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For an integer d ≥ 5, let C/Z be the scheme xd + yd + xzd−1 = 0. We first show
that the fibres Cd,0 := C⊗Q and Cd,p := C⊗Fp for p ∤ d(d−1) are smooth plane
curves having the same automorphism group. We then provide the description
of the twists of C⊗R over R, and these of C⊗Fp over Fp. In doing so, it becomes
evident that for all the twists C′ of C⊗Q, C′(Q) ̸= ∅, as long as d is not divisible
by 3.
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1. INTRODUCTION, MOTIVATION, AND MAIN RESULTS

Smooth plane curves play a central role in algebraic geometry, as they
often possess rich structures and symmetries that can be studied through their
automorphism groups and also their twists over a given field k. Understanding
the automorphism group of a curve provides insights into the geometry of the
curve, while studying twists elucidates the different ways in which a curve can
be modified while preserving certain arithmetic properties.

Automorphism groups. The study of automorphism groups of smooth
plane curves has connections to diverse areas of mathematics, including but
not limited to representation theory, complex analysis, and number theory. For
instance, the McKay correspondence in algebraic geometry relates the auto-
morphism group of a smooth plane curve to finite groups of Lie type, providing
a bridge between algebraic and geometric structures (see [13,14,29,33]).

One of the key results is that any smooth curve of genus g ̸= 0, 1 has
finitely many automorphisms (see [36]). In case of smooth plane curves of de-
gree d ≥ 4 defined over an algebraically closed field k of characteristic p ≥ 0,
the automorphisms can be described in terms of linear transformations of the
projective plane P2

k (see [21, Theorem 11.29]). Moreover, the general charac-
teristics of the structure of the automorphism groups when p = 0 are known
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(see [19]). However, once the degree d is chosen, finding the exact list of au-
tomorphism groups becomes complex and challenging. In this direction, the
classification for low degree curves d ≤ 7 is well understood (see [1–6, 20]).
In positive characteristic, i.e., when p > 0, the aforementioned results remain
valid for all but finitely many values of p. More specifically, if the automor-
phism group has order divisible by p, then interesting wild things could happen
(see [16,17,21,22,28]).

Twists and rational points. Let k be a perfect field, and fix k an algebraic
closure of k. We use Gk for the Galois group of k/k, moreover, its action is
denoted by left exponentiation σ(·) for σ ∈ Gk. Also, if C/k is a smooth curve
over the field k, then we use Aut(C) for the automorphism group of the curve
C ⊗ k.

A curve C ′/k is called a twist of C over k if C⊗k and C⊗k are isomorphic.
Computing the set Twistk(C) of k-isomorphism classes of the twists of C over
k can be done through the Galois cohomology group H1(Gk,Aut(C⊗k)), since
there is one-to-one correspondence between Twistk(C) and H1(Gk,Aut(C⊗k))
(see [37]). This bijection works as follows: For each C ′ ∈ Twistk(C), fix an
isomorphism Φ : C ′ ⊗ k → C ⊗ k. Then, define the corresponding 1-cocycle ξ
by

ξ(σ) := Φ ◦ τΦ forσ ∈ Gk.

For smooth curves of genus g ≤ 2, the twists are well known. While the genus
0 and 1 cases go back from long ago (see [39]), the genus 2 case is due to the
work of Cardona and Quer (see [10–12, 32]). All the genus 0, 1 and 2 curves
are hyperelliptic, however for genus greater than 2 almost all the curves are
non-hyperelliptic. In this situation, the work of Garćıa (see [24–26]) explores
the explicit computation of twists of curves. An algorithm for computing the
twists of a given curve was developed assuming that its automorphism group is
known. This algorithm is based on a correspondence established between the
set of twists and the set of solutions of a certain Galois embedding problem. As
an application, the classification of the twists of all plane quartic curves over
a number field k was given. On the other hand, Meagher and Top described
the twists of these curves over finite fields using techniques from the theory of
Jacobian variety (see [31]). Finally, we remark that the investigation of rational
points on curves can be approached through the study of twists, as the action
of the twisting theory for curves can lead to new insights into the distribution
and arithmetic properties of rational points (see [15,23–27,30,31,41]).

In [34], the author demonstrated that the fibres of the pseudo-Fermat
quartic C : x4+y4+xz3 = 0 over Fp (for p > 3) and over Q are smooth curves,
each with an automorphism group of order 48, specifically GAP(48, 33) in GAP
notation [40]. Additionally, the authors in [30] examined various arithmetic and
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geometric aspects of this curve, including rational points, torsion points, and
ramification points. More recently, in [9, Example 3.8], the reduction type at
p = 3 was given, and interestingly, it was classified as the Picard curve with
the smallest conductor found to date.

In this brief note, we aim to extend the studies in [9,30,34] to the smooth
projective curve C : xd + yd + xzd−1 = 0 for d ≥ 5. Specifically, we investigate
the automorphism groups, twists, and rational points of C ⊗ Q and C ⊗ Fp,
respectively.

Notation 1.1. Through the paper, ζn is a fixed primitive nth root of unity
in k. A projective linear transformation acting as x → x, y → ay, z → bz for
some a, b ∈ k

∗
is denoted by diag(1, a, b).

First, we prove the following theorem.

Theorem 1.2 (Automorphism group). The curve

Cd,p : x
d + yd + xzd−1 = 0

is smooth over Fp if and only if p ∤ d(d − 1). In this case, the automorphism
group is cyclic and generated by φd := diag(1, ζd, ζd−1).

Concerning the twists over R, we show the next theorem.

Theorem 1.3 (Twists over R). There are exactly two R-isomorphism
classes of twists of the smooth plane curve Cd,0 : xd + yd + xzd−1 = 0 over R,
namely the trivial twist Cd,0, and the non-trivial twist C

(1)
d,0 : xd+yd−xzd−1 = 0

when d is odd, or C
(2)
d,0 : xd − yd + xzd−1 = 0 when d is even.

As a result, any twist C ′
d,0 of Cd,0 over R admits infinitely many R-points.

Furthermore, working over Fp, we obtain the following results.

Theorem 1.4 (Twists over Fp). Suppose that p ∤ d(d − 1), and let N be
the number of twists of Cd,p modulo Fp-isomorphism.

(i) If p = 1 mod d(d− 1), then N = d(d− 1).

(ii) If gcd(p− 1, d) = 1, then N = gcd(p− 1, d− 1).

(iii) If gcd(p− 1, d− 1) = 1, then N = gcd(p− 1, d).

(iv) Otherwise, N = gcd(p− 1, d− 1) · gcd(p− 1, d).

In each case, the set of twists of Cd,p over Fp are represented by

C
n0,n′

0
d,p : xd + ζ−n0

p−1 y
d + ζ

−n′
0

p−1 xz
d−1 = 0,

for n0 = 0, 1, . . . , gcd(p− 1, d)− 1 and n′
0 = 0, 1, . . . , gcd(p− 1, d− 1)− 1. In

particular, (0 : 0 : 1) is always an Fp-point that can be lifted to Qp.
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2. SAME AUTOMORPHISM GROUP IN ANY
CHARACTERISTIC

The full automorphism group of Cd,0 : x
d + yd + xzd−1 = 0 with d ≥ 5 is

known to be cyclic and is generated by φd := diag(1, ζd, ζd−1). See Badr and
Bars [2], for example.

In positive characteristic, we get the next lemma.

Lemma 2.1. The curve Cd,p is a smooth plane curve of degree d if and
only if the prime p does not divide d(d− 1).

Proof. A projective point (a : b : c) over Fp is a singularity of Cd,p if and
only if ad + bd + acd−1 = dad−1 + cd−1 = dbd−1 = (d − 1)acd−2 = 0 mod p.
For p ∤ d(d− 1), one sees that the previous system only has the trivial solution
a = b = c = 0 mod p, which does not define a projective point. For p|d − 1,
we can take a = 1, c = ζ2d−2 and b = 0 in Fp, so that Cd,p is singular at
(1 : 0 : ζ2d−2). Similarly, for p|d, we get (1 : ζ2d : 0).

Second, we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Assuming that p is not a divisor of d(d − 1), we
deduce by Lemma 2.1 that Cd,p defines a smooth plane curve of genus g =
1
2(d − 1)(d − 2) ≥ 6 (so, it is non-hyperelliptic). Moreover, φd belongs to
G := Aut(Cd,p) and has order d(d − 1). Hence, |G| = d(d − 1) · s for some
positive integer s. Next, we aim to show that s = 1.

First, we know by [35] that the covering Cd,p → Cd,p/G is tamely ramified
for any p > (d−1)(d−2)+1. The same holds for p ≤ (d−1)(d−2)+1 such that
p ∤ s. On the other hand, Grothendieck’s study of the tame fundamental group
of curves in characteristic p (see [18, XIII, §2]) tells us that tamely ramified
covers can be lifted to characteristic 0. Now, lifting the curve Cd,p and the
group G to characteristic 0 guarantees us that G = ⟨φ⟩ as claimed. Indeed,
if a smooth plane curve C of degree d ≥ 5 over an algebraically closed field
k of characteristic 0 admits an automorphism of order d(d − 1), then C is k-
projectively equivalent to xd + yd + xzd−1 = 0 and |Aut(C)| = d(d − 1) (see
[2, Theorem 1]).

Finally, we are left with the cases p ≤ (d−1)(d−2)+1 such that p divides s
but not d(d−1). In this situation, let Re be the finite subset of ramified points
of Cd,p that has ramification index e under the mapping Cd,p → Cd,p/⟨φ⟩.
Then, e = d−1, d or d(d−1), and the quotient curve Cd,p/⟨φ⟩ is the projective
line P1. More specifically, we have that

Rd−1 =
{
(α : 1 : 0) : αd = −1

}
= Orb⟨φ⟩(ζ2d : 1 : 0),
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Rd =
{
(β : 0 : 1) : βd−1 = −1

}
= Orb⟨φ⟩(ζ2d−2 : 0 : 1),

Rd(d−1) =
{
(0 : 0 : 1)

}
= Orb⟨φ⟩(0 : 0 : 1).

Therefore, the covering Cd,p → Cd,p/G admits at least three short orbits
namely, OrbG(ζ2d : 1 : 0), OrbG(ζ2d−2 : 0 : 1) and OrbG(0 : 0 : 1). Denote
the ramification indexes of these short orbits by e1, e2 and e3, respectively.
Imitating the proof of [21, Theorem 11.56], we also deduce that it cannot have
more than four short orbits. Otherwise, i.e., if it admits more than four short
orbits, then

|G| ≤ 4(g − 1) = 2d(d− 3) < 2d(d− 1),

contradicting the assumption that d(d − 1)p divides |G|. Furthermore, in our
case, we read equation (11.18) in [21, Page 482] as

d− 3 = 2(d− 1)ps′
(
−2 +

n∑
i=1

di
ei

)
,

for some positive integer s′, where n = 3 or 4, and di ≥ ei − 1 if p|ei and
di = ei − 1 otherwise. In all scenarios, we can say that

∑n
i=1

di
ei

≥ 5
5 , as

n∑
i=1

di
ei

≥
n∑

i=1

ei − 1

ei
=

n∑
i=1

(
1− 1

ei

)
≥

(
1− 1

e1

)
+
(
1− 1

e2

)
+
(
1− 1

e3

)
≥

(
1− 1

d− 1

)
+
(
1− 1

d

)
+
(
1− 1

d(d− 1)

)
= 3− 2

d− 1

≥ 3− 2

4
=

5

2
.

Hence d− 3 ≥ 5(d− 1)ps′, a contradiction.

Thus our claim on G follows.

3. TWISTS OVER PERFECT FIELDS ARE DIAGONAL

As a consequence of the author’s et al. work (see [8]) for smooth plane
curves and its extension (see [7]) to smooth projective hypersurfaces, one can
completely describe the twists over any perfect field k of characteristic p ∤
d(d− 1). For instance, we obtain the next results.

Theorem 3.1 (Badr–Bars–Garćıa). Let k be a perfect field of character-
istic p ∤ d(d−1) such that 3 ∤ d or the 3-torsion Br(k) [3] of the Brauer group of
k is trivial. Then, any twist C ′

d over k for the curve Cd,p : x
d+ yd+xzd−1 = 0

is diagonal, in the sense that there exists a k-isomorphism ϕ : C ′
d,p −→ Cd,p of
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the matrix form ϕ = diag(1, d
√
a, d−1

√
b) for some a, b ∈ k∗. In particular, C ′

d,p

is defined over k by the equation

C ′
d,p : x

d + ayd + bxzd−1 = 0.

Moreover, any two twists {a, b} and {a′, b′} of Cd,p are k-isomorphic if and

only if a = a′ mod k∗
d
and b = b′ mod k∗

d−1
.

Applying Theorem 3.1 when k = Q,Qp and R, we conclude that (0 : 0 : 1)
is always a k-point for any of the twists C ′

d,p of Cd,p over k. Therefore, C ′
d,p(Q)

is not empty for all twists, which implies that it is not empty for C ′
d,p(R) and

C ′
d,p(Qp).

4. TWISTS OVER RRR AND THEIR RRR-POINTS

Fix σ, the complex conjugation, as the generator of Gal(C/R) ≃ Z/2Z.
The map

Φ : TwistR(Cd,0) −→ H1
(
Z/2Z,Aut(Cd,0)

)
that sends a twist ϕ : C ′ → Cd,0 to the class [ξ] ∈ H1(Z/2Z,Aut(Cd,0)) of the
1-cocycle:

ξ : σ 7→ ξσ := ϕ · σϕ−1 ∈ Aut(Cd,0)

is bijective. Hence, the class of ξ is uniquely determined by the class of the
twist C ′/R. On the other hand, we conclude by Theorem 3.1 that we can take ϕ
of the shape diag(1, 5

√
a : 4

√
b) for some a, b ∈ R∗. That is, ξσ = diag(1, ζ ld, ζ

l′
d−1)

for some integers 0 ≤ l ≤ d− 1 and 0 ≤ l′ ≤ d− 2.

Proof of Theorem 1.3. We first claim that any of the aforementioned d(d−
1) many 1-cocycles is cohomologeous ∼ to ξ(1), ξ(2), ξ(3) or ξ(4), where

ξ(1) : σ 7→ Id,

ξ(2) : σ 7→ diag(1, 1, ζd−1),

ξ(3) : σ 7→ diag(1, ζd, 1),

ξ(4) : σ 7→ diag(1, ζd, ζd−1).

To see this, it suffices to show that for each cocycle associated to the pair (l, l′)
one finds an automorphism φℓ,ℓ′ ∈ Aut(Cd,0) satisfying

φℓ,ℓ′ · ξσ · σφ−1
ℓ,ℓ′ ∈

{
ξ(1)σ , ξ(2)σ , ξ(3)σ , ξ(4)σ

}
.

One verifies that φl,l′ · ξσ · σφ−1
l,l′ = ξσ · φ2

l,l′ . Accordingly, if l and l′ are both

even, then ξ ∼ ξ(1) by taking φl,l′ = diag(1, ζ
−l/2
d , ζ

−l′/2
d−1 ). If l and l′ are both

odd, then take φl,l′ = diag(1, ζ
−(l−1)/2
d , ζ

−(l′−1)/2
d−1 ) and you get that ξ ∼ ξ(4). If l
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is even and l′ is odd, then take φl,l′ = diag(1, ζ
−l/2
d , ζ

−(l′−1)/2
d−1 ) so that ξ ∼ ξ(2).

Lastly, if l is odd and l′ is even, then take φl,l′ = diag(1, ζ
−(l−1)/2
d , ζ

−l′/2
d−1 )

to see that ξ ∼ ξ(3). This shows the claim. Furthermore, we only consider

ξ
(i)
σ for i = 1, 2 when d is odd, as ξ

(3)
σ ∼ ξ

(1)
σ and ξ

(4)
σ ∼ ξ

(2)
σ through φ+ =

diag(1, ζ
−(d+1)/2
d , 1). Similarly, ξ

(i)
σ for i = 1, 3 when d is even, as ξ

(2)
σ ∼ ξ

(1)
σ

and ξ
(4)
σ ∼ ξ

(3)
σ through φ− = diag(1, 1, ζ

−d/2
d−1 ).

Finally, one can find an explicit isomorphism ϕ : C ′ → Cd,0 by solving

the Galois embedding problem ξ
(i)
σ = ϕ · σϕ−1. Moreover, there is always a

solution ϕ of diagonal shape by the aid of Theorem 3.1. More explicitly,

(1) For i = 1, we can take ϕ = Id, so C ′ becomes the trivial twist:

Cd,0 : x
d + yd + xzd−1 = 0.

Assuming that d is odd, Cd,0 (R) would contain (1 : − d
√
rd−1 + 1 : r)

with r arbitrary in R. Otherwise, i.e., when d is even, we have the points
(r : 1 : − d−1

√
rd + 1) with r ∈ R.

(2) For i = 2 and d odd, we can take ϕ = diag(1, 1, ζ2(d−1)), and C ′ becomes
the non-trivial twist:

C
(1)
d,0 : xd + yd − xzd−1 = 0.

In this case, (1 :
d
√
rd−1 − 1 : r) for any r ∈ R belongs to C

(1)
d,0(R).

(3) For i = 3 and d even, we can take ϕ = diag(1, ζ2d, 1), and C ′ becomes
the non-trivial twist:

C
(2)
d,0 : xd − yd + xzd−1 = 0.

Therefore, we get the points (1 : r :
d−1
√
rd − 1) with r ∈ R in C

(2)
d,0(R).

This finishes the proof of what we wanted to show in Theorem 1.3.

5. TWISTS OVER FpFpFp AND THEIR FpFpFp-POINTS

Throughout this section, p ∤ d(d− 1).

We have seen that any twist C ′
d,0 of the pseudo-Fermat curve Cd,0 overQ is

diagonal. In particular, we can always consider an isomorphism ϕ : C ′
d,0 → Cd,0

of the matrix shape Ma,b = diag(1, d
√
a, d−1

√
b) for some a, b ∈ Q∗. Thus C ′

d,0 is
defined over Q by the equation:

xd + ayd + bxzd−1 = 0.
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Let NormQ(Ma,b) be the norm of det(Ma,b) overQ, and let C ′
d,p be the reduction

of C ′
d,0 over Fp. If we further assume that p ∤ NormQ(Ma,b), then C ′

d,p becomes a

good reduction of Cd,p, so it is a smooth plane curve of genus g = 1
2(d−1)(d−2)

with cyclic automorphism group ⟨φd⟩ of order d(d− 1).
Moreover, we obtain the following proposition.

Proposition 5.1. For all primes p > (g +
√
g2 − 1)2, the curve C ′

d,p

always admits an Fp-point that can be lifted to Qp.

Proof. One reads the inequality p > (g +
√

g2 − 1)2 as (p + 1) − 2g2 >
2g

√
g2 − 1. Squaring both sides results in (p+1)2− 4g2p > 0. That is, p+1 >

2g
√
p > g⌊2√p⌋. Under this condition, the Hasse–Weil estimate (see [38])

assures that C ′
d,p must have an Fp-point. Furthermore, since it is a smooth

point on C ′
d,p, we can lift it to Qp via Hensel’s Lemma.

The automorphisms of Cd,p are precisely φl,l′ = diag(1, ζ ld, ζ
l′
d−1), in par-

ticular, they are uniquely determined by l mod d and l′ mod d − 1. Because
Aut(Cd,p) is abelian, the conjugacy classes are the singleton sets {φl,l′}.

Now, we are going to prove Theorem 1.4.

Proof of Theorem 1.4. The Frobenius Fr acts on Aut(Cd,p) as φl,l′ →
φpl,pl′ . Second, we calculate the Frobenius conjugacy classes:

[φl,l′ ] =
{
ϕ ◦ φl,l′ ◦ (Frϕ)−1 : ϕ ∈ Aut(Cd,p)

}
based on the values of p mod d(d − 1). This counts as a main ingredient for
understanding the twists of Cd,p over Fp (see [31, Proposition 9]). In this
direction, one easily checks that φl,l′ belongs to the Frobenius conjugacy class
of φn0,n′

0
if and only if there exist 0 ≤ n ≤ d and 0 ≤ n′ ≤ d − 1 such that

φl+n(p−1)−n0,l′+n′(p−1)−n′
0
= Id . This is equivalent to say that

l + n(p− 1)− n0 = 0 mod d,

l′ + n′(p− 1)− n′
0 = 0 mod d− 1.

(1) In case p = 1 mod d(d − 1), all automorphisms of Cd,p are defined over
Fp. So the action of the Galois group Gal(Fp/Fp) = ⟨Fr⟩ on Aut(Cd,p) is
trivial. In particular, Frobenius conjugation is the same as conjugation,
so there are exactly d(d − 1) Frobenius conjugacy classes of cardinality
one each. This implies that the curve Cd,p has exactly d(d − 1) twists
over Fp.

(2) If gcd(p − 1, d) = 1, then d must be odd, and p − 1 (mod d) is a unit
in Z/dZ. Thus, for any given value of l in {0, 1, . . . , d− 1}, we have the
solution n = n0 − l(p− 1)−1 (mod d) to the first equation.
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Now, if m′ := gcd(p − 1, d − 1), then m′ ≥ 2 and it must divide l′ − n′
0.

This would allow us to simplify the second equation into

l′ − n′
0

m′ + n′
(p− 1

m′

)
= 0 mod

(d− 1

m′

)
.

Writing l′ = m′l′1 + n′
0 with l′1 ∈ {0, 1, . . . , d−1

m′ − 1}, one verifies that

n′ = (
n′
0−l′1
m′ )(p−1

m′ )−1 solves the above equation modulo d−1
m′ . That is, the

Frobenius conjugacy class of φn0,n′
0
has cardinality d(d−1)

m′ , more precisely,

[φn0,n′
0
] =

{
φl,m′l′1+n′

0
: l ∈ {0, 1, . . . , d− 1}, l′1 ∈

{
0, 1, . . . ,

d− 1

m′ − 1
}}

.

Summing up, we have exactly m′-many Frobenius conjugacy classes that
are represented by φ0,n′

0
for n′

0 = 0, 1, . . . ,m′−1, where each of them has

cardinality d(d−1)
m′ .

(3) If gcd(p − 1, d − 1) = 1, then d must be even, and p − 1 (mod d − 1) is
a unit in Z/(d− 1)Z. Thus, for any given value of l′ in {0, 1, . . . , d− 2},
we have the solution n′ = n′

0 − l′(p − 1)−1 (mod d − 1) to the second
equation. If we let m := gcd(p − 1, d), then m ≥ 2 and it must divide
l − n0. Similarly as before, we can replace the first equation with

l − n0

m
+ n

(p− 1

m

)
= 0 mod

( d

m

)
.

Writing l = ml1+n0 with l1 ∈ {0, 1, . . . , d
m −1}, one obtains the solution

n = (n0−l1
m )(p−1

m )−1 modulo d
m . Hence, the Frobenius conjugacy class of

φn0,n′
0
has cardinality d(d−1)

m . More precisely,

[φn0,n′
0
] =

{
φml1+n0,l′ : l1 ∈

{
0, 1, . . . ,

d

m
− 1

}
, l′ ∈ {0, 1, . . . , d− 2}

}
.

Thus, we have exactly m-many Frobenius conjugacy classes represented
by φn0,0 for n0 = 0, 1, . . . ,m− 1.

(4) It remains to tackle the case when m,m′ > 1. In this situation, m | l−n0

and m′ | l′ − n′
0, therefore, it suffices to deal with the system:

l − n0

m
+ n

(p− 1

m

)
= 0 mod

d

m
,

l′ − n′
0

m′ + n′
(p− 1

m′

)
= 0 mod

(d− 1

m′

)
.

Writing l = ml1 + n0 with l1 ∈ {0, 1, . . . , d
m − 1}, and l′ = m′l′1 + n′

0

with l′1 ∈ {0, 1, . . . , d−1
m′ − 1}, one sees that n = (n0−l1

m )(p−1
m )−1 mod d

m

and n′ = (
n′
0−l′1
m′ )(p−1

m′ )−1 mod (d−1
m ) is a solution to the aforementioned
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system. That is, the Frobenius conjugacy class of φn0,n′
0
has cardinality

d(d−1)
mm′ . More concretely,

[φn0,n′
0
]=

{
φml1+n0,m′l′1+n′

0
: l1∈

{
0, 1, . . . ,

d

m
−1

}
, l′1∈

{
0, 1, . . . ,

d− 1

m′ −1
}}

.

Accordingly, we have exactlymm′-many Frobenius conjugacy classes rep-
resented by φn0,n′

0
for n0 = 0, 1, . . . ,m−1 and n′

0 = 0, 1, . . . ,m′−1, where

each of them has cardinality d(d−1)
mm′ .

Finally, denoting the corresponding twists by C
n0,n′

0
d,p , for n0 = 0, 1, . . . ,m − 1

and n′
0 = 1, 2, . . . ,m′ − 1, we can take ϕn0,n′

0
:= diag(1, ζ−n0

d(p−1), ζ
−n′

0

(d−1)(p−1)) as

an explicit isomorphism ϕn0,n′
0
: C

n0,n′
0

d,p → Cd,p satisfying the cocycle condition

ξ(n0,n′
0)(Fr) = ϕ · · · Frϕ−1. Here, ξ(n0,n′

0) is the cocycle Fr → φn0,n′
0
. In

particular, the twist C
n0,n′

0
d,p is defined over Fp by the equation:

xd + ζ−n0
p−1 y

d + ζ
−n′

0
p−1 xz

d−1 = 0.

This completes the proof.
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[17] M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field.
Math. Ann. 343 (2009), 1, 229–245.

[18] A. Grothendieck et al. (Eds.), Revêtements étales et géométrie algébrique (SGA 1).
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