
MEET ATOM ELEMENT GRAPH OF A LATTICE

SHAHABADDIN EBRAHIMI ATANI and MARYAM CHENARI

Communicated by Ioan Tomescu

Let L be a bounded lattice. The meet atom element graph AG(L) of L is
a simple undirected graph whose vertices are all nontrivial elements of L and
any two distinct vertices a and b are adjacent if and only if a ∧ b is an atom
element of L. The basic properties and possible structures of the graph AG(L)
are investigated. The connectedness, clique number, domination number and
independence number of AG(L) and their relations to algebraic properties of L
are explored.

AMS 2020 Subject Classification: 06B15, 06B20, 05C25, 05C40.

Key words: lattice, atom, meet atom element graph.

1. INTRODUCTION

All lattices considered in this paper are assumed to have a least element
denoted by 0 and a greatest element denoted by 1, in other words, they are
bounded. The study of algebraic structures, using the properties of graph the-
ory, tends to an exciting research topic in last decade. Associating a graph
with an algebraic structure allows us to obtain characterizations and represen-
tations of special classes of algebraic structures in terms of graphs and vice
versa (see, for example, [1–8,11,13–18,20]).

Beck [4], Anderson and Naseer [2], and Anderson and Livingston [1] et. al.
have studied graphs on commutative rings. One of the most important graphs
which have been studied is the intersection graph. Bosak [5] defined the in-
tersection graph of semigroups. Csàkàny and Pollàk [8] studied the graph of
subgroups of a finite group. The intersection graph of ideals of a ring was
considered by Chakrabarty, Ghosh, Mukherjee and Sen [7]. The intersection
minimal ideal graph of a ring, i.e., a simple graph whose vertices are non-
trivial ideals of a ring R and two vertices I, J are adjacent if the intersection
of corresponding ideals is a minimal ideal, was investigated by Barman and
Rajkhowa in [6]. The intersection graph of ideals of rings, submodules of mod-
ules and lattices has been investigated by several authors (see, for example,
[3, 16–18,20]).
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Let L be a bounded distributive lattice. The purpose of this paper is
to investigate a graph associated to a lattice L called the meet atom element
graph of L. This results in the characterization of lattices in terms of some
specific properties of those graphs. The meet atom element graph of L is a
simple graph AG(L) whose vertices are all nontrivial elements and two distinct
vertices are adjacent if and only if the meet of the corresponding elements is
an atom element of L. Here is a brief outline of the article. Among many
results in this paper, Section 2 contains elementary observations needed later
on. In Section 3 and Section 4, we characterize the lattices for which the meet
atom element graphs are connected, complete bipartite, star. The concepts
of planarity, clique number, domination number and split character are also
investigated. Most of the results in this article are observed in Artinian lattices.

2. PRELIMINARIES

Let G be a simple graph with vertex set V (G) and edge set E (G). The
degree of a vertex v of the graph G, denoted by degG(v), is the number of
edges incident to v. The (open) neighborhood N(v) of a vertex v of V(G) is
the set of vertices which are adjacent to v. A graph G is said to be connected if
there exists a path between any two distinct vertices, G is a complete graph if
every pair of distinct vertices of G are adjacent and Kn stands for a complete
graph with n vertices. If the vertices of G can be partitioned into two disjoint
sets V1 and V2 with every vertex of V1 adjacent to any vertex of V2 and no two
vertices belonging to the same set are adjacent, then G is called a complete
bipartite graph. If |V1| = m and |V2| = n, then the complete bipartite graph is
denoted by Km,n. If one of the partite sets contains exactly one element, then
the graph becomes a star graph. If graph G does not have K5 or K3,3 as its
subgraph, then G is planar.

Let u and v be elements of V (G). We say that u is a universal vertex
of G if u is adjacent to all other vertices of G and write u ∽ v if u and v are
adjacent. The distance d(u, v) is the length of the shortest path from u to v if
such path exists, otherwise, d(a, b) = ∞. The diameter of G is

diam(G) = sup
{
d(a, b) : a, b ∈ V(G)

}
.

The girth of a graph G, denoted by gr(G), is the length of a shortest cycle in
G. If G has no cycles, then gr(G) = ∞. A clique of a graph is its maximal
complete subgraph and the number of vertices in the largest clique of graph G,
denoted by ω(G), is called the clique number of G. A subset S of V (G) is said
to be an independent set if no two vertices of S are adjacent. If V (G) can be
partitioned in an independent set and a clique then G is said to be split. A set
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D ⊆ V (G) is said to be a dominating set if every vertex not in D is adjacent to
at least one of the members of D. The cardinality of smallest dominating set
is the domination number of the graph G and is denoted by γ(G). Note that a
graph whose vertices set is empty is a null graph and a graph whose edge set
is empty is an empty graph. For a connected graph G, x is a cut vertex of G
if G \ {x} is not connected [19].

A poset (L,≤) is a lattice if sup{a, b} = a ∨ b and inf{a, b} = a ∧ b exist
for all a, b ∈ L (and call ∧ the meet and ∨ the join). A lattice L is complete
when each of its subsets X has a least upper bound and a greatest lower bound
in L. Setting X = L, we see that any nonvoid complete lattice contains a least
element 0 and greatest element 1 (in this case, we say that L is a lattice with 0
and 1). A lattice L is called a distributive lattice if (x∨y)∧z = (x∧z)∨(y∧z)
for all x, y, z ∈ L (equivalently, L is distributive if (x∧ y)∨ z = (x∨ z)∧ (y∨ z)
for all x, y, z ∈ L). We say that an element x in a lattice L is an atom (resp.
coatom) if there is no y ∈ L such that 0 < y < x (resp. x < y < 1). The set of
all coatom (resp. atom) elements of L is denoted by CA(L) (resp. A(L)). If L
is a complete lattice, then the join of all the atoms of L, denoted by Soc(L),
is called the socle of the lattice L (i.e., Soc(L) = ∨a∈A(L)a). An element x of
a lattice L is nontrivial (resp. proper) if x ̸= 0, 1 (resp. x ̸= 1). An element x
of a lattice L is called essential (written x ⊴ L), if there is no nonzero y ∈ L
such that x∧ y = 0. In a lattice L with 0, an element c is called a complement
of b in L if it is maximal relative to the property b ∧ c = 0 [9].

A nonzero element x of a lattice L is called semisimple, if for each element
y of L with y < x, there exists an element z of L such that x = y ∨ z and
y ∧ z = 0. In this case, we say that y is a direct join of x, and we write
x = y ⊕ z. A lattice L is called semisimple if 1 is semisimple in L [15]. A
lattice L is Artinian (satisfies DCC) if there is no infinite strictly descending
chain a0 > a1 > · · · in L.

Lemma 2.1 ([15, Lemma 2.3 and Theorem 3.9]). If L is a complete dis-
tributive lattice, then the following hold:

(1) Every element of L has a complement in L. Moreover, if s is a comple-
ment of x ̸= 0, then x ∨ s ⊴ L.

(2) If s is a nonzero element of L, then s is semisimple if and only if s =
∨i∈Λai, where {ai}i∈Λ is the set of all atoms ai of L with ai ≤ s. In
particular, if s is semisimple, then s ≤ Soc(L).

The undefined terms related to lattice theory are taken from [9, 10] and
terms related to graph theory are taken from [19].
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3. BASIC PROPERTIES OF AG(L)AG(L)AG(L)

Throughout this paper, we assume, unless otherwise stated, that L is a
bounded distributive lattice. In this section, we collect some basic properties
concerning the meet atom element graph AG(L) of L. We remind the reader
the following definition.

Definition 3.1. The meet atom element graph AG(L) of L is simple undi-
rected graph whose vertices are all nontrivial elements of L and any two distinct
vertices a and b are adjacent if and only if a ∧ b is an atom element of L.

Lemma 3.2. The following hold in AG(L):

(1) Every non-atom element of L is adjacent to at least one of the atom
elements of L.

(2) If L is complete and Soc(L) ̸= 1, then every element of A(L) is adjacent
to Soc(L).

Proof. (1) Let b be a non-atom element of L. Then there exists an atom
element a of L such that a ≨ b. Hence, a ∧ b = a is an atom element, as
needed.

(2) Let a ∈ A(L). Then a ≤ Soc(L) gives a ∧ Soc(L) = a ∈ A(L) and so a
adjacent to Soc(L).

Proposition 3.3. The following hold in AG(L):

(1) The subgraph induced by the atom elements of L is empty.

(2) The subgraph induced by the non-atom elements of L is connected graph
of diameter not bigger than 4.

Proof. (1) Let a, b ∈ A(L) with a ̸= b. Then a∧ b ≤ a, b gives a∧ b = 0
which implies that a is not adjacent to b, as required.

(2) Suppose that x and y are distinct non-atom vertices of the graph AG(L).
If x adjacent to y, then x ∽ y is a path. So we may assume that x ∧ y
is not atom. By the hypothesis, there exist a, b ∈ A(L) such that a ≨ x
and b ≨ y. If a = b, then x ∽ a ∽ y is a path in AG(L) with d(x, y) = 2.
If a ̸= b, then x ∽ a ∽ a∨ b ∽ b ∽ y is a path in AG(L) with d(x, y) = 4,
i.e., (2) holds.

In the following theorem, we give a condition under which AG(L) is an
empty graph.
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Theorem 3.4. The following hold in AG(L):

(1) Every nontrivial element of a lattice of L is atom if and only if AG(L)
is an empty graph.

(2) If a1⊕ a2 = 1 for some atom elements a1 and a2 of L, then AG(L) is an
empty graph.

Proof. (1) If every nontrivial element of L is atom, then AG(L) is an
empty graph by Proposition 3.3 (1). Conversely, assume that AG(L is
empty and let b be any vertex of the graph of AG(L such that b /∈ A(L).
Then by Lemma 3.2 (1), there exists an atom element a of L such that
a adjacent to b which is impossible, as needed.

(2) Let x be a nontrivial element of L. Then x = x∧ 1 = (x∧ a1)∨ (x∧ a2).
If x ∧ a1 = 0 = x ∧ a2, then x = 0, a contradiction. If x ∧ a1 ̸= 0 and
x∧a2 ̸= 0, then a1, a2 are atoms gives x = a1∨a2 = 1 which is impossible.
Without loss of generality, let x ∧ a1 ̸= 0 (so a1 ≤ x) and x ∧ a2 = 0
which implies that x = a1. Therefore, every nontrivial element of L is an
atom element. Now, the assertion follows from (1).

Proposition 3.5. The following hold in AG(L):

(1) If AG(L) has a non-atom universal vertex c, then c is coatom.

(2) If A(L) = {a}, then a is a universal vertex.

(3) If AG(L) has an atom universal vertex a, then A(L) = {a}.

Proof. (1) By [14, Lemma 2.1], there exists a coatom element c′ of L
such that c ≤ c′. If c ̸= c′, then c is a universal vertex gives c = c ∧ c′ is
an atom element which is impossible. Thus, c = c′.

(2) If x is a nontrivial element of L, then a ≤ x gives x ∽ a, as needed.

(3) Apply Proposition 3.3 (1).

Proposition 3.6. If AG(L) is a complete graph, then |A(L)| = 1.

Proof. If a, a′ ∈ A(L) with a ̸= a′, then a and a′ are not adjacent in
AG(L) by Proposition 3.3 (1) which is impossible, as AG(L) is complete.
Hence, |A(L)| = 1.

The following example shows that, in general, the converse of Proposi-
tion 3.6 is not true.
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Example 3.7. Assume that L = {0, a, b, c, d, e, 1} is a lattice with the
relations 0 ≤ e ≤ a ≤ b ≤ c ≤ 1, 0 ≤ e ≤ a ≤ d ≤ c ≤ 1, d∨b = c and d∧b = a.
Clearly, A(L) = {e}. Then, by stating that b ∧ d = a is not an atom element,
gives AG(L) is not a complete graph.

In the following theorem, we give a condition under which the graph
AG(L) is complete.

Theorem 3.8. Let a be an element V (AG(L)) with degree 1. If a is atom
in L which is not a coatom element, then AG(L) ∼= K2 the complete graph with
two vertices.

Proof. By [14, Lemma 2.1], we have that a ≨ c for some coatom element
c of L; so a ∽ c. If c′ is an element of L such that a ≨ c′ ≨ c, then a ∽ c′

gives degAG(L)(a) ≥ 2 which is a contradiction. Thus, V (SG(L)) = {a, c}, as
required.

Proposition 3.9. The following hold in AG(L):

(1) If L is complete, a ∈ A(L) and Soc(L) ≨ x, then a ∽ x.

(2) If x /∈ A(L) and x ≨ y, then x is not adjacent to y.

Proof. (1) Since a ≤ Soc(L) ≨ x, we conclude that x ∧ a = a and so
a ∽ x.

(2) If x ≨ y, then x∧ y = x. Since x /∈ A(L), we infer that x is not adjacent
to y.

The next theorem gives a more explicit description of the diameter of
AG(L).

Theorem 3.10. The graph AG(L) is connected with diam(AG(L)) ≤ 4
if and only if the join of any two distinct atom elements of L is not 1 or
|A(L)| = 1.

Proof. Suppose that A(L) = {a} and let x and y be distinct non-atom
vertices of the graph AG(L). Then x ∽ a ∽ y is a path in AG(L) with
d(x, y) = 2. So suppose that |A(L)| ̸= 1 and the join of any two distinct atom
elements of L is not 1. Consider two distinct vertices b and c of AG(L). If b
adjacent to c, then b ∽ c is a path. So we may assume that b∧c is not an atom
element of L. Then either b∧ c = 0 or a ≨ b∧ c for some a ∈ A(L). If a ≨ b∧ c
(so a ≨ b and a ≨ c), then b ∽ a ∽ c is a path in AG(L) with d(x, y) = 2. If
b ∧ c = 0, we split the proof into three cases:
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Case 1: b, c ∈ A(L). Then b ∽ b ∨ c ∽ c is a path in AG(L) with
d(b, c) = 2.

Case 2: If exactly one of b and c is atom, then without loss of generality,
assume that b ∈ A(L) and c /∈ A(L). By Lemma 3.2 (1), there is an atom a
of L such that a ≨ c which implies that b ∽ a ∨ b ∽ a ∽ c is a path in AG(L)
with d(b, c) = 4.

Case 3: b, c /∈ A(L). Then there exist a, a′ ∈ A(L) such that a ≨ b and
a′ ≨ c. If a = a′, then b ∽ a ∽ c is a path in AG(L) with d(b, c) = 2. If a ̸= a′,
then b ∽ a ∽ a ∨ a′ ∽ a′ ∽ c is a path in AG(L) with d(b, c) = 4. Hence, we
infer that AG(L) is connected with diam(AG(L)) ≤ 4.

Conversely, assume that AG(L) is connected. If |A(L)| = 1, then we are
done. So we may assume that |A(L)| ̸= 1. On the contrary, assume that there
are two atom elements a1 and a2 of L such that a1 ∨ a2 = 1. We claim that
a2 is a coatom element of L. Assume to the contrary, a2 ≨ x ≨ 1 for some
x ∈ L. Then 1 = a1 ∨ a2 ≤ x ∨ a1 gives x ∨ a1 = 1. If x ∧ a1 ̸= 0, then a1 ≤ x
implies that 1 = x ∨ a1 = x which is impossible. Thus, x ∧ a1 = 0. Now, we
have a2 = a2 ∨ 0 = a2 ∨ (x∧ a1) = (a2 ∨ x)∧ (a2 ∨ a1) = x, a contradiction. So
a2 is a coatom. similarly, a1 is a coatom. By the hypothesis, a1 ∽ u for some
vertex u of AG(L). Then a1 ∧ u = a1 since a1 ∧ u is an atom (so a1 ≨ u), a
contradiction since a1 is a coatom, as required.

Theorem 3.11. Assume that L is a complete lattice with Soc(L) ̸= 1 and
let AG(L) be a graph which contains a cycle. Then gr(AG(L)) = 3, 4.

Proof. Assume that Soc(L) ̸= 1 and let b ∽ c. By Proposition 3.3 (1),
either b /∈ A(L) or c /∈ A(L). If b, c /∈ A(L), then b ∽ b∧c ∽ c ∽ b is a cycle (so
gr(AG(L)) = 3). Suppose that one of b or c is an atom element. We can assume
that b ∈ A(L) and c /∈ A(L). By Lemma 3.2 (1), there is an atom element a
of A(L) such that a ≨ c. Hence, we obtain the cycle b ∽ c ∽ a ∽ Soc(L) ∽ b
which implies that gr(AG(L)) = 4, as needed.

Assume that (L1,≤1), (L2,≤2), . . . , (Ln,≤n) are lattices (n ≥ 2) and let
L = L1 × L2 × · · · × Ln. We set up a partial order ≤c on L as follows: for
each x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ L, we write x ≤c y if and
only if xi ≤i yi for each i ∈ {1, 2, . . . , n}. The following notation below is
used in this paper: It is straightforward to check that (L,≤c) is a lattice with
x ∨c y = (x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn) and x ∧c y = (x1 ∧ y1, . . . , xn ∧ yn). In
this case, we say that L is a decomposable lattice.

The proof of the following lemma can be found in [12, Proposition 2.3]
for n = 2, but we give details for convenience.
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Lemma 3.12. Let L = L1 × L2 × · · · × Ln be a decomposable lattice.
If bi is an atom element of Li for i ∈ {1, . . . , n}, then a1 = (b1, 0, . . . , 0),
a2 = (0, b2, 0, . . . , 0), . . . , and an = (0, 0, . . . , bn) are atom elements of L.

Proof. On the contrary, assume that

(0, 0, . . . , 0) < (x1, x2, . . . , xn) = x < (b1, 0, . . . , 0) = a1

for some element x of L (so xi = 0 for i ∈ {2, 3, . . . , n}). It follows that
0 < x1 < b1 which is impossible, as b1 is an atom element. Thus a1 is an atom
element of L. Similarly, a2, . . . , an are atom elements of L.

Theorem 3.13. Let L = L1 × L2 × · · · × Ln be a decomposable lattice
such that A(Li) = {bi} for i ∈ {1, 2, . . . , n}. Then diam(AG(L)) ≤ 2.

Proof. By Lemma 3.12, A(L) = {a1, . . . , an}, where we have that ak =
(0, 0, . . . , 0, bk, 0, . . . , 0) for k ∈ {1, 2, . . . , n}. Let x and y be two vertices of
AG(L) such that they are not adjacent. If ai ≤ x and ai ≤ y for some ai,
then d(x, y) = 2. Otherwise, there are ai, aj ∈ A(L) such that ai ≤ x, ai ≰ y,
aj ≤ y and aj ≰ x. We may assume that i < j. Consider the element

z = (0, 0, . . . , 0, bi, 0, . . . , 0, bj , 0, . . . , 0).

Since aj ≰ x and ai ≰ y, we conclude that z ∧ x = ai and z ∧ y = aj .
This shows that x ∽ z ∽ y is a path in AG(L) with d(x, y) = 2. Thus,
diam(AG(L)) ≤ 2.

Theorem 3.14. Let L = L1 × L2 × · · · × Ln be a decomposable lattice
such that A(Li) = {bi} for i ∈ {1, 2, . . . , n}. Then gr(AG(L)) = 3.

Proof. By Lemma 3.12, A(L) = {a1, . . . , an}, where we have that ak =
(0, 0, . . . , 0, bk, 0, . . . , 0) for k ∈ {1, 2, . . . , n}. Now, we consider the elements
x = (b1, b2, 0, . . . , 0), y = (b1, 0, b3, 0, . . . , 0) and z = (0, b2, b3, 0, . . . , 0). Since
x ∧ y = a1, x ∧ z = a2 and y ∧ z = a3, we get the cycle x ∽ y ∽ z ∽ x. This
shows that gr(AG(L)) = 3.

Proposition 3.15. If V (AG(L)) is a totally ordered set, then AG(L) is
a star graph.

Proof. By assumption, there is an element a of A(L) such that a ∽ x for
every x ∈ V (AG(L)). If x ̸= a and y ̸= a are two distinct vertices of AG(L),
then either x ≤ y or y ≤ x. For both cases, x and y are not adjacent vertices.
Thus AG(L) is a star graph with center a.

Lemma 3.16. The following hold in a complete lattice L:
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(1) Soc(L) =
∧

e⊴L e.

(2) If x ∈ L, then x ⊴ L if and only if Soc(L) ≤ x.

(3) If x is a nontrivial element of L and x ≨ Soc(L), then x is not essential
in L.

Proof. (1) Suppose that Soc(L) = ∨a∈A(L)a and let c = ∧e⊴Le. Let a
be an atom element of L. If e ⊴ L, then a∧e ̸= 0 gives a ≤ e which implies
that Soc(L) ≤ c. It suffices to show that c ≤ Soc(L). At first, we claim
that c is semisimple. Let b be an element of L such that b ≨ c. If b ⊴ L,
then c ≤ b, a contradiction. So we may assume that b is not essential in
L. Let b′ be a complement of b in L; so b ∨ b′ ⊴ L by Lemma 2.1 (1). It
follows that b ≤ c ≤ b∨b′ and so c = c∧(b∨b′) = (c∧b)∨(c∧b′) = b∨(c∧b′)
with b ∧ (c ∧ b′) = 0 which implies that c is semisimple; thus c ≤ Soc(L)
by Lemma 2.1 (2) and so we have equality.

(2) One side is clear by (1). To prove the other side, assume to the contrary,
that x is not essential in L. Then there exists a nontrivial element b of
L such that x ∧ b = 0. Therefore, there is an atom element a of L such
that a ≤ b and a ≤ Soc(L) ≤ x. So we have a = a ∧ x ≤ x ∧ b = 0 which
is a contradiction. Thus x ⊴ L.

(3) It is a direct consequence of (2).

The following theorem shows when the meet atom element graph is a
complete bipartite graph.

Theorem 3.17. If L is a complete lattice with Soc(L) ̸= 1, then the
following assertions are equivalent:

(1) Every vertex of AG(L) is either atom or essential.

(2) AG(L) is a complete bipartite graph.

Proof. (1) ⇒ (2) Let V1 = A(L) and V2 be the set of all essential elements
of L. If a, a′ ∈ V1, then a and a′ are not adjacent by Proposition 3.3 (1). If
x, y ∈ V2, then x∧y is essential in L by [14, Lemma 2.3 (2)]. So Soc(L) ≨ x∧y
by Lemma 3.16 (2) which implies that any two vertices of V2 are not adjacent.
Moreover, every vertex in V1 is adjacent to each vertex V2 by Proposition 3.9.
Therefore, AG(L) is a complete bipartite graph.

(2) ⇒ (1) Suppose that V1 and V2 are parts of AG(L) and let a be an
atom element of L. Without loss of generality, let a ∈ V1. If a ̸= a′ ∈ A(L)
with a′ /∈ V1, then a′ ∈ V2 gives a ∧ a′ is atom which is impossible. Thus
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A(L) ⊆ V1. If b ∈ V1 with b /∈ A(L), then there exists an atom element a of
L (so a ∈ V1) such that b ∽ a by Lemma 3.2 (1), a contradiction. Therefore,
V1 = A(L). Suppose that Soc(L) ≤ c for some vertex c and let d ̸= 0 be any
element of L. If d is atom, then d∧c = d ̸= 0. If d is not atom, then there exists
an atom element T of L such that T ≤ d∧c which implies that c is an essential
element of L; so K = {e ∈ V (AG(L) : Soc(L) ≤ e} is the set of all essential
elements of L. An easy inspection shows that V2 = K, as required.

Theorem 3.18. Suppose that the join of any two distinct atom elements
of L is not 1 and let c be a cut vertex of AG(L). Then there exist a, a′ ∈ A(L)
such that c = a ∨ a′.

Proof. If c ∈ A(L), then c = c∨ c. So we may assume that c /∈ A(L). Let
f and g be two vertices of AG(L) such that f ∈ V1 and g ∈ V2, where V1 and
V2 are the distinct components AG(L)\{c}. We split the proof into four cases.

Case 1: f, g ∈ A(L). Since f ∽ f ∨ g ∽ g is a path in AG(L) and c is a
cut vertex, we conclude that c = f ∨ g.

Case 2: f ∈ A(L) and g /∈ A(L). By the hypothesis, a ≤ g for some atom
element a of L by Lemma 3.2 (1); so a ∈ V2. Since f ∽ f ∨ a ∽ a is a path in
AG(L), f ∈ V1 and c is a cut vertex, we conclude that c = f ∨ a.

Case 3: f /∈ A(L) and g ∈ A(L). By an argument like that in Case 2,
c = g ∨ a for some atom element a of L with a ≤ f .

Case 4: f, g /∈ A(L). By assumption, a ≨ f and a′ ≨ g for some atom
elements a and a′ of L by Lemma 3.2 (1); so a ∈ V1 and a′ ∈ V2. Since
a ∽ a ∨ a′ ∽ a′ is a path in AG(L) and c is a cut vertex, we infer that
c = a ∨ a′.

4. CLIQUE NUMBER, DOMINATION NUMBER AND
PLANARITY OF AG(L)AG(L)AG(L)

We continue this section with the investigation of the stability of meet
atom element graphs in various lattice-theoretic constructions. Let us begin
this section with the following proposition.

Proposition 4.1. Let x, y /∈ A(L) such that they are adjacent. Then
there is a unique atom element a of L such that a ∈ N(x) ∩N(y).

Proof. Since x ∧ y ∈ A(L), we conclude that x ∧ y is adjacent to both x
and y which implies that x ∧ y ∈ N(x) and x ∧ y ∈ N(y). Let a ∈ A(L) such
that a ∈ N(x) ∩ N(y). It suffices to show that a = x ∧ y. On the contrary,
assume that a ̸= x ∧ y. At first, we show that a ∈ N(x) ∩N(y) if and only if
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a ∈ N(x∧y). If a ∽ x∧y, then a∧ (x∧y) is an atom element of L which gives
a∧x ̸= 0 and a∧y ̸= 0. Since a∧x, a∧y ≤ a, we conclude that a∧x = a = a∧y
and so a ∽ x and a ∽ y. Conversely, assume that a ∽ x and a ∽ y. Then
the fact that a ∧ x and a ∧ y are atom elements gives a ∧ x = a = a ∧ y which
implies that (x∧ y)∧ a = a; so a ∽ x∧ y. Since a∧ (x∧ y) is an atom element,
we infer that a∧ (x∧y) ̸= 0 which implies that a ≤ x∧y. Therefore, a = x∧y,
as x ∧ y is an atom element, a contradiction. Thus a = x ∧ y.

Proposition 4.2. Let C be a clique in AG(L). Then C is contained in
the subgraph induced by {x ∈ V (AG(L)) : a ≤ x} for some atom element a
of L.

Proof. By Proposition 3.3 (1), clique C has at most one atom element.
If C ∩ A(L) = {a′}, then a′ ≤ x for every x ∈ C and so C is contained in
the subgraph induced by {x ∈ V (AG(L)) : a′ ≤ x}. So we may assume that
C ∩ A(L) = ∅. The adjacency of every two vertices of C and Proposition 4.1
shows that there exists a unique atom element a of L for which C is a subgraph
of the graph induced by {x ∈ V (AG(L)) : a ≤ x}.

In the following results, we show that domination numbers are really of
interest in indecomposable lattices.

Theorem 4.3. Let L = L1 × L2 be a decomposable lattice such that
A(Li) = {ai} for i ∈ {1, 2}. Then γ(AG(L)) = 2.

Proof. By Lemma 3.12, A(L) = {a′1, a′2}, where a′1 = (a1, 0) and a′2 =
(0, a2). Let c = (c1, c2) be a nontrivial element of L. Since c∧c a

′
1 = (c1∧a1, 0)

and c ∧c a
′
2 = (0, c2 ∧ a2), we conclude that any vertex of the graph AG(L) is

adjacent to at least one of the elements of the set {a′1, a′2}. This shows that
γ(AG(L)) = 2.

Theorem 4.4. Let L = L1 × L2 × · · · × Ln (n ≥ 3) be a decomposable
lattice such that A(Li) = {ai} for i ∈ {1, 2, . . . , n}. Then γ(AG(L)) ≤ n.

Proof. By Lemma 3.12, A(L) = {a′1, . . . , a′n}, where we have that a′k =
(0, 0, . . . , 0, ak, 0, . . . , 0) for k ∈ {1, 2, . . . , n}. Then the set A(L) dominates all
the vertices of the graph AG(L); hence γ(AG(L)) ≤ n.

The following example shows that, in general, Theorem 4.4 is not true in
the case γ(AG(L)) = n.
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Example 4.5. We suppose that L1 = L2 = L3 = {0, 1} and we let L =
L1 × L2 × L3 be a decomposable lattice. Then, we have

V
(
AG(L)

)
=

{
(1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1)

}
.

If D = {(1, 1, 0), (0, 1, 1)}, then the set D dominates all the vertices of the
graph AG(L); hence γ(AG(L)) = 2 ̸= 3.

In the following theorem, we give a condition under which we characterize
the lattices for which the meet atom element graphs are split and planar. The
concept of clique number is also investigated.

Theorem 4.6. Suppose that AG(L) is not empty and let

V(SG(L)) = A(L) ∪ CA(L).
Then the following hold:

(1) The subgraph induced by the coatom elements of L is a complete graph.

(2) AG(L) is a split graph.

(3) If |CA(L)| ≤ 3, then AG(L) is a planar graph.

(4) |CA(L)| ≤ ω(AG(L)).

Proof. (1) It suffices to show if c, d ∈ CA(L) with c ̸= d, then c ∽ d.
At first, we claim that c ∧ d ̸= 0. On the contrary, let c ∧ d = 0. Since
c ≨ c ∨ d ≤ 1, we infer that c ∨ d = 1. Let 0 ̸= e ≤ c for some
element e of L. Then e ∧ d = 0 and e ∨ d = 1 which implies that
c = c ∧ 1 = c ∧ (e ∨ d) = (c ∧ e) ∨ (c ∧ d) = c ∧ e = e. This shows that c
is atom. Similarly, d is atom. It follows that V (AG(L)) = A(L) and so
AG(L) is empty by Proposition 3.3 (1) which is impossible. Therefore,
c ∧ d ̸= 0. It is clear that c ∧ d /∈ CA(L); so c ∧ d ∈ A(L), i.e., any two
coatom elements are adjacent.

(2) Consider the subgraph induced by CA(L) of AG(L). Let c, d ∈ CA(L)
with c ̸= d. Then c ∧ d ∈ A(L) by (1) which implies that the subgraph
induced by CA(L) is complete. Moreover, by Proposition 3.3 (1), the
subgraph induced by A(L) is empty. Thus, AG(L) is a split graph.

(3) Recall that AG(L) is a split graph by (2). Since |CA(L)| ≤ 3, we conclude
that any subgraph induced by five vertices is not complete; so K5 is not a
subgraph of AG(L). Now, we show that K3,3 is not a subgraph of AG(L).
On the contrary, assume that K3,3 is a subgraph of AG(L) with partite
sets |V1| = 3 and |V2| = 3. Clearly, either V1 ⊆ A(L) or V2 ⊆ A(L).
If V1 ⊆ A(L), then V2 ⊆ CA(L) which is impossible by (1). Therefore,
AG(L) is a planar graph.
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(4) Since any two coatom distinct elements of L are adjacent by (1), we infer
that the subgraph of AG(L) with the vertex set of CA(L) is a complete
subgraph of AG(L). Therefore, |CA(L)| ≤ ω(AG(L)).

The following example shows that the equality does not hold necessarily
in Theorem 4.6 (4).

Example 4.7. Let L = {0, a, b, c, 1} be a lattice with the following rela-
tions 0 ≤ a ≤ c ≤ 1, 0 ≤ b ≤ c ≤ 1, a ∨ b = c and a ∧ b = 0. Clearly, the
nontrivial elements of L are a, b and c. An inspection shows that CA(L) = {c},
A(L) = {a, b} and C = {a, c} is a clique. Hence |CA(L)| = 1 < ω(AG(L)) = 2.
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