 1∏

0≤s≤t

(1−∆As(ω))
.

Corollary 2.4. For every real number p > 1 and t > 0 we have (Ẽxp(A)t)p ≤ Ẽxp(pA)t.

Proof. Assume that ω ∈ ΩA is such that Ẽxp(pA)t(ω) < ∞. In this case we get p∆At(ω) < 1 and the
assertion follows from Proposition 2.3 and since

0 < x , px < 1 =⇒ 1
(1− x)p

≤ 1
1− px

.

3 Feynman-Kac formula for PLAFs

In this section we assume, as in Section 2, that the process X is transient.
Let A = (At)t≥0 be a PLAF of X. If q ≥ 0 we consider the kernel Uq

A on
(
E\NA,Bn |E\NA

)
defined

by

Uq
Af(x) = Ex

∫
[0,ζ)

e−qtf ◦XtdAt, x ∈ E\NA.

The kernel UA = U◦
A is called the potential kernel of A.

The Revuz measure of A with respect to m is the σ-finite measure on (E,B) defined by

νA(M) := sup{µ(UA(1M ))/µ ◦ U ≤ m}, M ∈ B.

One can show that (cf. [BeBo 04]):
- The Revuz measure νA of A is a smooth measure.
- Every smooth measure is the Revuz measure of a PLAF.

Let B = (Bt)t≥0 be a second PLAF of X. In the sequel, considering the restriction of X to E\(NA ∪
NB), we may assume that NA = NB = ∅. It is known (see Theorem 6.5.8 in [BeBo 04]) that for each
q ≥ 0 the kernel Uq

A is regular strongly supermedian (with respect to Uq) and there exists a sub-Markovian
resolvent of kernels Vq = (V q

α )α>0 on (E,Bn) having Uq
A as initial kernel (i.e., Uq

A = sup
α>0

V q
α ).

For each α > 0 we consider the following kernels on (E,Bn):

W q,α
B = Uq

B − αV q
α Uq

B , W q,α = Uq − αV q
α Uq,

W ′q,α
B =

∞∑
n=0

(W q,α
B )nW q,α, W̃ ′q

B =
∞∑

n=0

(Uq
B)nUq.

Proposition 3.1. If q ≥ 0 and α > 0 then the following assertions hold.
i) UA = Uq

A + qUqUA.
ii)

V q
α f(x) = Ex

∫
[0,ζ)

e−qt

Exp(αA)t+
f ◦Xt dAt, W q,α

B f(x) = Ex

∫
[0,ζ)

e−qt

Exp(αA)t+
f ◦Xt dBt.

iii) Assume further that the jump moments of A and B are disjoint a.s., i.e., P x-a.s. we have

inf(∆At,∆Bt) = 0, t ≥ 0.

Then for all n ≥ 1 we have

(W q,α
B )nf(x) = Ex

∫
[0,ζ)

e−qt B̃t

[n−1]

(n− 1)! Exp(αA)t+
f ◦Xt dBt = Ex

∫
[0,ζ)

e−qt B̃t

[n−1]

(n− 1)! Exp(αA)t
f ◦Xt dBt,
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(Uq
A)nf(x) = Ex

∫
[0,ζ)

e−qt Ã
[n−1]
t

(n− 1)!
f ◦Xt dAt.

iv) W ′q,α
B f(x) = Ex

∫
[0,ζ)

e−qt Ẽxp(B)t

Exp(αA)t+
f ◦Xtdt = Ex

∫
[0,ζ)

e−qt Ẽxp(B)t

Exp(αA)t
f ◦Xtdt.

In particular we have

W̃ ′q
B f(x) = Ex

∫
[0,ζ)

e−qtẼxp(B)t f ◦Xtdt.

v) With the notation W ′q
B := W ′q,1

B we have

W ′q
B + Uq

AW ′q
B = Uq + Uq

BW ′q
B ≤ W̃ ′q

B .

Proof. i) and ii). Let Rq
α be the right hand side of the first equality of ii). If f ∈ pB is such that

Uq
Bf < ∞, then using also Proposition 2.3 we have

Rq
αUq

Bf(x) = Ex

(∫
[0,ζ)

e−qt 1
Exp(αA)t+

EXt

(∫
[0,ζ)

e−qs f ◦Xs dBs

)
dAt

)
=

Ex

∫
[0,ζ)

1
Exp(αA)t+

(∫
[t,ζ)

e−qs f ◦Xs dBs

)
dAt = Ex

∫
[0,ζ)

e−qs f ◦Xs

(∫
[0,s]

1
Exp(αA)t+

dAt

)
dBs =

1
α

Ex

∫
[0,ζ)

e−qs f ◦Xs

(
1− 1

Exp(αA)s+

)
dBs =

1
α

(
Uq

Bf(x)− Ex

∫
[0,ζ)

e−qs 1
Exp(αA)t+

f ◦Xs dBs

)
.

Taking B = A we get Uq
A = Rq

α + αRq
αUq

A and therefore (Rq
α)α>0 is a sub-Markovian resolvent of kernels

having Uq
A as initial kernel, i.e., Rq

α = V q
α for all α > 0. Consequently assertion ii) holds. Assertion i) is a

consequence of ii), letting α → 0 and using the equality Ex
∫
[0,ζ)

e−qtf ◦XtdAt = UAf(x)− qUqUAf(x).
iii) The second equality is a particular case of the first one. To prove this one we shall proceed by

induction. By ii) the assertion holds for n = 1. If we assume that it holds for n then we have

(W q,α
B )n+1f(x) = Ex(

∫
[0,ζ)

e−qtB̃t

[n−1]

(n− 1)! Exp(αA)t+
EXt(

∫
[0,ζ)

e−qs

Exp(αA)s+
f ◦Xs dBs) dBt) =

Ex(
∫

[0,ζ)

B̃t

[n−1]
Exp(αA)t

(n− 1)! Exp(αA)t+
(
∫

[t,ζ)

e−qs

Exp(αA)s+
f ◦Xs dBs) dBt) =

Ex(
∫

[0,ζ)

e−qs

Exp(αA)s+
f ◦Xs(

∫
[0,s]

Exp(αA)t

(n− 1)! Exp(αA)t+
B̃t

[n−1]
dBt) dBs) =

Ex

∫
[0,ζ)

e−qs

n! Exp(αA)s+
f ◦Xs B̃s

[n]
dBs.

iv) By iii) we get
∞∑

n=1

(W q,α
B )nf(x) = Ex

∫
[0,ζ)

e−qs Ẽxp(B)s

Exp(αA)s+
f ◦Xs dBs and so

∞∑
n=1

(W q,α
B )nW q,αf(x) = Ex(

∫
[0,ζ)

e−qs Ẽxp(B)s

Exp(αA)s+
EXs(

∫
[0,ζ)

e−qt

Exp(αA)t+
f ◦Xtdt) dBs) =

Ex(
∫

[0,ζ)

Ẽxp(B)s(
∫

[s,ζ)

e−qt

Exp(αA)t+
f ◦Xtdt) dBs) =

Ex(
∫

[0,ζ)

e−qt

Exp(αA)t+
f ◦Xt(

∫
[0,t]

Ẽxp(B)s dBs)dt) = Ex

∫
[0,ζ)

e−qt

Exp(αA)t+
f ◦Xt (Ẽxp(B)t − 1)dt.

It follows that

W ′q,α
B f(x) = W q,αf(x) +

∞∑
n=1

(W q,α
B )nW q,αf(x) = Ex

∫
[0,ζ)

e−qt Ẽxp(B)t

Exp(αA)t+
f ◦Xtdt.
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v) We have

Uq
AW ′q

B f(x) = Ex(
∫

[0,ζ)

e−qtEXt(
∫

[0,ζ)

e−qsẼxp(B)s

Exp(A)s+
f ◦Xs ds) dAt) =

Ex(
∫

[0,ζ)

Exp(A)t

Ẽxp(B)t−
(
∫

[t,ζ)

e−qs Ẽxp(B)s

Exp(A)s+
f ◦Xs ds) dAt) =

Ex(
∫

[0,ζ)

e−qs Ẽxp(B)s

Exp(A)s+
f ◦Xs(

∫
[0,s]

Exp(A)t

Ẽxp(B)t−
dAt)ds),

W ′q
B f(x) + UA

q W ′q
B f(x) = Ex(

∫
[0,ζ)

e−qs Ẽxp(B)s

Exp(A)s+
f ◦Xs(1 +

∫
[0,s]

Exp(A)t

Ẽxp(B)t−
dAt)ds) ≤

Ex

∫
[0,ζ)

e−qs Ẽxp(B)s f ◦Xs ds = W̃ ′q
B f(x).

Further we get

Uq
BW ′q

B f(x) = Ex(
∫

[0,ζ)

f ◦Xs
e−qs Ẽxp(B)s

Exp(A)s+
(
∫

[0,s]

Exp(A)t

Ẽxp(B)t−
dBt) ds)

and therefore

Uqf(x) + Uq
BW ′q

B f(x) = Ex(
∫

[0,ζ)

e−qsf ◦Xs(1 +
Ẽxp(B)s

Exp(A)s+

∫
[0,s]

Exp(A)t

Ẽxp(B)t−
dBt) ds).

From d Exp(A)t = Exp(A)t dAt, d(
1

Ẽxp(B)t

) =
−1

Ẽxp(B)t

dBt it follows that

−
∫

[0,s]

Exp(A)t

Ẽxp(B)t−
dBt +

∫
[0,s]

Exp(A)t

Ẽxp(B)t−
dAt =

∫
[0,s]

d(
Exp(A)t

Ẽxp(B)t−
) =

Exp(A)s

Ẽxp(B)s−
− 1.

We conclude that

Uqf(x) + Uq
BW ′q

B f(x) = Ex(
∫

[0,ζ)

f ◦Xs
e−qs Ẽxp(B)s−

Exp(A)s
(

Exp(A)s

Ẽxp(B)s−
+
∫

[0,s]

Exp(A)t

Ẽxp(B)t−
dBt)ds) =

Ex(
∫

[0,ζ)

f ◦Xs
e−qs Ẽxp(B)s−

Exp(A)s
(1 +

∫
[0,s]

Exp(A)t

Ẽxp(B)t−
dAt)ds) = W ′q

B f(x) + Uq
AW ′q

B f(x).

Remark. For the first equality of assertion ii) in Proposition 3.1 see also Theorem 7.3 in [FiGe 03].

The next result is a ”Khas’minskii Lemma” for Stieltjes exponentials of positive left additive func-
tionals.

Proposition 3.2. The following assertion hold for q > 0.
i) We have ĉq(νA) = inf{α > 0/ Uq

A1 ≤ α m-q.e.}.
ii) If ĉq(νA) ≤ γ < 1 then the following inequalities hold m-q.e. (in x) on E for each t > 0:

Ex(Ã[n]
t ) ≤ n! γneqt for all n ∈ N∗, Ex(Ẽxp(A)t) ≤

eqt

1− γ
.

Proof. i) By Proposition 2.2 in [BeBo 05] and assertion i) of Proposition 3.1 we have V q
µ = Uq

A.
ii) Since Uq

A1 ≤ γ m-q.e. we deduce inductively that we have (Uq
A)n1 ≤ γn m-q.e. and therefore by

Proposition 3.1 iii) we get m-q.e. (in x)

Ex(Ã[n+1]
t ) = (n + 1)Ex

∫
[0,t]

Ã[n]
s dAs ≤ (n + 1)eqtEx

∫
[0,t]

e−qsÃ[n]
s dAs ≤

(n + 1)! eqt(Uq
A)n+11 ≤ (n + 1)! γn+1 eqt.

Consequently the second inequality of assertion ii) also holds.
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We can present now the perturbed semigroup defined by a Feynman-Kac formula. For each t ≥ 0 we
define the kernel Qt on (E,Bu) by

Qtf(x) := Ex(
Ẽxp(B)t−

Exp(A)t
f ◦Xt), f ∈ pBu, x ∈ E,

where recall that Ẽxp(B)0− = 1. Notice that by Proposition 3.1 iv) we have for every f ∈ Bu and q > 0:

W ′q
B f =

∫ ∞

0

e−qtQtf dt.

Proposition 3.3. The following assertions hold.
i) The family (Qt)t≥0 is a semigroup of kernels on (E,Bu).
ii) Assume that q0 is such that ĉq0(νB) < 1 and let p0 > 1 be such that γ0 :=

p0

p0 − 1
ĉq0(νB) < 1.

Then for each p ∈ [p0,∞], t > 0, q > q0, the kernels Qt, W ′q
B and W̃ ′q

B are bounded linear operators on
Lp(E,m) and

‖Qt‖Lp→Lp ≤ eq0t

1− γ0
, ‖W ′q

B ‖Lp→Lp ≤ ‖W̃ ′q
B ‖Lp→Lp ≤ 1

(1− γ0)(q − q0)
.

If p ∈ [p0,∞) and f ∈ Lp then lim
t→0

‖Qtf − f‖p = 0, lim
q→∞

‖qW ′q
B f − f‖p = 0.

Proof. i) The semigroup property follows since the functional t 7−→ Nt := Ẽxp(B)t−

Exp(A)t
is a multiplicative

functional:

Qt(Qsf)(x) = Ex(Nt ·EXt(Ns · f ◦Xs)) = Ex(Nt ·Ns ◦ θt · f ◦Xt+s = Ex(Nt+s · f ◦Xt+s) = Qt+sf(x).

ii) If p < ∞ and p′ > 1 is such that
1
p

+
1
p′

= 1 then by Corollary 2.4 we get (Ẽxp(B)t−)p′ ≤ Ẽxp(p′B)t−

and we have also ĉq0(νp′B) = p′ĉq0(νB) < 1. Therefore by Proposition 3.2 ii) we obtain

Ex((Ẽxp(B)t−)p′) ≤ eq0t

1− γ0
m-q.e. (in x).

Hence if f ∈ pBm ∩ Lp(E,m) and t > 0 then

|Qtf(x)|p ≤ |Ex(Ẽxp(B)t− · f ◦Xt)|p ≤ Ex(|f |p ◦Xt) ·Ex((Ẽxp(B)t−)p′)p−1 ≤ Pt(|f |p)(x) · ( eq0t

1− γ0
)p−1.

It follows that if f = 0 m-a.e. then Qtf = 0 m-a.e. We conclude that if f ∈ Lp(E,m) then Qtf ∈
Lp(E,m) and

‖Qtf‖p ≤
eq0t

1− γ0
‖f‖p.

The case p = ∞ follows by Proposition 3.2 ii).
By assertion iv) of Proposition 3.1 it follows that the family (W̃ ′q

B)q>1 is dominated by the resolvent
of kernels associated with the semigroup (Q◦

t )t≥0 (where (Q◦
t )t≥0 is (Qt)t≥0 in the case A = 0) and by v)

we have W ′q
B ≤ W̃ ′q

B . Consequently we get

‖W ′q
B ‖Lp→Lp ≤ ‖W̃ ′q

B ‖Lp→Lp ≤
∫ ∞

0

e−qt‖Q◦
t ‖Lp→Lpdt ≤ 1

1− γ0

∫ ∞

0

e−qt+q0tdt =
1

(1− γ0)(q − q0)
.

If p ∈ [p0,∞) then

|Qtf(x)− Ptf(x)| ≤ Ex

(
| Ẽxp(B)t−

Exp(A)t
− 1| · |f | ◦Xt

)
≤

Ex

(
(Ẽxp(B)t− −

Ẽxp(B)t−

Exp(A)t
)|f | ◦Xt

)
+ Ex

(
(Ẽxp(B)t− − 1)|f | ◦Xt

)
,
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Ex

(
Ẽxp(B)t−(1− 1

Exp(A)t
)|f | ◦Xt

)
≤ (Ex((Ẽxp(B)t−)p′))1/p′(Pt(|f |p)(x))1/p ≤ (

eq0t

1− γ0
)1/p′(Pt(|f |p)(x))1/p,

Ex((Ẽxp(B)t−−1)|f |◦Xt) ≤ (Ex((Ẽxp(B)t−−1)p′))1/p′ ·(Pt(|f |p)(x))1/p ≤ (
eq0t

1− γ0
)1/p′ ·(Pt(|f |p)(x))1/p.

Since we have m-a.e. (in x)

lim
t→0

Ex(Ẽxp(p′B)t−(1− 1
Exp(A)t

)p′) = 0, lim
t→0

Ex((Ẽxp(B)t− − 1)p′) = 0

it follows that lim
t→0

∫
|Qtf − Ptf |pdm = 0 and because ‖Qtf − f‖p ≤ ‖Qtf − Ptf‖p + ‖Ptf − f‖p ,

limt→0 ‖Ptf − f‖p = 0, we deduce that lim
t→0

‖Qtf − f‖p = 0. From W ′q
B f =

∫ ∞

0

e−qtQtfdt we conclude

that lim
q→∞

‖qW ′q
B f − f‖p = 0.

The strongly continuous semigroup of bounded operators on Lp(E,m) given by Proposition 3.3 is
called Feynman-Kac semigroup.

References

[AiSi 82] Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators.
Comm. Pure Appl. Math. 35, 209-273 (1982)

[BeBo 04] Beznea L. and Boboc, N.: Potential Theory and Right Processes (Springer Series: Mathematics
and Its Applications, Vol. 572). Kluwer Academic Pub. (2004)

[BeBo 05] Beznea, L., Boboc, N.: Measures not charging polar sets and Scrödinger equations in Lp. BiBoS
Preprint No. 05-11-199 (http://www.physik.uni-bielefeld.de/bibos/start.html) (2005)
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