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We show that for any purely 2-unrectifiable metric space M , for example
the Heisenberg group H1 equipped with the Carnot–Carathéodory metric, every
homotopy class [γ] of Lipschitz paths contains a length minimizing representative
γ∞ that is unique up to reparametrization. The length minimizer γ∞ is the core
of the homotopy class [γ] in the sense that the image of γ∞ is a subset of the image
of any path contained in [γ]. Furthermore, the existence of length minimizers
guarantees that only the trivial class in the first Lipschitz homotopy group of
M with a base point can be represented by a loop within each neighborhood of
the base point. The results detailed here are used in Perry (Preprint, 2024) to
define and prove properties of a universal Lipschitz path space over H1.
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1. INTRODUCTION

In this paper, we prove the following theorem.

Theorem 1.1. Let M be a purely 2-unrectifiable metric space, for exam-
ple the Heisenberg group H1 endowed with the Carnot–Carathéodory metric.
For any homotopy class [γ] of Lipschitz paths in M , there exists a length min-
imizing Lipschitz path γ∞ ∈ [γ] where

ℓ(γ∞) = inf
{
ℓ(γ) | γ ∈ [γ]

}
.

Moreover, for any representative γ ∈ [γ] in the class, Im(γ∞) ⊂ Im(γ).

A length minimizer γ∞ ∈ [γ] can be thus thought of as the core of the
homotopy class [γ] where the extraneous branches of the paths in the class
have been pruned. An immediate consequence is that for every point in a
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purely 2-unrectifiable metric space, only the trivial class in the first Lipschitz
homotopy group can be represented by a loop within each neighborhood of the
point (Corollary 3.11).

Studying metric spaces, in particular Heisenberg groups endowed with
a Carnot–Carathéodory metric, through Lipschitz homotopies was introduced
in [6] with the definition of Lipschitz homotopy groups. Since, Lipschitz ho-
motopy groups have been calculated for various sub-Riemannian manifolds in
[6–9], [14], and [18]. For an overview of sub-Riemannian geometry, see [13].

Results in [6], [14], and [18] concerning the Lipschitz homotopy groups
of the Heisenberg group H1 and contact 3-manifolds rely heavily on these sub-
Riemannian manifolds endowed with the Carnot–Carathéodory metric being
purely 2-unrectifiable metric spaces in the sense of [3]. As is shown in Ambrosio
and Kirchheim [3], the Heisenberg group H1 is purely 2-unrectifiable and, as is
shown in [14], any contact 3-manifold endowed with a sub-Riemannian metric
is purely 2-unrectifiable. We likewise make significant use of results of purely
2-unrectifiable metric spaces to conclude the existence of length minimizers in
homotopy classes.

While we primarily center our attention on the Heisenberg group in dis-
cussion, the results in this paper apply to a number of other well-known exam-
ples. Filiform Carnot groups Jk(R,R) have two-dimensional horizontal spaces
and are thus purely 2-unrectifiable. See [17] for theory on filiform Carnot
groups and [11] for the unrectifiability assertion. Bourdon–Pajot spaces [5]
and Laakso graphs [10] provide additional examples of purely 2-unrectifiable
spaces.

The key step to the proof of Theorem 1.1 is, given a Lipschitz path γ in
a homotopy class [γ], determining a sequence of Lipschitz paths that are uni-
formly Lipschitz homotopic to γ and whose lengths converge to the infimum.
Once such a sequence is obtained, Arzelà–Ascoli theorem yields a length min-
imizing path γ∞ together with a homotopy to γ.

To find this sequence of paths, we apply a lemma (Lemma 3.8) which,
given any homotopy from γ to any Lipschitz path β, constructs a homotopy
with controlled Lipschitz constant from γ to a shorter path β′. The proof
of Lemma 3.8 relies on a result of Wenger and Young in [18] concerning a
factorization of Lipschitz maps with purely 2-unrectifiable target though a
metric tree. Their result is stated in Theorem 2.5.

The results in this paper are utilized in [15] to define a metric space called
universal Lipschitz path space PH1 over H1 and prove requisite properties. For
an arbitrary based metric spaceM , the universal Lipschitz path space PM over
M is a pseudo-metric space with pseudo-metric dP . The pseudo-metric dP is
defined as the infimum of lengths of paths in a particular homotopy class.
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As is reported in [15], Corollary 3.11 implies that for a purely 2-unrectifiable
space M , the pseudo-metric dP is a metric. Moreover, for such a space M ,
the universal Lipschitz path space PM is a Lipschitz simply connected length
space which satisfies a unique lifting property.

2. BACKGROUND

2.1. Homotopy, geodesics, and metric trees

Convention 2.1. Throughout this paper, I = [0, 1] is the closed interval
endowed with the Euclidean metric. All paths have domain I. For a metric
space M and a path γ : I → M , the length of the path γ is denoted ℓ(γ).
For metric spaces A and M , the Lipschitz constant of a Lipschitz function
f : A→M is denoted by Lip(f).

As we proceed, we endow I × I with the L1 metric:

d1
(
(s, t), (s′, t′)

)
= |s− s′|+ |t− t′| for (s, t), (s′, t′) ∈ I × I.

The metric d1 is Lipschitz equivalent to the Euclidean metric on I × I.

Definition 2.2. LetM be a metric space. Two Lipschitz paths γ, γ′ : I →
M are homotopic rel endpoints if the initial points γ(0) = γ′(0) and end points
γ(1) = γ′(1) of the paths agree and there exists a Lipschitz map H : I×I →M
such that

H|I×{0} = γ, H|I×{1} = γ′, H|{0}×I = γ(0), and H|{1}×I = γ(1).

The map H is a homotopy from γ to γ′. For a Lipschitz path γ, the class of
all Lipschitz paths homotopic rel endpoints to γ is denoted [γ] and is referred
to as the homotopy class of γ.

The homotopy classes of loops based at a point x0 ∈M are the elements
of the first Lipschitz homotopy group πLip1 (M,x0) of the metric space M . For
the complete definition of Lipschitz homotopy groups and the initial study of
πLip1 (H1), see [6]. Another example of studying first Lipschitz homotopy groups
of purely 2-unrectifiable metric spaces can be found in [14] where contact 3-
manifolds are considered.

Definition 2.3. Let (M,d) be a metric space. Let x, y ∈ M and let
η : I → M be a path from η(0) = x to η(1) = y. The path η is arc length
parametrized if for any t, t′ ∈ I,

ℓ(η|[t,t′]) = ℓ(η) |t′ − t|.
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The path η is a shortest path from x to y if

ℓ(η) = d(x, y).

The path η is a geodesic from x to y if for any t, t′ ∈ I,

d
(
η(t), η(t′)

)
= d(x, y) |t′ − t|.

Every geodesic is a shortest path between its endpoints and is arc length
parametrized. Thus, every geodesic is Lipschitz with Lipschitz constant equal
to its length.

We primarily discuss geodesics with reference to metric trees. Metric
trees were originally introduced in [16]. For a selection of results concerning
metric trees, see [1], [2], and [12].

Definition 2.4. A non-empty metric space T is a metric tree if for any
x, x′ ∈ T , there exists a unique arc joining x and x′ and there is a geodesic η
from x to x′. A subset T ′ ⊂ T of a metric tree is a subtree if T ′ is a metric tree
with reference to the metric on T restricted to T ′.

2.2. Wenger and Young’s factorization through a metric tree

We make significant use of the work of Wenger and Young in [18] to show
the existence of a length minimizing representative, in particular the following
factorization.

Theorem 2.5 ([18], Theorem 5). Let A be a quasi-convex metric space
with quasi-convexity constant C and with πLip1 (A) = 0. Let furthermore M be
a purely 2-unrectifiable metric space. Then every Lipschitz map f : A → M
factors through a metric tree T ,

A M,

T

f

ψ φ

where Lip(ψ) = C Lip(f) and Lip(φ) = 1.

We include some details of their work presently. In the proof of Theo-
rem 2.5 in [18], Wenger and Young define the following pseudo-metric on A:

df (a, a
′) := inf

{
ℓ(f ◦ c) | c is a Lipschitz path in A from a to a′

}
where a, a′ ∈ A. The metric tree is then defined as a quotient space T := A/ ∼,
where the equivalence relation is given by a ∼ a′ if and only if df (a, a

′) = 0.
The metric on T is then

dT
(
[a], [a′]

)
:= df (a, a

′).
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The map ψ is the quotient map, ψ(a) = [a]. The original function f is constant
on equivalence classes. As such, the map φ([a]) = f(a) is well defined.

3. LENGTH MINIMIZERS OF HOMOTOPY CLASSES IN
PURELY 2-UNRECTIFIABLE METRIC SPACES

3.1. Building a desirable homotopy

For the remainder of the paper, let M be a purely 2-unrectifiable metric
space with metric d. Let γ and β be Lipschitz homotopic paths.

We use Theorem 2.5 and the definition of the metric tree to fashion a
desirable Lipschitz homotopy from the path γ to a Lipschitz path β′ whose
length is less than or equal to the length of β and whose Lipschitz constant is
bounded by the Lipschitz constant of γ. Furthermore, the desirable homotopy
has Lipschitz constant equal to the Lipschitz constant of γ. This homotopy is
used to show the existence of a length minimizer in each homotopy class in a
purely 2-unrectifiable metric space.

Let H : I × I → M be a homotopy from γ to β. So, H|I×{0} = γ and
H|I×{1} = β. Since I × I is a geodesic space and Lipschitz simply connected,
Theorem 2.5 guarantees the Lipschitz map H factors through a metric tree T :

I × I M,

T

H

ψ φ

where Lip(ψ) = Lip(H) and Lip(φ) = 1. Note that, since H|{0}×I = γ(0) and
H|{1}×I = γ(1), the restricted maps ψ|{0}×I = ψ(0, 0) and ψ|{1}×I = ψ(1, 0)
are constant.

Though the map ψ is Lip(H)-Lipschitz, the restriction of the map ψ to
I × {0} is at most Lip(γ)-Lipschitz.

Lemma 3.1. The Lipschitz constant of the quotient map ψ restricted to
I×{0} is bounded by the Lipschitz constant of the path γ, that is, Lip(ψ|I×{0}) ≤
Lip(γ).

Proof. Let t, t′ ∈ I where t < t′. Using the definition of the metric on T ,

dT
(
ψ(t, 0), ψ(t′, 0)

)
= dT

(
[(t, 0)], [(t′, 0)]

)
= dH

(
(t, 0), (t′, 0)

)
= inf

{
ℓ(H ◦ c) | c is a path from (t, 0) to (t′, 0)

}
.
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Now, selecting the inclusion c = (1, 0) : [t, t′] ↪→ I×I which is a Lipschitz path
from (t, 0) to (t′, 0), yields that

dT
(
ψ(t, 0), ψ(t′, 0)

)
≤ ℓ

(
H ◦ (1, 0) : [t, t′] ↪→M

)
= ℓ(γ|[t,t′]).

Since γ is Lipschitz, we have the following string of inequalities:

dT
(
ψ(t, 0), ψ(t′, 0)

)
≤ ℓ

(
γ|[t,t′]

)
≤ Lip(γ) |t− t′|.

When defining the new homotopy, our focus in the metric tree T is T ′ :=
Im(ψ|I×{0}), the image of the restriction in Lemma 3.1, which is a subtree of
T . Note that every element of the subtree T ′ can be written as [(t, 0)] for some
t ∈ I. The subtree T ′ has finite diameter bounded by the Lipschitz constant
of the path γ, as is now shown.

Lemma 3.2. The subtree T ′ has diameter bounded by the Lipschitz con-
stant of the path γ, that is, diam(T ′) ≤ Lip(γ).

Proof.

diam(T ′) = sup
[(t,0)],[(t′,0)]∈T ′

dT
(
[(t, 0)], [(t′, 0)]

)
= sup

t,t′∈I
dH

(
(t, 0), (t′, 0)

)
= sup

t,t′∈I
inf
c
ℓ(H ◦ c)

≤ sup
t,t′∈I

ℓ
(
H ◦ (1, 0) : [t, t′] →M

)
= sup

t,t′∈I
ℓ(γ|[t,t′])

≤ sup
t,t′∈I

Lip(γ) |t− t′|

= Lip(γ).

Now, let η : I → T be the geodesic in T from ψ(0, 0) to ψ(1, 0). Since η
is a geodesic, for any t, t′ ∈ I,

(1) dT
(
η(t), η(t′)

)
= dT

(
ψ(0, 0), ψ(1, 0)

)
|t− t′|.

Define a new path β′ : I → M by β′(t) = φ ◦ η(t). As we now show, the
length of β′ is bounded above by the length of the path β, the image of β′ is
a subset of the image of γ, and the Lipschitz constant for β′ is bounded above
by the Lipschitz constant of the initial path γ.

Lemma 3.3. The length of the path β′ is bounded by the length of the path
β, that is, ℓ(β′) ≤ ℓ(β).
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Proof. If ψ(0, 0) = ψ(1, 0), then the geodesic η is a constant path, as is
the path β′. The desired result is then immediate.

Assume ψ(0, 0) ̸= ψ(1, 0). Then the geodesic η joining these distinct
points is non-constant and injective. Let 0 = t0 < t1 < t2 < · · · < tn+1 = 1
be a partition of the interval I. Then, as is argued below, there is a partition
0 = t∗0 < t∗1 < t∗2 < · · · < t∗n+1 = 1 such that β′(ti) = β(t∗i ).

Now η is a geodesic from ψ(0, 0) = ψ(0, 1) to ψ(1, 0) = ψ(1, 1) and the
map ψ|I×{1} is a path in the metric tree T with the same initial and termi-
nal points as η. Thus, the image of η is a subset of the image of ψ|I×{1}.
Furthermore, for each i = 1, . . . , n, there is a time t∗i ∈ I such that

ψ(t∗i , 1) = η(ti) and ψ(t, 1) ̸= η(ti) for all t > t∗i ,

that is, t∗i is the last time the path ψ|I×{1} visits the point η(ti). Thus,

β′(ti) = φ
(
η(ti)

)
= φ

(
ψ(t∗i , 1)

)
= β(t∗i ).

Let i < j. Suppose t∗i ≥ t∗j . If t∗i = t∗j , then η(ti) = η(tj), contradicting
that the geodesic η is injective. Assume t∗i > t∗j . Then, the restricted path
ψ|[t∗i ,1]×{1} begins at η(ti) and ends at η(1) and therefore travels through the
point η(tj), contradicting that t∗j is the last time that ψ|I×{1} visits that point
η(tj). Therefore, t∗i < t∗j for all i < j. We thus have attained the desired
partition.

So, for each partition 0 = t0 < t1 < t2 < · · · < tn+1 = 1, there exists a
partition 0 = t∗0 < t∗1 < t∗2 < · · · < t∗n+1 = 1 such that

n+1∑
i=0

d
(
β′(ti), β

′(ti+1)
)
=

n+1∑
i=0

d
(
β(t∗i ), β(t

∗
i+1)

)
.

Taking supremum over all partitions 0 = t0 < t1 < t2 < · · · < tn+1 = 1, we
arrive at ℓ(β′) ≤ ℓ(β).

Lemma 3.4. The image of the path β′ is a subset of the image of the path
γ, that is, Im(β′) ⊂ Im(γ).

Proof. The geodesic η is a path from ψ(0, 0) to ψ(1, 0), as is the map
ψ|I×{0}. Since η is a geodesic in the metric tree T , the image of the geodesic
is a subset of the image of any path with the same initial and terminal points.
Thus, Im(η) ⊂ Im(ψ|I×{0}). Therefore,

Im(β′) = Im(φ ◦ η) ⊂ Im(φ ◦ ψ|I×{0}) = Im(γ).

Lemma 3.5. The Lipschitz constant of the path β′ is bounded above by
the Lipschitz constant of the path γ, that is, Lip(β′) ≤ Lip(γ).
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Proof. Let t, t′ ∈ I. Using that Lip(φ) = 1 as well as (1) and Lemma 3.2,
we have the following inequalities:

d
(
β′(t), β′(t′)

)
= d

(
φ(η(t)

)
, φ

(
η(t′)

))
≤ dT

(
η(t), η(t′)

)
= dT

(
ψ(0, 0), ψ(1, 0)

)
|t− t′|

≤ diam(T ′)|t− t′|
≤ Lip(γ)|t− t′|.

We now construct a homotopy H ′ from the initial path γ to the new path
β′ which has Lipschitz constant Lip(H ′) = Lip(γ).

Let t ∈ I. There is a geodesic gt : I → T from gt(0) = ψ(t, 0) to
gt(1) = η(t) where, for all s, s′ ∈ I,

(2) dT
(
gt(s), gt(s

′)
)
= dT

(
ψ(t, 0), η(t)

)
|s− s′|.

Since points ψ(0, 0) = η(0) are equal, the geodesic g0(s) = ψ(0, 0) is
constant. Similarly, the geodesic g1(s) = ψ(1, 0) is constant. Thus, the function
g : I × I → T given by g(t, s) := gt(s) is a homotopy from path ψ|I×{0} to
geodesic η provided g is Lipschitz. We show that g is a Lipschitz map with
Lipschitz constant bounded by Lip(γ) and that the image of g is a subset of
the image Im(ψ|I×{0}).

Lemma 3.6. The function g is Lipschitz with Lipschitz constant Lip(g) ≤
Lip(γ).

Proof. Let (t, s), (t′, s′) ∈ I × I. First, consider dT (gt(s), gt′(s)). Fix t
and t′. As s ∈ I varies,

D(s) := dT
(
gt(s), gt′(s)

)
is a function from I to R. By properties of metric trees, there exists s0 ∈ I
such that the restriction D|[0,s0] is decreasing and the restriction D|[s0,1] is
increasing. Thus, the maximum of the function D occurs when s = 0 or s = 1.
Now, by Lemma 3.1,

D(0) = dT
(
gt(0), gt′(0)

)
= dT

(
ψ(t, 0), ψ(t′, 0)

)
≤ Lip(γ)|t− t′|.

Also, by (1) and Lemma 3.2,

D(1) = dT
(
gt(1), gt′(1)

)
= dT

(
η(t), η(t′)

)
= dT

(
η(0), η(1)

)
|t− t′|

≤ diam(T ′)|t− t′|
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≤ Lip(γ)|t− t′|.
Therefore, for any s ∈ I,

dT
(
gt(s), gt′(s)

)
= D(s) ≤ Lip(γ)|t− t′|.

Now, consider the value dT (gt(s), gt(s
′)). Since η is a geodesic from ψ(0, 0)

to ψ(1, 0) and T ′ = Im(ψ|I×{0}) ⊂ T is a subtree containing these points,
η(t) ∈ T ′. Thus, by (2) and Lemma 3.2,

dT
(
gt(s), gt(s

′)
)

= dT
(
ψ(t, 0), η(t)

)
|s− s′|

≤ diam(T ′)|s− s′|
≤ Lip(γ)|s− s′|.

Therefore, we conclude that

dT
(
gt(s), gt′(s

′)
)

≤ dT
(
gt(s), gt′(s)

)
+ dT

(
gt′(s), gt′(s

′)
)

≤ Lip(γ)|t− t′|+ Lip(γ)|s− s′|
= Lip(γ) d1

(
(t, s), (t′, s′)

)
.

Lemma 3.7. The image of the function g is a subset of the image of the
restricted map ψ|I×{0}, that is, Im(g) ⊂ Im(ψ|I×{0}).

Proof. Let (t, s) ∈ I × I. The path gt is a geodesic from ψ(t, 0) to η(t).
Since η is a geodesic from ψ(0, 0) to ψ(1, 0) and T ′ = Im(ψ|I×{0}) is a subtree
containing these points, η(t) ∈ T ′. Thus, since gt is a geodesic between points
ψ(t, 0), η(t) ∈ T ′ and T ′ is a subtree, gt(s) ∈ T ′ for all s ∈ I. Thus,

Im(g) ⊂ Im(ψ|I×{0}).

We are now ready to define the new homotopy H ′ : I × I → M by
H ′(t, s) := φ ◦ g(t, s). The function H ′ is indeed a homotopy from γ to β′ as

H ′(t, 0) = φ
(
gt(0)

)
= φ

(
ψ(t, 0)

)
= γ(t),

H ′(t, 1) = φ
(
gt(1)

)
= φ

(
η(t)

)
= β′(t),

H ′(0, s) = φ
(
g0(s)

)
= φ

(
ψ(0, 0)

)
= γ(0),

H ′(1, s) = φ
(
g1(s)

)
= φ

(
ψ(1, 0)

)
= γ(1).

Moreover, since Lip(φ) = 1 and, by Lemma 3.6, for (s, t), (s′, t′) ∈ I × I,

d
(
H ′(t, s),H ′(t′, s′)

)
= d

(
φ
(
g(t, s)

)
, φ

(
g(t′, s′)

))
≤ dT

(
g(t, s), g(t′, s′)

)
≤ Lip(γ) d1

(
(t, s), (t′, s′)

)
.

Therefore, Lip(H ′) ≤ Lip(γ). In fact, since Lip(H ′|I×{0}) = Lip(γ), we have
that Lip(H ′) = Lip(γ). Also, an immediate consequence of Lemma 3.7 is that
Im(H ′) ⊂ Im(γ).
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We have thus defined a Lipschitz homotopy with all of the desired prop-
erties, which are collected in the following lemma.

Lemma 3.8. Let M be a purely 2-unrectifiable space. Given Lipschitz
paths γ : I →M and β : I →M that are homotopic rel endpoints, there exists
a Lipschitz map H ′ : I × I →M and a Lipschitz path β′ : I →M such that

� the map H ′ is a homotopy from γ to β′,

� Lip(H ′) = Lip(γ),

� Im(H ′) ⊂ Im(γ),

� Lip(β′) ≤ Lip(γ),

� Im(β′) ⊂ Im(γ), and

� ℓ(β′) ≤ ℓ(β).

3.2. Finding the length minimizer of a homotopy class

We now prove the primary result of the paper: the existence of a length
minimizer in any homotopy class of paths in a purely 2-unrectifiable metric
space. We use Lemma 3.8 to fashion a sequence of Lipschitz paths in a given
homotopy class, as well as associated homotopies, that have a uniform bound
on their Lipschitz constants and then apply Arzelà–Ascoli theorem to find the
length minimizer.

Theorem 3.9. Let M be a purely 2-unrectifiable metric space. For any
homotopy class [γ] of Lipschitz paths in M , there exists a length minimizing
Lipschitz path γ∞ ∈ [γ] where

ℓ(γ∞) = inf
{
ℓ(γ) | γ ∈ [γ]

}
.

Proof. Let M be a purely 2-unrectifiable metric space. Let [γ] be a ho-
motopy class of Lipschitz paths and define ℓmin := inf{ℓ(γ) | γ ∈ [γ]} to be the
infimum of all lengths of paths in [γ].

For each natural number n, let γn ∈ [γ] be a Lipschitz path such that
ℓ(γn) ≤ ℓmin + 1

n . Furthermore, since γ1 is homotopic rel endpoints to γn,
via Lemma 3.8, we can assume that Lip(γn) ≤ Lip(γ1) and Im(γn) ⊂ Im(γ1).
Additionally, there is a homotopy Hn : I × I → M from γ1 to γn such that
Lip(Hn) = Lip(γ1) and Im(Hn) ⊂ Im(γ1).

Now, for any n ∈ N, Lip(γn) ≤ Lip(γ1). Since the images of the paths
in the sequence (γn) are subsets of the compact set Im(γ1), by Arzelà–Ascoli
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theorem, there exists a subsequence (γnk
) that uniformly converges to a Lip-

schitz path γ∞. Now, utilizing lower semi-continuity of the length measure,
ℓ(γ∞) ≤ lim infk ℓ(γnk

). In fact, due to how the sequence (γn) was selected,
ℓ(γ∞) ≤ ℓmin.

We now want to show that γ∞ ∈ [γ]. Associated to the subsequence (γnk
),

there is a sequence of homotopies (Hnk
) such that Lip(Hnk

) = Lip(γ1) for each
homotopy in the sequence. Since Im(Hnk

) ⊂ Im(γ1) for each nk and Im(γ1)
is compact, by Arzelà–Ascoli theorem, there exists a subsequence (Hnkj

) that

converges uniformly to a Lipschitz map H∞ : I × I →M .
Now, H∞|I×{0} = γ1 since Hnkj

|I×{0} = γ1 for all nkj . Also, since the

paths Hnkj
|I×{1} = γnkj

converge uniformly to γ∞, then H∞|I×{1} = γ∞. So,

the map H∞ is a homotopy from γ1 to γ∞. Therefore, γ∞ ∈ [γ] and thus
ℓ(γ∞) = ℓmin.

3.3. Consequences of the existence of a length minimizer

A length minimizer γ∞ ∈ [γ] can be thought of as the core of the ho-
motopy class [γ] where the extraneous branches of the paths in the class have
been pruned in the sense that the image of γ∞ is a subset of the image of any
path contained in [γ], as is now shown. A consequence of Theorem 3.10 is that
a length minimizer for a homotopy class is unique up to reparametrization.

Theorem 3.10. Let M be a purely 2-unrectifiable metric space and let [γ]
be a homotopy class of Lipschitz paths in M with length minimizer γ∞ ∈ [γ].
Additionally, assume that the length minimizer γ∞ is arc length parametrized.
Let γ : I → M be a Lipschitz path that is homotopic rel endpoints to γ∞.
Then the Lipschitz path γ′∞ produced by Lemma 3.8 is equal to the length min-
imizer γ∞. Furthermore, the image of a length minimizer γ∞ is a subset of
the image of γ, that is,

Im(γ∞) ⊂ Im(γ).

Proof. Let H : I × I → M be a Lipschitz homotopy from γ to γ∞. By
Theorem 2.5, the map H factors through a metric tree T .

I × I M.

T

H

ψ φ

We now show that the path ψ|I×{1} in the metric tree T is the geodesic
from ψ(0, 1) to ψ(1, 1). Let t, t′ ∈ I where t < t′ and let c be a Lipschitz path in
I× I from (t, 1) to (t′, 1). Since c is homotopic to the inclusion (1, 1) : [t, t′] ↪→
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I × I, the paths H ◦ c and H ◦ (1, 1) = γ∞|[t,t′] are homotopic. Since γ∞ is the
length minimizer for [γ], the restriction γ∞|[t,t′] is also a length minimizer in
its homotopy class. Thus, ℓ(γ∞|[t,t′]) ≤ ℓ(H ◦ c). Therefore, by the definition
of the metric on T ,

dT
(
ψ(t, 1), ψ(t′, 1)

)
= ℓ(γ∞|[t,t′])

and in particular, dT (ψ(0, 1), ψ(1, 1)) = ℓ(γ∞). Now, since γ∞ is arc length
parametrized,

dT
(
ψ(t, 1), ψ(t′, 1)

)
= ℓ(γ∞|[t,t′])
= ℓ(γ∞) |t′ − t|
= dT

(
ψ(0, 1), ψ(1, 1)

)
|t′ − t|.

Therefore, the path ψ|I×{1} is indeed the geodesic from ψ(0, 1) to ψ(1, 1).
From the argument of Lemma 3.8, the path γ′∞ is equal to the geodesic

in T from ψ(0, 0) = ψ(0, 1) to ψ(1, 0) = ψ(1, 1) post-composed by φ. As the
geodesic in discussion is ψ|I×{1}, we have that for all t ∈ I,

γ∞(t) = φ ◦ ψ(t, 1) = γ′∞(t).

Therefore, Im(γ∞) ⊂ Im(γ) follows quickly from γ∞ factoring through a
geodesic segment. Indeed, for t ∈ I, the point ψ(t, 1) ∈ T is in the geodesic
segment Im(ψ|I×{1}) connecting ψ(0, 0) = ψ(0, 1) to ψ(1, 0) = ψ(1, 1). As
the image Im(ψ|I×{0}) ⊂ T is a subtree containing these points, the geodesic
segment Im(ψ|I×{1}) ⊂ Im(ψ|I×{0}) is a subset of the subtree. Hence, there
exists t′ ∈ I such that ψ(t, 1) = ψ(t′, 0). Therefore,

γ∞(t) = φ ◦ ψ(t, 1) = φ ◦ ψ(t′, 0) = γ(t′).

Thus, Im(γ∞) ⊂ Im(γ) as desired.

Of note, in the proof of Theorem 3.10 we have shown that given an
arc length parametrized length minimizer and any homotopy of the length
minimizer, the length minimizer factors through a geodesic segment in the
metric tree generated by the homotopy via Theorem 2.5.

An immediate consequence of Theorem 3.10 is that for every point in a
purely 2-unrectifiable metric space, only the trivial class in the first Lipschitz
homotopy group can be represented by a loop within each neighborhood of the
point, as is now shown.

Corollary 3.11. Let M be a purely 2-unrectifiable metric space and let
x ∈M . Let [α] ∈ πLip1 (M,x) be a homotopy class of loops based at x such that
for every open neighborhood U ⊂ M of the point x, there exists a Lipschitz
loop αU ∈ [α] based at x whose image is contained in U . Then [α] is the trivial
homotopy class, [α] = [x].
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Proof. Let [α] ∈ πLip1 (M,x) be a homotopy class of loops based at x
such that for every open neighborhood U ⊂ M of the point x, there exists
a Lipschitz loop αU ∈ [α] based at x whose image is contained in U . Then,
by Theorem 3.9, [α] has a length minimizer α∞ and, by Theorem 3.10, the
image of the length minimizer α∞ is a subset of every neighborhood U of x.
Therefore, α∞ is the constant loop at x and thus [α] = [x].

Using the wording of [15], Corollary 3.11 says that every point in a purely
2-unrectifiable supports only trivial local representation. In the language of [4],
every point in a purely 2-unrectifiable metric space is non-singular. The har-
monic archipelago is an instructive example of a space wherein not every point
is non-singular. See Example 1.1 in [4].

As is detailed in [15], for a given metric spaceM , in order for the pseudo-
metric dP on the universal Lipschitz path space PM to be a metric, it is suf-
ficient that for every point in the underlying metric space M , only the trivial
class in the first Lipschitz homotopy group can be represented by a loop within
each neighborhood of the point. As such, Corollary 3.11 implies that the uni-
versal Lipschitz path space PM over a purely 2-unrectifiable spaceM is a metric
space.
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