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Motivation: A probabilistic approach for the fragmentation phase of an
avalanche. The particles are characterised by the mass, velocity and the
kinetic energy.
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Why modeling the avalanche by a random fragmentation process ?

• we give a model closer to the real life taking into account the spatial
position and the movement of the fragments

The model has:

• deterministic part: by a flow of particles on a surface driven by a
given gravitational force (Newton’s laws) with a random fragmentation.

simulation.avi

• stochastic part: initiated by [Beznea, Deaconu, O.L, 2015, 2016,
2019], based on branching-fragmentation processes.

the multiple-fragmentation process, solution of a SDE, describes the
time evolution of a typical particle in the fragmentation process.

[Beznea, Ionescu, O.L-S,J. of Ev. Eqs.,2021].
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Deterministic part: Flow of particles on a surface
Geometrical description of the surface.
Bottom surface Sb: parametric representation by rb(x1, x2),
parametric coordinates x = (x1, x2) ∈ Ω, covariant basis

b1 =
∂rb
∂x1

(x), b2 =
∂rb
∂x2

(x), β3 =
b1 ∧ b2

g
.
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Motion equations between two fragmentation moments

• we consider a motion of N particles on the surface Sb during the
time interval [t0, t1]: the number of particles N will be constant.

• we denote by rp(t) = rb(xp(t)), xp(t) = (xp1 (t), x
p
2 (t)) the position

of each particle p at t ∈ [t0, t1].

• we compute the velocity and the acceleration of each particle:

vp =
d

dt
rp = ẋp1 b1(x

p) + ẋp2 b2(x
p),

ap =
d

dt
vp = ẍp1 b1(x

p) + ẋ1
∂b1(xp)

∂x1
ẋ1 + ẋ1

∂b1(xp)

∂x2
ẋ2 + ẍ2b2(x

p)+

ẋ2
∂b2(xp)

∂x1
ẋ1 + ẋ2

∂b2(xp)

∂x2
ẋ2.
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Let Fp = Fp(r1, ..., rN , v1, ..., vN) be the force acting on the particle p
(the gravity forces acting on the vertical direction −c3, Fp = −mpGc3,
mp is the mass of the particle P and G is the gravitational acceleration).

The movement of a particle is described by the Newton evolution
equation

mpap = Fp(r1, ..., rN , v1, ..., vN) +Mp(t)β3, for all P = 1, ...,N,
(0.1)

where Mp is the reaction force of the surface Sb.
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Multiplying now by b1, respectively b2, we obtain the second order
nonlinear system of equations:



ẍp1 + Γ111(ẋ
p
1 )

2 + Γ122(ẋ
p
2 )

2 + ẋp1 ẋ
p
2 (Γ

1
21 + Γ112) =

Fp(r1, ..., rN , v1, ..., vN) · b1(xp)

ẍp2 + Γ211(ẋ
p
1 )

2 + Γ222(ẋ
p
2 )

2 + ẋp1 ẋ
p
2 (Γ

1
21 + Γ112) =

Fp(r1, ..., rN , v1, ..., vN) · b2(xp)
(0.2)

for all p = 1, ...,N,
with the initial conditions

rp(t0+) = rp0 and vp(t0+) = vp0 , for all p = 1, ...,N. (0.3)
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Random binary fragmentation

Our aim: to introduce a random binary fragmentation process for N
particles characterised by their mass m1, ....,mN , their positions
r1, ...., rN , and their velocities v1, ..., vN .

• Let t1 be the first random fragmentation time greater then t0, having
a Poisson distribution.
The position r1(t1−) and the velocity v1(t1−) are computed solving the
above nonlinear system (0.2).

• A fragmentation process Fp of a particle p is a set of equations
allow at each given (mp, rp, vp) the couple [(mp

1 , r
p
1 , v

p
1), (m

p
2 , r

p
2 , v

p
2)],

Fp(mp, rp, vp) = [(mp
1 , r

p
1 , v

p
1), (m

p
2 , r

p
2 , v

p
2)],

which represents the masses, the positions, and the velocities of the
resulting two particles at t = t1+.
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Description of our choice of the fragmentation process.

• We suppose that the position at t = t1+ of the resulting two
particles coincide with the position of the mother particle, i.e.

rp1(t1+) = rp2(t1+) = rp(t1−). (0.4)

• For the mass and the velocity fragmentation we choose a
random procedure. We take the mass of the fragments to be

mp
1 = ξmp, mp

2 = (1− ξ)mp, (0.5)

where ξ is a fixed uniform random variable. We have the mass
conservation property, i.e.

mp
1 +mp

2 = mp.
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The velocity fragmentation needs more physical restrictions.

1. We assume that a part (1− θ)Ep of the particle kinetic energy
Ep = 1

2m
p|vp(t1−)|2 is lost in the fragmentation process, where

θ ∈ (0, 1) is a fixed rupture parameter.

2. The resulting two fragments will have the kinetic energy Ep
1 = θγEp

and Ep
2 = θ(1− γ)Ep with Ep

1 + Ep
2 = θEp, where γ is a fixed

U([0, 1]): 
Ep
1 = 1

2m
p
1 |v

p
1(t1+)|2 = θγEp

Ep
2 = 1

2m
p
2 |v

p
2(t1+)|2 = θ(1− γ)Ep,

(0.6)

3. Finally, we suppose that we have an additive law:

vp1(t1+) + vp2(t1+) = vp(t1−). (0.7)
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• We compute the resulting velocity vp1(t1+) and vp2(t1+) from the
fragmentation’s laws (0.5),(0.6), and (0.7). For the first fragment:

ẋp1 = α1ẋ1
p + γ1

(
g12 ẋ1

p − g11 ẋ2
p
)

ẋp2 = α1ẋ2
p + γ1

(
g22 ẋ1

p − g12 ẋ2
p
) (0.8)

where g11, g12, g22 are the contra fundamental magnitudes of the first
order and vp1 = α1vp + γ1(vp)⊥.

• Following the same procedure for vp2 we get the corresponding
expressions of the components of second fragment.
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Remarks:

1. an algorithm to simulate the flow and the fragmentation of a set of
particles on a half of an ellipsiod.

2. the link between the simulations of a system of particles
(deterministic part ) and the Markov process involving a set of sizes
is as follows (stochastic part) :

we start with one particle and simulate the time evolution of each
fragment resulting after the fragmentation procedure presented
above (deterministic part ) while the multiple-fragmentation process,
solution of the further coming SDEnDF (0.9), describes the time
evolution of a typical particle in the fragmentation process
(stochastic part).

3. numerical illustrations.
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Binary fragmentation and flow of particles on a half-ellipsoid

A partition into i regions Di = R+ × Ωi × R2; nmax = 2000;

A particle P of mass mP located at rP : a sphere of center rP , radius RP = C(mP)1/3.

t=0,one particle t=T/3, 7 particles 

t=2T/3, 111 particles t=T, 1876 particles 

Since at each fragmentation process the kinetic and total energies are

decreasing the particles are slower and slower and they are accumulated on the

bottom of the ellipsoid (lowest potential energy).
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Stochastic differential equation of n-dimensional
fragmentation driven by an Euclidian gradient flow



Yt =
∫ t

0
d(Xs)B(Ys)ds

X k
t = X k

0 −
∫ t

0

∫
F

∫ 1

0

yk1[0<yk<X k
s ]
1
[u⩽c(Ys )

Xk
s−−yk

Xk
s−

Fk (yk ,X k
s−−yk )]

pc(ds,Π
n
i=1dyi ,du), if 1 ⩽ k ⩽ nc ,

X k
t =X

k
0 −

∫ t

0

∫
F

X k
s−

(
(1− β)1[ yk

c(Ys )βλo
<X k

s−⩽1] + β1[ yk
c(Ys )λo

<X k
s−⩽

yk
c(Ys )βλo

]

)
pk(ds,Πn

i=1dyi ), if nc < k ⩽ n.
(0.9)

where p(
∑nc

i=1 dsdyidu) is a Poisson measure with intensity
q =

∑nc
i=1 dsdyidu.

Example:B(x) : the flow induced by the ODENetwon’s eqs.(Part I of themodel)
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Stochastic part of the model

• We construct a process (Xt ,Yt)t⩾0 (solution of a SDE) can be seen
as the evolution of the couple (position, size) of a sort of typical
particle moving according to an Euclidean gradient continuous flow.

• The spatial Markov process Yt has a coefficient d depending on the
size of the particles while the fragmentation process Xt has a
coefficient c depending on their spatial position.

Theorem

Let z ∈ F and x ∈ E. Then the following SDEnDF with flow (0.9) has a
weak solution with the initial distribution δ(z,x) which is equal in

distribution with the process (Zt ,P(z,x))t⩾0, induced by L.
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