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In this paper, we use the variational method to study some Steklov problems
involving the p(x)-q(x)-Laplace operator. Specifically, in the first part of this
paper, we combine the mountain pass theorem with Ekeland’s variational prin-
ciple to prove the existence of two nontrivial weak solutions. Furthermore, in
the second part of this work, we use the symmetric version of the mountain
pass theorem to prove the existence of an infinite number of solutions to such
problems.
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1. INTRODUCTION

In recent years, the study of various variable exponent problems has re-
ceived considerable attention due to their widespread use in applications in
many fields, such as electro-rheological fluid modeling [23], image processing [9],
and they raise many difficult mathematical issues. For more applications, we
refer the interested readers to the overview papers [10,17,24].

The study of partial differential problems with variable exponents is a new
and interesting topic. Recently, many researchers attracted their attention to
the study of such problems; we refer, for example, to the papers [1, 2, 4–6,
13, 19, 26, 28], in which the authors have used different methods to obtain
the existence and the multiplicity of solutions. Allaoui in [3] considered the
following problem

(1)

{
(−∆)p(x)u = λ

(
a(x)|u|q(x)−2u+ b(x)|u|r(x)−2u

)
in Ω,

|∇u|p(x)−2 ∂u
∂ν + β(x)|u|p(x)−2u = 0 on ∂Ω,

where the operator (−∆)σ(x) is the σ(x)-Laplacian which is defined for a given

positive continuous function σ on Ω, as follows:

(−∆)σ(x)u = − div
(
|∇u|σ(x)−2∇u

)
.
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Under appropriate conditions and using the variational method combined with
the mountain pass theorem, the author proves that if λ is small enough, then
the problem (1) admits a nontrivial solution.

In a recent paper, Chammem et al. [8] have considered the following
problem: {

(−∆)p(x)u+ a(x)|u|p(x)−2u = f(x, u) in Ω,

|∇u|p(x)−2 ∂u
∂v + b(x)|u|q(x)−2u = g(x, u) on ∂Ω,

where Ω ⊂ RN , N ≥ 2 is a bounded domain with Lipschitz boundary ∂Ω, ∂
∂v is

the outer unit normal derivative. The functions a, b, p, q, g and f are assumed
to satisfy some suitable assumptions. The authors proved the existence and
the multiplicity of solutions by using variational methods, and mountain pass
lemma combined with the Ekeland variational principle.

We note that the p(x)-Laplacian operator possesses more complicated
nonlinearities than the well-known p-Laplacian, for example, it is inhomoge-
neous, and usually, it does not have the so-called first eigenvalue, since the
infimum of its spectrum is zero. This causes many problems. For instance,
some classical theories, and methods, such as the Lagrange multiplier theorem
and the theory of Sobolev space, cannot be applied. Our goal in this paper
is to continue this investigation to a more general operator, that is the p(x)-
q(x)-Laplace operator. Precisely, we provide existing results for the following
elliptic system of Steklov type:

(Pλ)

{
(−∆)p(x)u+a(x)|u|p(x)−2u+(−∆)q(x)u+b(x)|u|q(x)−2u = λf(x, u) in Ω,

|∇u|p(x)−2 ∂u
∂ν + |∇u|q(x)−2 ∂u

∂ν + g(x)|u|r(x)−2u = h(x, u) on ∂Ω,

where λ > 0, a and b are bounded on Ω, g is a bounded on ∂Ω, and f, h are
Carathéodory functions. Recently, problems like (Pλ) are studied by many
authors and by different methods. In the case when p(x) ≡ p (a constant),
interesting works can be found in [2, 4, 7, 20, 22]. In [7], Bonder and Rossi
studied problem (Pλ) in the simple case when a ≡ 1, b ≡ 0, f ≡ 0 and g(x, u) =
g(u). By using mountain pass theorem, the authors prove the existence of
nontrivial solution for such problem. After that, in [20], Martinez and Rossi
were concerned with problem (Pλ) in the cases when p(x) = q(x) ≡ p, for
p > 1 and the nonlinear terms f and g satisfy the Landesman–Lazer-type
conditions. Also, Zhao et al. [29] considered the same problem of Martinez
and Rossi [20] where the perturbation terms f and g, satisfy the Ambrosetti–
Rabinowitz condition.

The rest of the present work is organized as follows. In Section 2, we
recall some definitions and properties of the generalized Lebesgue and Sobolev
spaces. In Section 3, using the mountain pass theorem, we present and prove
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the first main result of this paper. Section 4 is devoted to the proof of the
second main result of this paper.

2. PRELIMINARIES

In order to apply the variational method to solve the question of the ex-
istence of solutions for problem (Pλ), we recall some definitions and properties
about the generalized Lebesgue and Sobolev spaces. Throughout this paper, Ω
is denoted as a bounded smooth domain in RN (N ≥ 2), S(Ω) as the set of all
measurable real functions defined on Ω, and C+(Ω) is denoted by the following
set:

C+(Ω) =
{
h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}
.

Let us consider p ∈ C+(Ω). The variable exponent Lebesgue space is
defined by

Lp(x)(Ω) =
{
u ∈ S(Ω);

∫
Ω

∣∣u(x)∣∣p(x)dx < ∞
}
,

and equipped with the following norm

|u|Lp(x)(Ω) = inf
{
σ > 0;

∫
Ω

∣∣∣u(x)
σ

∣∣∣p(x)dx ≤ 1
}
.

By a similar way, C+(∂Ω), L
p(x)(∂Ω) and |u|Lp(x)(∂Ω), can be defined by repal-

cing Ω with ∂Ω and dx with dσ, where dσ is the surface measure on ∂Ω.
The generalized Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)

}
,

with the norm

∥u∥ = inf
{
σ > 0;

∫
Ω

∣∣∣u(x)
σ

∣∣∣p(x) + ∣∣∣∇u(x)

σ

∣∣∣p(x)dx ≤ 1
}
.

For any h ∈ C+(Ω), we denoted by h+ and h−, the following expressions

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

Note that, if h ∈ C+(∂Ω), then h+ and h− are the same as above by replacing
Ω with Ω. If β is bounded on Ω such that β− ≥ 0, then we can define the
following equivalent norm on W 1,p(x)(Ω)

∥u∥β = inf
{
σ > 0;

∫
Ω

(
β(x)

∣∣∣u(x)
σ

∣∣∣p(x)dx+
∣∣∣∇u(x)

σ

∣∣∣p(x))dx ≤ 1
}
.

Proposition 2.1 ([11,14]). The following statements hold:

(i) The next sets (Lp(x)(Ω), |.|Lp(x)(Ω) and (W 1,p(x)(Ω), ∥.∥ are separable, re-
flexive and uniformly convex Banach spaces.
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(ii) If q(x) ∈ C+(Ω) is such that q(x) < p⋆(x) for any x ∈ Ω, then the
embedding W 1,p(x) ↪→ Lq(x)(Ω) is continuous and compact, where

p⋆(x) :=

{
Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.2 ([27]). If q(x) ∈ C+(∂Ω) is such that q(x) < p∂(x) for
any x ∈ ∂Ω, then the embedding W 1,p(x)(Ω) ↪→ Lq(x)(∂Ω) is continuous and
compact, where

p∂(x) :=

{
(N−1)p(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.3 ([14, 15]). Let p′ be such that 1
p(x) +

1
p′(x) = 1, for all

x ∈ Ω. Then for each u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have∣∣∣ ∫
Ω
uvdx

∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x).

Next, we have

ρa(u) =

∫
Ω

(
|∇u|p(x) + a(x)|u|p(x)

)
dx.

Proposition 2.4 ([28]). Let u ∈ W 1,p(x)(Ω). Then there exist positive
constants κ1 and κ2, such that

(i) If ρa(u) ≥ 1, then κ1∥u∥p
−

a ≤ ρa(u) ≤ κ2∥u∥p
+

a .

(ii) If ρa(u) ≤ 1, then κ1∥u∥p
+

a ≤ ρa(u) ≤ κ2∥u∥p
−

a .

(iii) ρa(u) ≥ 1(= 1,≥ 1) ⇔ ∥u∥a ≥ 1(= 1,≥ 1).

For the simplicity, the space W 1,p(x)(Ω) is denoted by E. Associated to
the problem (Pλ), we define the functional Jλ : E → R, by

Jλ(u) = Λa,p(u) + Λb,q(u)− I(u)− λΨ(u) + Φ(u),

where

I(u) =

∫
∂Ω

H(x, u)dσ, Ψ(u) =

∫
Ω
F (x, u)dx, Φ(u) =

∫
∂Ω

g(x)|u|r(x)

r(x)
dσ,

with F (x, t) =
∫ t
0 f(x, s)ds and H(x, t) =

∫ t
0 h(x, s)ds.

For a given nonnegative bounded function β and for σ ∈ C+(Ω), we
denote

Λβ,σ(u) =

∫
Ω

|∇u|σ(x) + β(x)|u|σ(x)

σ(x)
dx.
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By standard arguments (see [18, 21]), we can prove that Λβ,σ ∈ C1(E,R).
Moreover, for all u and v in E, we have

< Λ′
β,σ(u), v >=

∫
Ω

(
|∇u|σ(x)−2∇u∇v + β(x)|u|σ(x)−2uv

)
dx.

Proposition 2.5 ([16]). 1. The functional Λβ,σ : E → R is convex
and sequentially weakly lower semi-continuous.

2. The mapping Λ′
β,σ : E → E⋆ is a strictly monotone, bounded homeomor-

phism, and is of type (S+), namely, if un ⇀ u and

lim sup
n→∞

< Λ′
β,σ(un), un − u >≤ 0,

then un → u.

Proposition 2.6 ([16]). 1. The functionals I and Ψ : E → R are
sequentially weakly continuous in C1(E,R). Moreover, for all u, v ∈ E,
we have

< I ′(u), v >=

∫
∂Ω

h(x, u)vdσ and < Ψ′(u), v >=

∫
Ω
f(x, u)vdx.

2. The mappings I ′,Ψ′ : E → E⋆ are weakly-strongly continuous, namely,
if un ⇀ u, then we have I ′(un) → I ′(u) and Ψ′(un) → Ψ′(u).

Proposition 2.7 ([8]). 1. The functional Φ ∈ C1(E,R) and for all
u, v ∈ E,

< Φ′(u), v >=

∫
∂Ω

g(x)|u|r(x)−2uvdσ.

2. The mapping Φ′ : E → E⋆ is weakly-strongly continuous.

By Propositions 2.5, 2.6 and 2.7, it is easy to check that the functional
Jλ ∈ C1(E,R). Moreover, for all u, v ∈ E, one has

< J ′
λ(u), v > =

∫
Ω
|∇u|p(x)−2∇u∇v + a(x)|u|p(x)−2uv dx−

∫
∂Ω

h(x, u)vdσ

+

∫
Ω
|∇u|q(x)−2∇u∇v + b(x)|u|q(x) dx− λ

∫
Ω
f(x, u)vdx

+

∫
∂Ω

g(x)|u|r(x)−2uvdσ.

3. FIRST EXISTENCE RESULT AND ITS PROOF

In this section, we combine the mountain pass theorem [25] of Ambrosetti
and Rabinowitz combined with Ekeland’s variational principle in order to prove
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the existence of two nontrivial weak solutions of problem (Pλ). Note that u ∈ E
is said to be a weak solution of problem (Pλ), if for any v ∈ E, we have:∫

Ω
|∇u|p(x)−2∇u∇vdx+

∫
Ω
a(x)|u|p(x)−2uvdx+

∫
Ω
|∇u|q(x)−2∇u∇vdx

+

∫
Ω
b(x)|u|q(x)−2uvdx−

∫
∂Ω

h(x, u)vdσ

+

∫
∂Ω

g(x)|u|r(x)−2uvdσ − λ

∫
Ω
f(x, u)vdx = 0.

We recall now the mountain pass theorem, which we use to prove the first
main result of this paper.

Theorem 3.1 (Mountain Pass Theorem [25]). Let X be a Banach space.
Let φ ∈ C1(X,R), satisfying the following conditions:

1. φ(0) = 0,

2. φ satisfies the Palais–Smale condition, that is any sequence {un} ⊂ X
such that {φ(un)} is bounded and φ′(un) → 0, in X⋆ as n → ∞, has a
convergent subsequence.

3. There exist the positive constants r and ρ, such that if ∥u∥ = r, then,
φ(u) ≥ ρ,

4. There exist e ∈ X with ∥e∥ > r such that φ(e) ≤ 0.

Then, φ possesses a critical value c ≥ ρ which can be characterized as

c = inf
γ∈Γ

max
t∈[0,1]

φ
(
γ(t)

)
,

where,

Γ =
{
γ ∈ C

(
[0, 1], X

)
: γ(0) = 0, γ(1) = e

}
.

In order to state the first main result of this paper, we assume the fol-
lowing hypotheses:

(H1) f : Ω×R → R satisfies the Carathéodory condition and there exist
c1 > 0, α ∈ C+(Ω), such that

f(x, u) ≤ c1|u|α(x)−1 for all (x, u) ∈ Ω× R,

and

(2) 1 < α(x) < p⋆(x) for all x ∈ Ω,

where p⋆(x) is defined in the statement of Proposition 2.1.
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(H2) h : ∂Ω×R → R satisfies the Carathéodory condition and there exist
c2 > 0, β ∈ C+(∂Ω), such that

h(x, u) ≤ c2|u|β(x)−1 for all (x, u) ∈ ∂Ω× R,

and

(3) 1 < β(x) < p∂(x) for all x ∈ ∂Ω,

where p∂(x) is defined in the statement of Proposition 2.2.
(H3) There exist M1 > 0, θ1 > p+ such that

0 < θ1F (x, t) ≤ tf(x, t), |t| > M1, x ∈ Ω.

(H4) There exist M2 > 0, θ2 > p+ such that

0 < θ2H(x, t) ≤ th(x, t), |t| > M2, x ∈ ∂Ω.

(H5) There exist 1 < µ1 < p−, such that

lim inf
u→0

H(x, u)− g(x)|u|r(x)
r(x)

|u|µ1
> 0 uniformly, for x ∈ ∂Ω.

(H6) There exist 1 < µ2 < q−, such that

lim inf
u→0

F (x, u)

|u|µ2
> 0 uniformly, for x ∈ Ω.

Now, we state the first main result of this paper.

Theorem 3.2. Suppose that hypotheses (H1)–(H6) hold. If p, q ∈ C+(Ω),
and r ∈ C+(∂Ω) are such that

max(p+, q+, r+) < min(θ1, θ2), and α− < max(p+, q+) < β−.

Then the problem (Pλ) has at least two nontrivial weak solutions.

To prove Theorem 3.2, we need to prove several lemmas.

Lemma 3.3. Assume that α− < p+ < β−, and (H1)–(H2) hold. Then
for all ρ ∈ (0, 1), there exists λ⋆ > 0 and m > 0 such that for all u ∈ E with
∥u∥ = ρ

Jλ(u) ≥ m > 0 for all λ ∈ (0, λ⋆).

Proof. Let u ∈ E. Then from hypotheses (H1) and (H2), we have

(4) F (x, u) ≤ c1
|u|α(x)

α(x)
for all x ∈ Ω

and

(5) H(x, u) ≤ c2
|u|β(x)

β(x)
for all x ∈ ∂Ω.
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Since α(x) < p⋆(x) for all x ∈ Ω, then it follows by Proposition 2.1(ii) that
E ↪→ Lα(x)(Ω). So, there exists c3 > 0 such that

(6) |u|Lα(x)(Ω) ≤ c3∥u∥ for all u ∈ E.

Moreover, β(x) < p∂(x) for all x ∈ ∂Ω, and according to Proposition 2.2, there
exists a positive constant c4 such that

(7) |u|Lβ(x)(∂Ω) ≤ c4∥u∥ for all u ∈ E.

We fix ρ such that 0 < ρ < min(1, 1
c3
, 1
c4
), and let u ∈ E with ∥u∥ = ρ. Then

equations (6) and (7) imply

(8) |u|Lα(x)(Ω) < 1 and |u|Lβ(x)(∂Ω) < 1.

So using equations (6), (7) and (8), we obtain

Jλ(u) =

∫
Ω

|∇u|p(x) + a(x)|u|p(x)

p(x)
dx+

∫
Ω

|∇u|q(x) + b(x)|u|q(x)

q(x)
dx

−
∫
∂Ω

H(x, u)dσ − λ

∫
Ω
F (x, u)dx+

∫
∂Ω

g(x)|u|r(x)

r(x)
dσ

≥ 1

p+
ρa(u) +

1

q+
ρb(u)−

∫
∂Ω

H(x, u)dσ − λ

∫
Ω
F (x, u)dx

≥ 1

p+
ρa(u) +

1

q+
ρb(u)−

c1
β−

∫
∂Ω

|u|β(x)dσ − λ
c2
α−

∫
Ω
|u|α(x)dx

≥ 1

p+
ρa(u) +

1

q+
ρb(u)−

c1
β− max

(
|u|β

−

Lβ(x)(∂Ω)
, |u|β

+

Lβ(x)(∂Ω)

)
− λ

c2
α− max

(
|u|α−

Lα(x)(Ω)
, |u|α+

Lα(x)(Ω)

)
≥ κ1

p+
∥u∥p+a +

κ′1
q+

∥u∥q
+

b − c1
β− |u|β

−

Lβ(x)(∂Ω)
− λ

c2
α− |u|α−

Lα(x)(Ω)

≥ κ1ζ1
p+

∥u∥p+ +
κ′1ζ

′
1

q+
∥u∥q+ − c1

β− cβ
−

4 ∥u∥β− − λ
c2
α− cα

−
3 ∥u∥α−

≥
(κ1ζ1

p+
+

κ′1ζ
′
1

q+

)
∥u∥max(p+,q+) − c1

β− cβ
−

4 ∥u∥β− − λ
c2
α− cα

−
3 ∥u∥α−

= ρα
−
((κ1ζ1

p+
+

κ′1ζ
′
1

q+

)
ρmax(p+,q+)−α− − c1

β− cβ
−

4 ρβ
−−α− − λ

c2
α− cα

−
3

)
= ρα

−(
φ(t)− λ

c2
α− cα

−
3

)
,

for some positive constants κ1, ζ1, κ2 and ζ2, where φ : (0, 1) → R is defined by

φ(t) =
(κ1ζ1

p+
+

κ′1ζ
′
1

q+

)
tmax(p+,q+)−α− − c1

β− cβ
−

4 tβ
−−α−

.
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A simple calculation shows that φ attains its maximum at t0, which is given
by

t0 =

((κ1ζ1
p+

+
κ′
1ζ

′
1

q+

)
β−(max(p+, q+)− α−)

c1c
β−

4 (β− − α−)

) 1
β−−max(p+,q+)

.

If we put

(9) λ⋆ =
α−φ(t0)

c2cα
−

3

and m = ρα
−(

φ(t0)− λ
c2
α− cα

−
3

)
,

then, we can deduce that for each u ∈ E with ∥u∥ = ρ, we have

Jλ(u) ≥ m > 0.

The proof is now completed.

Lemma 3.4. Under hypotheses (H3) and (H4), the functional Jλ satisfies
the Palais–Smale condition.

Proof. Let {un} ⊂ E be a sequence such that

(10)
∣∣Jλ(un)∣∣ < M1, and J ′

λ(un) → 0 in E⋆ as n → ∞,

for some positive constant M1, where E⋆ is a dual space of E.
First, we show that {un} is bounded in E. Indeed, assume by contradic-

tion that {un} is not bounded in E. Then, passing eventually to a subsequence,
still denoted by {un}, we assume that ∥un∥ → ∞ as n → ∞. Thus, we may
consider that ∥un∥ > 1.

From (10) and Proposition 2.4, we get

M1 > Jλ(un) ≥
1

p+
ρa(u) +

1

q+
ρb(u)−

1

θ1

∫
∂Ω

h(x, un)undσ

− λ

θ2

∫
Ω
f(x, un)undx+

1

r+

∫
∂Ω

g(x)|u|r(x)dσ

≥ 1

p+
ρa(u) +

1

q+
ρb(u)−

1

θ

(∫
∂Ω

h(x, un)undσ + λ

∫
Ω
f(x, un)undx

)
+

1

r+

∫
∂Ω

g(x)|u|r(x)dσ

≥
( 1

p+
− 1

θ

)
ρa(u) +

( 1

q+
− 1

θ

)
ρb(u) +

( 1

r+
− 1

θ

)∫
∂Ω

g(x)|u|r(x)dσ

+
1

θ
< J ′

λ(un), un >

≥
( 1

p+
− 1

θ

)
κ1∥un∥p

−

a +
1

θ
∥J ′

λ(un)∥∥un∥,

where θ = min(θ1, θ2).
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Since θ > p+, then by letting n tends to infinity in the above inequality,
we obtain a contradiction. It follows that {un} is bounded in E which is a
reflexive Banach space. Therefore, there exists a subsequence, again denoted
by {un} and u ∈ E such that

un ⇀ u in E.

To finish the proof, we need to prove that un → u strongly in E. Using the
fact that J ′

λ(un) → 0 and un is bounded in E, we have

(11) lim
n→∞

< J ′
λ(un), un − u >= 0.

On the other hand, by the Hölder inequality, we obtain∫
∂Ω

g(x)|un|r(x)−2un(un − u)dσ

≤ ∥g∥∞
∫
∂Ω

g(x)|un|r(x)−1|un − u|dσ

≤ ∥g∥∞||un|r(x)−1|
L

r(x)
r(x)−1 (∂Ω)

|un − u|Lr(x)(∂Ω)dσ

≤ ∥g∥∞|un − u|Lr(x)(∂Ω)|un|
r(x)−1

Lr(x)(∂Ω)

≤ c5∥g∥∞|un − u|Lr(x)(∂Ω)max
(
∥un∥r

+−1, ∥un∥r
−−1

)
.

Since r(x) < p∂(x) for all x ∈ ∂Ω, we deduce that E is compactly embedded
in Lr(x)(∂Ω). So, un → u in Lr(x)(∂Ω). Then,

(12) lim
n→∞

∫
∂Ω

g(x)|un|r(x)−2un(un − u)dσ = 0.

Now, from (H1) and the Hölder inequality, one has∫
∂Ω

h(x, un)(un − u)dσ ≤ c2

∫
∂Ω

|un|β(x)−1|un − u|dσ

≤ c2||un|β(x)−1|
L

β(x)
β(x)−1 (∂Ω)

|un − u|Lβ(x)(∂Ω)dσ

≤ c2|un − u|Lβ(x)(∂Ω)|un|
β(x)−1

Lβ(x)(∂Ω)

≤ c6c2|un − u|Lβ(x)(∂Ω)max
(
∥un∥β

+−1, ∥un∥β
−−1

)
.

Since β(x) < p∂(x) for all x ∈ ∂Ω, we deduce that E is compactly embedded
in Lβ(x)(∂Ω). So, un → u in Lβ(x)(∂Ω). Then,

(13) lim
n→∞

∫
∂Ω

h(x, un)(un − u)dσ = 0.

With similar arguments, we can obtain that

(14) lim
n→∞

∫
Ω
f(x, un)(un − u)dx = 0.
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By combining (11), (12), (13) with (14), we obtain

(15) lim
n→∞

< Λ′
a,p(un), un − u > + lim

n→∞
< Λ′

b,q(un), un − u >= 0.

Since a ∈ L∞(Ω), and a− = ess infx∈Ω a(x) ≥ 0, then we have

< Λ′
a,p(un)− Λ′

a,p(u),un − u >

=

∫
Ω

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
(∇un −∇u)dx.

Using the following elementary inequality which holds for all s, t ∈ RN

(16)
(
|s|p−2s− |t|p−2t, s− t

)
≥

{
Cp|s− t|p for all p ≥ 2,

Cp
|s−t|2

(|s|+|t|)2−p for all p ≤ 2,

where Cp is a positive constant and (., .) is the standard scalar product in RN ,
and using equations (15) and (16), we obtain

lim
n→∞

< Λ′
a,p(un)− Λ′

a,p(u), un − u >= lim
n→∞

< Λ′
b,q(un)− Λ′

b,q(u), un − u >= 0.

Finally, Proposition 2.5 implies that {un} converges strongly to u in E. This
completes the proof.

Lemma 3.5. Under hypotheses (H5) and (H6), there exists e ∈ E such
that Jλ(te) < 0 for all t > 0 small enough.

Proof. Let u ∈ E such that ∥u∥ < 1 small enough. From hypotheses (H5)
and (H6), there exist two positive constants c7, c8 > 0 such that

(17) H(x, u)− g(x)|u|r(x)

r(x)
≥ c7|u|µ1 and λF (x, u) ≥ c8|u|µ2 .

Let e ∈ E be such that ∫
∂Ω

|e|µ1dσ

∫
Ω
|e|µ2dx ̸= 0.

From (17) and for t > 0 small enough, one has
(18)

Jλ(te) =

∫
Ω

tp(x)

p(x)

[
|∇e|p(x) + a(x)|e|p(x)

]
dx+

∫
Ω

tq(x)

q(x)

[
|∇e|q(x) + b(x)|e|q(x)

]
dx

−
∫
∂Ω

[
H(x, te)− g(x)

r(x)
|te|r(x)

]
dσ − λ

∫
Ω
F (x, te)dx

≤ tp
−

p−
ρa(e) +

tq
−

q−
ρb(e)− c7t

µ1

∫
∂Ω

|e|µ1dσ − c8t
µ2

∫
Ω
|e|µ2dx

≤ tµ1

(
tp

−−µ1
ρa(e)

p−
− c7

∫
∂Ω

|e|µ1dσ
)
+tµ2

(
tq

−−µ2
ρb(e)

q−
− c8

∫
Ω
|e|µ2dx

)
.
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From (18), we have Jλ(te) < 0 for all 0 < t < min(t1, t2) where

t1 =
(p−c7 ∫∂Ω |e|µ1dσ

ρa(e)

) 1
p−−µ1 and t2 =

(q−c8 ∫Ω |e|µ2dx

ρb(e)

) 1
q−−µ2 .

Proof of Theorem 3.2. We begin by noting that from conditions (H3)–
(H4), there exist two positive constants l1, l2 > 0, such that

(19) F (x, s) ≤ l1|s|θ1 for all (x, s) ∈ Ω× R,

and

(20) H(x, s) ≤ l2|s|θ2 for all (x, s) ∈ ∂Ω× R.

Let u ∈ E and t > 1, then from equations (19) and (20), one has

Jλ(tu) =

∫
Ω

tp(x)

p(x)

[
|∇u|p(x) + a(x)|u|p(x)

]
dx+

∫
Ω

tq(x)

q(x)

[
|∇u|q(x) + b(x)|u|q(x)

]
dx

−
∫
∂Ω

H(x, tu)dσ − λ

∫
Ω
F (x, tu)dx+

∫
∂Ω

tr(x)

r(x)

[
g(x)|u|r(x)

]
dσ

≤ tp
+

p−

∫
Ω

[
|∇u|p(x) + a(x)|u|p(x)

]
dx+

tq
+

q−

∫
Ω

[
|∇u|q(x) + b(x)|u|q(x)

]
dx

− l2t
θ2

∫
∂Ω

|u|θ2dσ − λl1t
θ1

∫
Ω
|u|θ1dx+

tr
+

r−
∥g∥∞

∫
∂Ω

|u|r(x)dσ.

Next, since min(θ1, θ2) > max(p+, q+, r+), then for each λ > 0, we have
Jλ(tu) → −∞ as t → ∞.

It follows that there exists t0 > 0 large enough such that e = t0u satisfies
∥e∥ > ρ and Jλ(e) < 0. Hence, condition (4) of Theorem 3.1 is satisfied.
Moreover, Lemma 3.3 implies that condition (3) of Theorem 3.1 is also satisfied.
On the other hand, condition (2) of Theorem 3.1 is a direct consequence of
Lemma 3.4. Finally, since Jλ(0) = 0, then Theorem 3.1 implies that there
exists u1 ∈ E which is a nontrivial weak solution of problem (Pλ).

Now, we apply Ekeland’s variational principle [12] to get the second so-
lution of problem (Pλ). We note that from Lemma 3.3, we have

inf
u∈∂Bρ(0)

Jλ(u) > 0,

where
Bρ(0) =

{
ω ∈ E; ∥ω∥ < ρ

}
.

On the other hand, by Lemma 3.5, there exists e ∈ E such that Jλ(te) < 0 for
t > 0 small enough.

Since for all u ∈ Bρ(0), we have

Jλ(u) ≥
κ1
p+

∥u∥p+ − c1
β− cβ

−

4 ∥u∥β− − λ
c2
α− cα

−
3 ∥u∥α−

.
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So, we deduce that
−∞ ≤ c := inf

u∈Bρ(0)
Jλ(u) < 0.

Let ϵ be such that

0 < ϵ < inf
u∈∂Bρ(0)

Jλ(u)− inf
u∈Bρ(0)

Jλ(u).

Then using the above information, the functional Jλ : Bρ(0) → R, is lower

bounded on Bρ(0) and Jλ ∈ C1(Bρ(0),R). So, by applying Ekeland’s varia-

tional principle, we can find uϵ ∈ Bρ(0) such that{
c ≤ Jλ(uϵ) ≤ c+ ϵ

0 < Jλ(u)− Jλ(uϵ) + ϵ.∥u− uϵ∥, u ̸= uϵ.

Since

Jλ(uϵ) ≤ inf
u∈Bρ(0)

Jλ(u) + ϵ ≤ inf
u∈Bρ(0)

Jλ(u) + ϵ < inf
u∈∂Bρ(0)

Jλ(u),

we deduce that uϵ ∈ Bρ(0). Now, we define Kλ : Bρ(0) → R by

Kλ(u) = Jλ(u) + ϵ∥u− uϵ∥.

It is clear that uϵ is a minimum point of Kλ and thus

Kλ(uϵ + tv)−Kλ(uϵ)

t
≥ 0

for small t > 0 and any v ∈ Bρ(0). That is

Jλ(uϵ + tv)− Jλ(uϵ)

t
+ ϵ∥v∥ ≥ 0.

By letting t → 0, we obtain

< J ′
λ(uϵ), v > +ϵ∥v∥ ≥ 0,

which implies that
∥J ′

λ(uϵ)∥ ≤ ϵ.
If we take ϵ = 1

n and vn = u 1
n
, then we can see that {vn} ⊂ Bρ(0) such that

(21) Jλ(vn) → c and J ′
λ(vn) = 0.

Since Jλ satisfies the Palais–Smale condition on E, we conclude from
Lemma 3.4, the existence of a subsequence still denoted by {vn} and u2 ∈ E
such that {vn} strongly converges to u2 in E. And so, u2 is a weak solution
for problem (Pλ). On the other hand, from equation (21), it follows that

Jλ(u2) = c < 0 < Jλ(u1).

That is u1 and u2 are two distinct nontrivial solution for problem (Pλ).
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4. SECOND MAIN RESULT AND ITS PROOF

In this section, we state and prove the second main result of this paper.
Precisely, we prove that under appropriate conditions, problem (Pλ) admits
infinitely many nontrivial solutions. Our main tools are based on the Z2 sym-
metric version of the mountain pass theorem (that is for even function), which
we collect in the following theorem.

Theorem 4.1. Let X be an infinite dimensional real Banach space. Let
φ ∈ C1(X,R), satisfying the following conditions:

1. φ is an even functional such that φ(0) = 0.

2. φ satisfies the (PS)-condition.

3. There exist two positive constants r and ρ, such that if ∥u∥ = r, then,
φ(u) ≥ ρ.

4. For each finite dimensional subspace X1 ⊂ X, the set {u ∈ X1, φ(u) ≥ 0}
is bounded in X.
Then φ has an unbounded sequence of critical values.

We assume the following hypothesis.

(H ′
1) f : Ω× R → R is a Carathéodory function satisfying

f(x, u) ≥ c′1|u|α(x)−1 for all (x, u) ∈ Ω× R,

for some positive constant c′1, where α ∈ C+(Ω) is such that

(22) max(p+, q+, r+) < α− ≤ α(x) < p⋆(x) for all x ∈ Ω,

and

(23) β− > max(p+, q+).

The second main result of this paper is the following.

Theorem 4.2. Under hypotheses (H ′
1), (H3) and (H4), if in addition the

functions F (x, u) and H(x, u) are even with respect to u, then the problem (Pλ)
has infinitely many nontrivial weak solutions in E.

In order to prove Theorem 4.2, we need to prove the following two lemmas.

Lemma 4.3. Assume that the hypotheses of Theorem 4.2 are satisfied.
Then, for any λ > 0 there exist ρ,m > 0 such that Jλ ≥ m > 0 for any u ∈ E
with ∥u∥ = ρ.



15 Multiplicity of solutions for some Steklov problems 31

Proof. Using equations (6), (7) and (8), we obtain

Jλ(u) =

∫
Ω

|∇u|p(x) + a(x)|u|p(x)

p(x)
dx+

∫
Ω

|∇u|q(x) + b(x)|u|q(x)

q(x)
dx

−
∫
∂Ω

H(x, u)dσ − λ

∫
Ω
F (x, u)dx+

∫
∂Ω

g(x)|u|r(x)

r(x)
dσ

≥ 1

p+
ρa(u) +

1

q+
ρb(u)−

∫
∂Ω

H(x, u)dσ − λ

∫
Ω
F (x, u)dx

≥ 1

p+
ρa(u) +

1

q+
ρb(u)−

c1
β−

∫
∂Ω

|u|β(x)dσ − λ
c2
α−

∫
Ω
|u|α(x)dx

≥ 1

p+
ρa(u) +

1

q+
ρb(u)−

c1
β− max

(
|u|β

−

Lβ(x)(∂Ω)
, |u|β

+

Lβ(x)(∂Ω)

)
− λ

c2
α− max

(
|u|α−

Lα(x)(Ω)
, |u|α+

Lα(x)(Ω)

)
≥ κ1

p+
∥u∥p+a +

κ′1
q+

∥u∥q
+

b − c1
β− |u|β

−

Lβ(x)(∂Ω)
− λ

c2
α− |u|α−

Lα(x)(Ω)

≥ κ1ζ1
p+

∥u∥p+ +
κ′1ζ

′
1

q+
∥u∥q+ − c1

β− cβ
−

4 ∥u∥β− − λ
c2
α− cα

−
3 ∥u∥α−

≥
(κ1ζ1

p+
+

κ′1ζ
′
1

q+

)
∥u∥max(p+,q+) − c1

β− cβ
−

4 ∥u∥β− − λ
c2
α− cα

−
3 ∥u∥α−

,

for some positive constants κ1, ζ1, κ2 and ζ2. We define

φλ(t) =
(κ1ζ1

p+
+

κ′1ζ
′
1

q+

)
tmax(p+,q+) − c1

β− cβ
−

4 tβ
− − λ

c2
α− cα

−
3 tα

−
.

We have that α− > max(p+, q+) and β− > max(p+, q+). Then

φλ(t) = tmax(p+,q+)Φλ(t),

where

Φλ(t) =
(κ1ζ1

p+
+

κ′1ζ
′
1

q+

)
− c1

β− cβ
−

4 tβ
−−max(p+,q+) − λ

c2
α− cα

−
3 tα

−−max(p+,q+).

Because α− > max(p+, q+) and β− > max(p+, q+), we have that φλ(t) > 0 for
t small enough, t > 0.

We deduce that for any λ > 0, we can choose ρ,m > 0 such that Jλ(u) ≥
m > 0 for all u ∈ E with ∥u∥ = ρ. This completes the proof.

Lemma 4.4. Let E1 ⊂ E be a finite dimensional subspace. Then, the set

Σ =
{
u ∈ E1; Jλ(u) ≥ 0

}
is bounded in E.
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Proof. First, by Proposition 2.4, we deduce that there exist two positive
constants K1 and K2 such that

(24) ρa(u) ≤ K1

(
∥u∥p+ + ∥u∥p−

)
and ρb(u) ≤ K2

(
∥u∥q+ + ∥u∥q−

)
.

Now, by condition (H ′
1) and equation (24), we obtain that for any u ∈ E

Jλ(u) ≤
1

p−
ρa(u) +

1

q−
ρb(u) +

∥g∥∞
r−

∫
∂Ω

|u|r(x)dσ − λ

∫
Ω
F (x, u)dx

≤ 1

p−
K1

(
∥u∥p+ + ∥u∥p−

)
+

1

q−
K2

(
∥u∥q+ + ∥u∥q−

)
+

∥g∥∞
r−

∫
∂Ω

|u|r(x)dσ − λ
c′1
α+

∫
Ω
|u|α(x)dx.

Let u ∈ E. We have

(25)

∫
∂Ω

|u|r(x)dσ ≤ |u|r−
Lr(x)(∂Ω)

+ |u|r+
Lr(x)(∂Ω)

.

Moreover, the fact that E is continuously embedded in Lr(x)(∂Ω) assures that
there exists a positive constant K3 such that

(26) |u|Lr(x)(∂Ω) ≤ K3∥u∥.

The inequalities (25) and (26) show that there exists K4 > 0 such that

(27)

∫
∂Ω

|u|r(x)dσ ≤ K4

(
∥u∥r+ + ∥u∥r−

)
.

So, we can write

Jλ(u) ≤
K1

p−
(
∥u∥p+ + ∥u∥p−

)
+

K2

q−
(
∥u∥q+ + ∥u∥q−

)
+

K4

r−
(
∥u∥r+ + ∥u∥r−

)
− λ

c′1
α+

∫
Ω
|u|α(x)dx.

Put Ω = Ω< ∪ Ω≥ where

Ω< =
{
x ∈ Ω; |u(x)| < 1

}
and Ω≥ =

{
x ∈ Ω; |u(x)| ≥ 1

}
.

Then, we obtain

Jλ(u) ≤
1

p−
K1

(
∥u∥p+ + ∥u∥p−

)
+

1

q−
K2

(
∥u∥q+ + ∥u∥q−

)
+

∥g∥∞
r−

K4

(
∥u∥r+ + ∥u∥r−

)
− λ

c′1
α+

∫
Ω
|u|α(x)dx

≤ 1

p−
K1

(
∥u∥p+ + ∥u∥p−

)
+

1

q−
K2

(
∥u∥q+ + ∥u∥q−

)
+

∥g∥∞
r−

K4

(
∥u∥r+ + ∥u∥r−

)
− λ

c′1
α+

∫
Ω≥

|u|α−dx
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≤ 1

p−
K1

(
∥u∥p+ + ∥u∥p−

)
+

1

q−
K2

(
∥u∥q+ + ∥u∥q−

)
+

∥g∥∞
r−

K4

(
∥u∥r+ + ∥u∥r−

)
− λ

c′1
α+

∫
Ω
|u|α−dx+ λ

c′1
α+

∫
Ω<

|u|α−dx.

Moreover, there exists a positive constant K5(λ) such that, for any u ∈ E, we
have

λ
c′1
α+

∫
Ω<

|u|α−dx ≤ K5(λ).

Since the functional |.|α− : E → R defined by

|u|α− =
(∫

Ω
|u|α−dx

) 1
α−

is a norm in E and in the finite dimensional subspace E1 the norms |.|α− and
∥.∥ are equivalent, we deduce that there exists K6(E1) > 0 such that

∥u∥ ≤ K6(E1)|.|α− for all u ∈ E1.

Therefore, there exists a constant K7(λ) > 0 such that

Jλ(u) ≤
1

p−
K1

(
∥u∥p+ + ∥u∥p−

)
+

1

q−
K2

(
∥u∥q+ + ∥u∥q−

)
+

∥g∥∞
r−

K4

(
∥u∥r+ + ∥u∥r−

)
−K7(λ)∥u∥α

−
+K5(λ).

Since α− > max(p+, r+, q+) then Σ is bounded. Hence, Jλ has an unbounded
sequence of critical values in E. This ends the proof.

Proof of Theorem 4.2. Since the functions F (x, u) and H(x, u) are even
with respect to u, then it is clear that Jλ is an even functional, moreover, we
have Jλ(0) = 0. Lemmas 4.3, 3.4, and 4.4 imply that Theorem 4.1 can be
applied to the functional Jλ. So, we conclude that problem (1) has infinitely
many weak solutions in E.

REFERENCES

[1] R. Alsaedi, A. Dhifli, and A. Ghanmi, Low perturbations of p-biharmonic equations with
competing nonlinearities. Complex Var. Elliptic Equ. 66 (2021), 4, 642–657.

[2] A. Ayoujil, On the superlinear Steklov problem involving the p(x)-Laplacian. Electron.
J. Qual. Theory Differ. Equ. 38 (2014), 1–13.

[3] M. Allaoui, Existence of solutions for a Robin problem involving the p(x)-Laplacian.
Appl. Math. E-Notes 14 (2014), 107–115.

[4] M. Allaoui, A.R. El Amrouss, and A. Ourraoui, Existence and multiplicity of solutions for
a Steklov problem involving the p(x)-Laplace operator. Electron. J. Differential Equations
132 (2012), 1–12.



34 M. Bezzarga, A. Ghanmi, and A. Galai 18

[5] K. Ben Ali, A. Ghanmi, and K. Kefi, Minimax method involving singular p(x)-Kirchhoff
equation. J. Math. Phys. 58 (2017), 11, article no. 111505.

[6] K. Ben Ali, A. Ghanmi, and K. Kefi, On the Steklov problem involving the p(x)-Laplacian
with indefinite weight. Opuscula Math. 37 (2017), 6, 779–794.

[7] J.F. Bonder and J.D. Rossi, Existence results for the p-Laplacian with nonlinear boundary
conditions. J. Math. Anal. Appl. 263 (2001), 1, 195–223.

[8] R. Chammem, A. Ghanmi, and A. Sahbani, Existence and multiplicity of solutions for
some Steklov problem involving p(x)-Laplacian operator. Appl. Anal. 101 (2022), 7,
2401–2417.

[9] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image
restoration. SIAM J. Appl. Math. 66 (2006), 4, 1383–1406.
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