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The harmonic index and sum-connectivity index are two of the best-known and
most successful vertex-degree-based topological indices in mathematical chem-
istry. They are well correlated with the π-electronic energy of benzenoid hydro-
carbons. The idea of introducing the exponential of vertex-degree-based topo-
logical indices was raised by Rada during the study of discrimination ability of
these class of graph invariants. The aim of this research is to study the expo-
nential of harmonic and sum-connectivity index over trees with fixed order and
given maximum vertex degree.
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1. INTRODUCTION

Consider a graph Γ with vertex set V (Γ) and edge set E(Γ). For a ∈ V (Γ),
the open neighborhood NΓ(a) of a is the set NΓ(a) = {b ∈ V (Γ) | ab ∈ E(Γ)}
and the degree dΓ(a) is the order of NΓ(a). By ∆(Γ), we mean the maximum
degree of Γ. The distance dΓ(a, b) between the vertices a, b ∈ V (Γ) is the length
of a shortest a− b path in Γ.

Topological indices are real numbers assigned to the chemical graph of
a molecular compound which remain invariant under isomorphism of graph.
They are applied in predicting the physico-chemical properties of chemical
structures and considered as helpful measures in QSPR/QSAR investigations
(see, for instance, [14]). Topological indices are divided into various classes
among which vertex-degree-based (VDB) indices have an outstanding position.
VDB indices can be formulated based on the degrees of vertices in graph and
considered as useful tools in examining different properties of chemical struc-
tures containing viscosity, entropy, enthalpy of vaporization, gyrational radius,
boiling point, etc. A large number of VDB indices have been put forward to
date with varied degrees of applications in chemistry and other fields of science.
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The harmonic index and sum-connectivity index are among the best-
known and thoroughly-investigated VDB indices in mathematical chemistry.
The harmonic index was proposed by Fajtlowics [16] in 1987 within some con-
jectures generated by the computer program Graffiti. It is formulated by

H(Γ) =
∑

ab∈E(Γ)

2

dΓ(a) + dΓ(b)
.

The harmonic index correlates well with the π-electronic energy of benzenoid
hydrocarbons. Also, it was shown that its correlations with physical and chem-
ical properties is somewhat better than that of some other VDB indices like
the Randić connectivity index [19].

The sum-connectivity index was introduced by Zhou and Trinajstić [28]
in 2009. This index is formulated by

SC(Γ) =
∑

ab∈E(Γ)

1√
dΓ(a) + dΓ(b)

.

It was shown by Lučić et al. [17] that the sum-connectivity index is well
correlated with the π-electronic energy of benzenoid hydrocarbons. Further
results concerning mathematical properties and applications of the harmonic
and sum-connectivity indices can be found in [1–3,9,13,17,20,21,24,26,27] and
the references quoted therein.

A major issue in the investigation of topological indices is their discrim-
ination power [11, 12]. In view of this, Rada [18] suggested the exponential of
a VDB invariant in 2019. In particular, the exponential of the harmonic index
and sum-connectivity indices are respectively defined as

eH(Γ) =
∑

ab∈E(Γ)

e
2

dΓ(a)+dΓ(b) ,

and

eSC(Γ) =
∑

ab∈E(Γ)

e
1√

dΓ(a)+dΓ(b) .

We refer the readers to [4–8, 10, 15, 22, 23, 25] for comprehensive, transparent
information on exponential vertex-degree-based indices.

A famous topic in extremal graph theory is to investigate the extreme
amounts of topological indices over trees with given graph parameters. In this
paper, we aim to study the maximum values of the exponential of harmonic
and sum-connectivity indices over trees with fixed order and maximum degree
and characterize the maximal trees.
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2. TREE

A rooted tree is a tree together with a special vertex chosen as the root
of the tree. A spider is a tree with exactly one vertex of degree more than
two. This vertex is known as the center of the spider. A leg of a spider is a
path which connects its center to one of its leaves. A spider in which all legs
have length one is a star. If needed, and by a slight abuse of language, we also
consider a path graph to be a spider (with one or two leg).

For positive integers η and ∆, Tη,∆ stands for the set of all trees having
η vertices and maximum degree ∆.

Lemma 2.1. Let Ψ ∈ Tη,∆, and let a be a vertex of Ψ with dΨ(a) = ∆. If
Ψ contains a vertex b ̸= a with dΨ(b) ≥ 3, then there exists a tree Ψ

′ ∈ Tη,∆
such that eH(Ψ

′
) > eH(Ψ) and eSC(Ψ

′
) > eSC(Ψ).

Proof. Consider Ψ as a tree rooted in a. We may assume that among all
vertices x ̸= a with dΨ(x) ≥ 3, the vertex b has maximum distance from a. Let
dΨ(b) = ℓ and let NΨ(b) = {b1, b2, . . . , bℓ}, where bℓ is the neighbor of b that
lies on the b− a path in Ψ and dΨ(bℓ) = α. By our assumption on dΨ(a, b), we
have dΨ(bi) ∈ {1, 2} for each 1 ≤ i ≤ ℓ − 1. Based on the latter degrees, the
following three cases can be considered.

Case 1: b is adjacent to at least two leaves. We may assume that dΨ(b1) =
dΨ(b2) = 1. Define the tree Ψ

′ ∈ Tη,∆ as Ψ′ = (Ψ − b1) + blb2. Recall that
ℓ ≥ 3. Then

eH(Ψ)− eH(Ψ
′
) =

∑
3≤i≤ℓ

e
2

dΨ(bi)+dΨ(b) + e
2

dΨ(b1)+dΨ(b) + e
2

dΨ(b2)+dΨ(b)

−
∑

3≤i≤ℓ

e
2

dΨ′ (bi)+dΨ′ (b) − e
2

dΨ′ (b1)+dΨ′ (b2) − e
2

dΨ′ (b2)+dΨ′ (b)

=
∑

3≤i≤ℓ

(e
2

dΨ(bi)+ℓ − e
2

dΨ(bi)+ℓ−1 ) + 2e
2

ℓ+1 − e
2
3 − e

2
ℓ+1

< e
2

ℓ+1 − e
2
3 < 0,

and

eSC(Ψ)− eSC(Ψ
′
) =

∑
3≤i≤ℓ

e
1√

dΨ(bi)+dΨ(b) + e
1√

dΨ(b1)+dΨ(b) + e
1√

dΨ(b2)+dΨ(b)

−
∑

3≤i≤ℓ

e

1√
dΨ′ (bi)+dΨ′ (b) − e

1√
dΨ′ (b1)+dΨ′ (b2) − e

1
dΨ′ (b2)+dΨ′ (b)

=
∑

3≤i≤ℓ

(e
1√

dΨ(bi)+ℓ − e
1√

dΨ(bi)+ℓ−1 ) + 2e
1√
ℓ+1 − e

1√
3 − e

1√
ℓ+1
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< e
1√
ℓ+1 − e

1√
3 < 0.

Case 2: b is adjacent to exactly one leaf. We may assume that b1 is the
leaf adjacent to b. Let bc1c2 . . . ck, be the path in Ψ where b2 = c1, k ≥ 2, and
ck is a leaf. Let Ψ

′
be the tree obtained from Ψ by removing the vertex b1 and

the path c1c2 . . . ck and attaching to b the path c1c2 . . . ckb1. Then

eH(Ψ)− eH(Ψ
′
) =

∑
2≤i≤ℓ

e
2

dΨ(bi)+dΨ(b) + e
2

dΨ(b1)+dΨ(b) + e
2

dΨ(ck)+dΨ(ck−1)

−
∑

3≤i≤ℓ

e
2

dΨ′ (bi)+dΨ′ (b) − e
2

dΨ′ (b1)+dΨ′ (ck) − e
2

dΨ′ (ck)+dΨ′ (ck−1)

=
∑

2≤i≤ℓ

(e
2

dΨ(bi)+ℓ − e
2

dΨ(bi)+ℓ−1 ) + e
2

ℓ+1 − e
2
3 − e

2
3 − e

2
4

< e
2

ℓ+1 − e
2
4 ≤ 0,

and

eSC(Ψ)− eSC(Ψ
′
) =

∑
2≤i≤ℓ

e
1√

dΨ(bi)+dΨ(b) + e
1√

dΨ(b1)+dΨ(b) + e

1√
dΨ(ck)+dΨ(ck−1)

−
∑

2≤i≤ℓ

e

1√
dΨ′ (bi)+dΨ′ (b) − e

1√
dΨ′ (b1)+dΨ′ (ck)

− e

1√
dΨ′ (ck)+dΨ′ (ck−1)

=
∑

2≤i≤ℓ

(e
1√

dΨ(bi)+ℓ −e
1√

dΨ(bi)+ℓ−1 ) + e
1√
ℓ+1 + e

1√
3 − e

1√
3 − e

1
2

< e
1√
ℓ+1 − e

1
2 ≤ 0.

Case 3: None of the vertices adjacent to b is a leaf. Let bc1c2 . . . ck and
bd1d2 . . . ds be the paths in Ψ such that k, s ≥ 2, b1 = c1, b2 = d1, and ck
and ds are leaves. Let Ψ

′
be the tree achieved from Ψ by removing the path

c1 . . . ck and attaching the path dsc1 . . . ck. If ℓ ≥ 5, then

eH(Ψ)− eH(Ψ
′
) =

∑
3≤i≤ℓ

e
2

dΨ(bi)+dΨ(b) + e
2

dΨ(b1)+dΨ(b) + e
2

dΨ(ds)+dΨ(ds−1)

−
∑

3≤i≤ℓ

e
2

dΨ′ (bi)+dΨ′ (b) − e
2

dΨ′ (b1)+dΨ′ (ds) − e
2

dΨ′ (ds)+dΨ′ (ds−1)

=
∑

3≤i≤ℓ

(e
2

dΨ(bi)+ℓ − e
2

dΨ(bi)+ℓ−1 ) + e
2

ℓ+2 + e
2
3 − 2e

2
4

≤ e
2
7 + e

2
3 − 2e

2
4 ≈ −0.0189.
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Now let ℓ = 3 or ℓ = 4. Then

eH(Ψ)− eH(Ψ
′
) < e

2
dΨ(b2)+dΨ(b) + e

2
dΨ(b1)+dΨ(b) + e

2
dΨ(ds)+dΨ(ds−1)

− e
2

dΨ′ (b2)+dΨ′ (b) − e
2

dΨ′ (b1)+dΨ′ (ds) − e
2

dΨ′ (ds)+dΨ′ (ds−1)

= 2e
2

ℓ+2 + e
2
3 − e

2
ℓ+1 − 2e

2
4 .

If ℓ = 4, then

eH(Ψ)− eH(Ψ
′
) < 2e

2
6 + e

2
3 − e

2
5 − 2e

2
4 ≈ −0.0503,

and if ℓ = 3, then

eH(Ψ)− eH(Ψ
′
) < 2e

2
5 + e

2
3 − 3e

2
4 ≈ −0.0147.

Also if ℓ ≥ 5, then

eSC(Ψ)− eSC(Ψ
′
) =

∑
3≤i≤ℓ

e
1√

dΨ(bi)+dΨ(b) + e
1√

dΨ(b1)+dΨ(b) + e
1√

dΨ(ds)+dΨ(ds−1)

−
∑

3≤i≤ℓ

e

1√
dΨ′ (bi)+dΨ′ (b) − e

1√
dΨ′ (b1)+dΨ′ (ds)

− e

1√
dΨ′ (ds)+dΨ′ (ds−1)

=
∑

3≤i≤ℓ

(e
1√

dΨ(bi)+ℓ − e
1√

dΨ(bi)+ℓ−1 ) + e
1√
ℓ+2 + e

1√
3 − 2e

1
2

≤ e
1√
7 + e

1√
3 − 2e

1
2 ≈ −0.0568.

Now let ℓ = 3 or ℓ = 4. Then

eSC(Ψ)− eSC(Ψ
′
) < e

1√
dΨ(b2)+dΨ(b) + e

1√
dΨ(b1)+dΨ(b) + e

1√
dΨ(ds)+dΨ(ds−1)

− e

1√
dΨ′ (b2)+dΨ′ (b) − e

1√
dΨ′ (b1)+dΨ′ (ds) − e

1√
dΨ′ (ds)+dΨ′ (ds−1)

= 2e
1√
ℓ+2 + e

1√
3 − e

1√
ℓ+1 − 2e

1
2 .

If ℓ = 4, then

eSC(Ψ)− eSC(Ψ
′
) < 2e

1√
6 + e

1√
3 − e

1√
5 − 2e

1
2 ≈ −0.0717,

and if ℓ = 3, then

eSC(Ψ)− eSC(Ψ
′
) < 2e

1√
5 + e

1√
3 − 3e

1
2 ≈ −0.0369,

from which the proof is completed.

Lemma 2.2. If Ψ ∈ Tη,∆ is a spider with ∆ ≥ 3 such that Ψ has at least
one leaf and one leg of length more than two, then there is a spider Ψ

′ ∈ Tη,∆
such that eH(Ψ

′
) > eH(Ψ) and eSC(Ψ

′
) > eSC(Ψ).
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Proof. Denote by a the center of Ψ and assume that ab1, ac1c2 . . . cl are
two legs of Ψ such that l ≥ 3. Define Ψ

′ ∈ Tη,∆ as Ψ′ = (Ψ \ clcl−1) + clb1.
Then

eH(Ψ)− eH(Ψ
′
) = e

2
dΨ(b1)+dΨ(b) + e

2
dΨ(cl)+dΨ(cl−1) + e

2
dΨ(cl−1)+dΨ(cl−2)

− e
2

dΨ′ (b1)+dΨ′ (b) − e
2

dΨ′ (b1)+dΨ′ (cl) − e
2

dΨ′ (cl−1)+dΨ′ (cl−2)

= e
2

∆+1 + e
2
4 − e

2
∆+2 − e

2
3 .

Let f(σ) = e
2

σ+1 − e
2

σ+2 . Then

f ′(σ) =
2e

2
σ+2

(σ + 2)2
− 2e

2
σ+1

(σ + 1)2
=

2e
2

σ+2 (σ + 1)2 − 2e
2

σ+1 (σ + 2)2

(σ2 + 3σ + 2)2
.

Thus, f(σ) is a decreasing function, when σ ≥ 3. Therefore

eH(Ψ)− eH(Ψ
′
) ≤ 2e

1
2 − e

2
5 − e

2
3 ≈ −0.1421.

Also

eSC(Ψ)− eSC(Ψ
′
) = e

1√
dΨ(b1)+dΨ(b) + e

1√
dΨ(cl)+dΨ(cl−1) + e

1√
dΨ(cl−1)+dΨ(cl−2)

− e

1√
dΨ′ (b1)+dΨ′ (b) − e

1√
dΨ′ (b1)+dΨ′ (cl)

− e

1√
dΨ′ (cl−1)+dΨ′ (cl−2)

= e
1√
∆+1 + e

1
2 − e

1√
∆+2 − e

1√
3 .

Let f(σ) = e
1√
σ+1 − e

1√
σ+2 . Then

f ′(σ) =
e

1√
σ+2

2
√

(σ + 2)3
− e

1√
σ+1

2
√

(σ + 1)3

=
2
√

(σ + 1)3e
1√
σ+2 − 2

√
(σ + 2)3e

1√
σ+1

2
√
(σ2 + 3σ + 2)3

.

Thus, f(σ) is a decreasing function, when σ ≥ 3. Therefore

eSC(Ψ)− eSC(Ψ
′
) ≤ 2e

1
2 − e

1√
5 − e

1√
3 ≈ −0.0478.

So, the claims are valid.

At this point, we present the main results of this paper.

Theorem 2.3. For Ψ ∈ Tη,∆,

eH(Ψ) ≤ ∆(e
2

∆+2 + e
2
3 ) + (η − 2∆− 1)e

1
2 ,
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when ∆ ≤ η−1
2 , and

eH(Ψ) ≤ (η −∆− 1)(e
2

∆+2 + e
2
3 ) + (2∆− η + 1)e

2
∆+1 ,

when ∆ > η−1
2 . The equality case occurs iff Ψ is a spider in which all legs are

of length at most two or all legs are of length at least two.

Proof. We assume that Ψ1 ∈ Tη,∆ such that eH(Ψ1) ≥ eH(Ψ) for all
Ψ ∈ Tη,∆. Rooted Ψ1 at a such that dΨ1(a) = ∆. First, consider the case
where ∆ = 2. In this case,

eH(Ψ) = eH(Pη) = (η − 3)e
1
2 + 2e

2
3 .

Now assume that ∆ ≥ 3. Then by Lemma 2.1, Ψ1 is a spider with center a and
by Lemma 2.2, all legs of Ψ1 either are of length at least two or are of length
at most two. If all legs of Ψ1 have length at least two, then ∆ ≤ η−1

2 and

eH(Ψ1) = ∆e
2

∆+2 + (η − 2∆− 1)e
1
2 +∆e

2
3 .

Now let all legs of Ψ1 be of length at most two. If all legs of Ψ1 are of length

one, then eH(Ψ) = ∆e
2

∆+1 . Otherwise, 2∆+1− η leaves are adjacent to a and
we have

eH(Ψ1) = (η −∆− 1)e
2

∆+2 + (2∆− η + 1)e
2

∆+1 + (η −∆− 1)e
2
3 .

This completes the proof.

The proof of the subsequent theorem is analogous to that of Theorem 2.3,
hence it is not presented.

Theorem 2.4. For Ψ ∈ Tη,∆,

eSC(Ψ) ≤ ∆(e
1√
∆+2 + e

1√
3 ) + (η − 2∆− 1)e

1
2 ,

when ∆ ≤ η−1
2 , and

eSC(Ψ) ≤ (η −∆− 1)(e
1√
∆+2 + e

1√
3 ) + (2∆− η + 1)e

1√
∆+1 ,

when ∆ > η−1
2 . The equality case occurs iff Ψ is a spider in which all legs are

of length at most two or all legs are of length at least two.
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[24] S. Wang, B. Zhou, and N. Trinajstić, On the sum-connectivity index. Filomat 25 (2011),
3, 29–42.

[25] P. Wei, M. Liu, and I. Gutman, On (exponential) bond incident degree indices of graphs.
Discrete Appl. Math. 336 (2023), 141–147.
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