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The multiplicative Sombor index of a graph G = (V(G),E(G)) introduced in
2021 is defined as Πso(G) =

∏
uv∈E(G)

√
d 2
u + d 2

v , where du indicates the degree

of u ∈ V(G). In this paper, some bounds of the multiplicative Sombor index are
presented using graph parameters. In particular, both the maximal and minimal
graphs are determined when a chromatic number is given among graphs of fixed
order. Moreover, the bounds of the index for the cartesian, tensor, and strong
product of two graphs are represented with the index of each graph.
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1. INTRODUCTION

A graph G considered throughout this paper is a simple graph with vertex
set V(G) and edge set E(G). We write NG(v) for the set of neighbors of
v ∈ V(G). |NG(v)| is denoted by dv,G or simply dv. By ∆ and δ, we represent
the maximum and minimum degree of vertices in G, respectively. A r-coloring
of G is a function κ : V(G) → {1, 2, . . . , r} that satisfies κ(u) ̸= κ(v) whenever
uv ∈ E(G). If G has an r-coloring, we call G r-colorable. The smallest r
for which G is r-colorable is its chromatic number χ(G). G(n, r) is the set of
connected graphs with n vertices and chromatic number r. We define the kite
graph Kin,r as a graph consisting of n vertices obtained by connecting a vertex
of the complete graph Kr and an end vertex of the path graph Pn−r with an
edge. Similarly, Cn,r is a graph of order n obtained by connecting a vertex of
cycle Cr and an end vertex of Pn−r with an edge.

A map from a set of graphs to real numbers is called a graph invariant if it
remains unchanged under graph isomorphism [6]. Topological indices as graph
invariants have been developed to describe molecules in modeling chemical
compounds and to predict their physical or biological properties [12]. After
the Wiener index [15], hundreds of topological indices in various forms were
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Figure 1 – SO(G) < SO(H) but Πso(G) > Πso(H).

proposed, combined, and transformed in the literature of mathematics and
chemistry. Notably, dozens of vertex-degree-based indices were studied. One
is the Sombor index SO(G) introduced in 2021 by Gutman [7], defined as

SO(G) =
∑

uv∈E(G)

√
d 2
u + d 2

v .

The Sombor index has inspired many researchers and has been extensively
studied in a short period of time. Soon after, its variation, the multiplicative
Sombor index, was put forward by Kulli [9] with the following definition,

Πso(G) =
∏

uv∈E(G)

√
d 2
u + d 2

v .

We append the following definition to apply it to the product of graphs:

Πso(G) = 1 if E(G) = ϕ.

Figure 1 shows one of the numerous examples where SO(G) < SO(H) but
Πso(G) > Πso(H).

Nevertheless, research showed that the extremal graphs for both indices
are the same in various classes of graphs (Table 1). It was proven in [7] and
[10] that Pn and Kn are the minimal and maximal graphs of order n for both
SO(G) and Πso(G), respectively. Sn was proven to be the maximal tree for
the two indices in the same papers. Besides that, proofs for extremal graphs
were made in classes such as bipartite graph, unicyclic graph etc., to give the
same results in both [1–5,16]. For given order n and chromatic number r, the
maximal and minimal graphs were proven only for the Sombor index [5, 17].

In this paper, we evaluate some bounds of the multiplicative Sombor
index for given parameters and identify the corresponding extremal graphs.
Particularly, we prove that the Turán graph and kite graph are the maximal
and minimal graph, respectively, for the multiplicative Sombor index among
the graphs with n vertices and the chromatic number r, and conclude that
the maximal and minimal graphs are the same for both the Sombor and the
multiplicative Sombor index in G(n, r). We also represent the bounds of the
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Table 1 – The minimal or maximal graphs for the Somber and the
multiplicative Somber index are identical in certain classes

Classes G(n) T (n) U(n) B(n) P(n, p) W(n,w) F(n, g)

min max min max min max max max min min

Graph for Pn Kn Pn Sn Cn C3
n K⌈n

2
⌉,⌊n

2
⌋ Kn−p

n
** Kin,n−w Cn,g

So(G) and ΠSo(G) [7, 10] [7, 10] [7, 10] [7, 10] [2, 10] [2, 10] [3, 16] [5, 16] [5, 16] [10, 17]

n-indicates the order of graphs in each class.
G(n)-the class of connected graph; T (n)-the class of trees; U(n)-the class of unicyclic graphs; B(n)-
the class of bipartite graphs; P(n, p)-the class of graphs with p pendent vertices; W(n,w)-the class
of graphs with clique number w; F(n, g)-the class of graphs with girth g.
C3

n-a graph obtained by hanging n − 3 pendent vertices with edges on the same vertex of C3;

Kn−p
n -a graph obtained by hanging p pendent vertices with edges on the same vertex of Kn−p.

index for three kinds of graph products using the indices of each graph in
Section 3.

2. BOUNDS AND EXTREMAL GRAPHS

In this section, we focus exclusively on connected graphs.

Lemma 2.1 ([10]). Πso is increasing, i.e., Πso(G+ uv) > Πso(G) when-
ever uv /∈ E(G).

Proposition 2.2. Let G be a graph having n ≥ 2 vertices, ∆, and δ.
Then (√

2 δ
)nδ

2 ≤ Πso(G) ≤
(√

2 ∆
)n∆

2 .

Equality holds if and only if G is a regular graph.

Proof. This is obvious from the inequalities
√
2δ ≤

√
d 2
u + d 2

v ≤
√
2∆

and nδ
2 ≤ |E(G)| ≤ n∆

2 . Four equalities hold simultaneously if and only if
du = dv = δ = ∆ for every uv ∈ E(G), which precisely matches the condition
for regular graphs.

Theorem 2.3. Let G be a graph with n ≥ 2 vertices. Then

Πso(G) ≥
(√

2

∑
u∈V(G)

du

· e
∑

u∈V(G)

du log du) 1
2

or

log Πso(G) ≥ 1

2

(
m log 2 +

∑
u∈V(G)

du log du

)
,

where m = |E(G)|. Equality holds if and only if G is a regular graph.



106 D. Huh 4

Proof. From the AM-GM inequality, we have∏
uv∈E(G)

√
d 2
u + d 2

v ≥
∏

uv∈E(G)

√
2dudv =

∏
uv∈E(G)

(
√
2du)

1
2 (
√
2dv)

1
2 .

Since each vertex contributes (
√
2du)

1
2 to each of its incident edges,∏

uv∈E(G)

(
√
2du)

1
2 (
√
2dv)

1
2 =

∏
u∈V(G)

(
√
2du)

1
2
du =

( ∏
u∈V(G)

(
√
2du)

du
) 1

2

=
(√

2

∑
u∈V(G)

du ∏
u∈V(G)

e du log du
) 1

2

=
(√

2

∑
u∈V(G)

du

· e
∑

u∈V(G)

du log du) 1
2
.

Equality holds if and only if du = dv for all uv ∈ E(G).

Figure 2 – Graphs having the same d 2
u + d 2

v for all uv ∈ E(G) in
Theorem 2.4.

Theorem 2.4. Let G be a graph with m > 0 edges. Then

Πso(G) ≤
(SO(G)

m

)m

or

log Πso(G) ≤ m(logSO(G)− logm).

Equality holds if and only if d 2
u + d 2

v is the same for all uv ∈ E(G).

Proof. Since log(x) is a concave function, it follows, by Jensen’s inequal-
ity, that

logΠso(G)

m
=

∑
uv∈E(G) log

√
d 2
u + d 2

v

m
≤ log

(SO(G)

m

)
.

Since log(x) is not affine, equality in Jensen’s inequality is true if and only if√
d 2
u + d 2

v is the same for all edges uv ∈ E(G) as shown in Figure 2.

For the next theorem, assume that G ∈ G(n, r). Let {V1,V2, · · · ,Vr}
denote a partition of V(G) such that Vi is a set of independent vertices of
the same color. The Turán graph Tn,r [11] is known as the complete r-partite
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Figure 3 – Turán graph T6,4 in G(6, 4).

graph with n vertices satisfying ||Vi|− |Vj || ≤ 1 for all 1 ≤ i, j ≤ r (Figure 3).

It was verified by Das et al. [5] that Tn,r is the maximal graph in G(n, r)
for the Sombor index. We prove here that the same holds for the multiplicative
Sombor index.

Theorem 2.5. Let G ∈ G(n, r). Then

Πso(G) ≤ Πso(Tn,r).

Equality holds if and only if G = Tn,r.

Proof. To begin with, the condition of r = 2 makes G a bipartite graph.
Chunlei et al. [16] proved

Πso
(
K⌊n

2
⌋,⌈n

2
⌉
)
≥ Πso(G)

for all bipartite graphs of order n. So, we only consider cases when r ≥ 3.
Also, it is trivial by Lemma 2.1 that G ∈ G(4, 3) implies Πso(G) ≤ T4,3, and
G ∈ G(4, 4) implies Πso(G) ≤ T4,4 = K4. Therefore, we only investigate the
case n ≥ 5. To construct a proof by contradiction, suppose there is a graph
G ∈ G(n, r) that has the largest value of Πso(G), but G ̸= Tn,r. It is obvious
that G is complete r-partite because adding an edge increases Πso(G).

Let {Vi : 1 ≤ i ≤ r} be a partition of V(G) according to r-coloring of
G. By assumption, there exist two partite sets, say Vr−1 and Vr, such that
|Vr−1| − |Vr| ≥ 2. And we let |Vi| = ai, 1 ≤ i ≤ r. Note that ar−1 − ar ≥ 2.
Now, we build another graph H from G by moving one vertex of Vr−1 to Vr,
deleting and adding edges to form a new complete r-partite graph H. We show
that Πso(G) < Πso(H) to derive a contradiction.

In a complete r-partite graph G, all the vertices in Vi have the same
degree n−ai. We choose a vertex in each Vi and consider it as a representative
vertex vi of Vi, and define

ϕG(vi) =

r∏
j=i+1

(√
(n− ai)2 + (n− aj)2

)aj
.
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Then we have

(1)

Πso(G) =
∏

uv∈E(G)

√
d 2
u + d 2

v =

r−1∏
i=1

r∏
j=i+1

(√
(n− ai)2 + (n− aj)2

)aiaj

=

r−1∏
i=1

( r∏
j=i+1

(√
(n− ai)2 + (n− aj)2

)aj
)ai

=
r−1∏
i=1

(
ϕG(vi)

)ai .
First, we compare ϕG(vi) and ϕH(vi) for 1 ≤ i ≤ r − 2. Since H has

|Vr−1| = a(r−1) − 1 and |Vr| = ar + 1,
(2)

ϕH(vi)

ϕG(vi)
=

(
((n−ai)

2+(n−a(r−1) + 1)2)
a(r−1)−1

((n−ai)
2+(n−ar − 1)2)

ar+1

((n−ai)2+(n−a(r−1))2)
a(r−1)((n−ai)2+(n−ar)2)

ar

)1
2

,

where all terms other than the two terms are reduced. Let ar + ar−1 = k, and
ar = x so that ar−1 = k − x. Then, from ar−1 − ar ≥ 2, we obtain

1 ≤ x ≤ k

2
− 1.

Thus, equation (2) becomes

(3)
ϕH(vi)

ϕG(vi)
=

(
(M2 + (n− (k − x) + 1)2)k−x−1(M2 + (n− x− 1)2)x+1

(M2 + (n− (k − x))2)k−x(M2 + (n− x)2)x

) 1
2

,

where M = n− ai. Taking the logarithm of equation (3) yields

(4)

log

(
ϕH(vi)

ϕG(vi)

)
=

1

2

[
(k − x− 1) log

(
M2 + (n− k + x+ 1)2

)
+ (x+ 1) log

(
M2 + (n− x− 1)2

)
− (k − x) log

(
M2 + (n− k + x)2

)
− x log

(
M2 + (n− x)2

)]
.

Let

θ(x) = (k − x) log
(
M2 +

(
n− (k − x)

)2)
+ x log

(
M2 + (n− x)2

)
to simplify (4) as

log

(
ϕH(vi)

ϕG(vi)

)
=

1

2

[
θ(x+ 1)− θ(x)

]
.

We claim θ(x) is a strictly increasing function on 1 ≤ x < k
2 . The derivative

of θ(x) with respect to x is

d

dx
θ(x) = log

(
M2 + (n− x)2

)
− 2x(n− x)

M2 + (n− x)2
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− log
(
M2 + (n− k + x)2

)
+

2(k − x)(n− k + x)

M2 + (n− k + x)2
.

Let y = k − x. Since y > x and x+ y = k < n, we observe that

(n− x)2 − (n− k + x)2 = (n− x)2 − (n− y)2 > 0,(5)

(k − x)(n− k + x)− x(n− x) = (y − x)
(
n− (x+ y)

)
> 0,(6) (

M2 + (n− x)2
)
−
(
M2 + (n− k + x)2

)
= (n− x)2 − (n− y)2 > 0.(7)

From (5),(6), and (7),

d

dx
θ(x) =

[
log

(
M2 + (n− x)2

)
− log

(
M2 + (n− k + x)2

)]
+ 2

[
(k − x)(n− k + x)

M2 + (n− k + x)2
− x(n− x)

M2 + (n− x)2

]
> 0.

This proves that θ(x) is strictly increasing on 1 ≤ x < k
2 . As a consequence,

log

(
ϕH(vi)

ϕG(vi)

)
=

1

2

[
θ(x+ 1)− θ(x)

]
> 0,

for 1 ≤ x ≤ k
2 − 1, or

(8)
ϕH(vi)

ϕG(vi)
> 1 on 1 ≤ i ≤ r − 2.

Finally, we compare ϕG(vr−1)
a(r−1) and ϕH(vr−1)

a(r−1)−1, as follows:

ϕH(vr−1)
a(r−1)−1

ϕG(vr−1)
a(r−1)

=

(
((n− a(r−1) + 1)2 + (n− ar − 1)2)(a(r−1)−1)(ar+1)

((n− a(r−1))2 + (n− ar)2)
a(r−1)ar

) 1
2

.

In a similar way to the previous method, let x = ar and ar−1 = k − x so that
1 ≤ x ≤ k

2 − 1. After taking the logarithm, we have

log

(
ϕH(vr−1)

a(r−1)−1

ϕG(vr−1)
a(r−1)

)
=

1

2
log

(
((n− k + x+ 1)2 + (n− x− 1)2)(k−x−1)(x+1)

((n− k + x)2 + (n− x)2)(k−x)x

)
=

1

2

[
η(x+ 1)− η(x)

]
,

where η(x) = x(k − x) log((n − x)2 + (n − (k − x))2). Again, we claim that
η(x) is a strictly increasing function on 1 ≤ x < k

2 . The derivative of η(x) with
respect to x is

d

dx
η(x) = (k − 2x)

[
log

(
(n− k + x)2 + (n− x)2

)
− 2x(k − x)

(n− k + x)2 + (n− x)2

]
.
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Since

2x(k−x) ≤ x2+(k−x)2 and (n−k+x)2+(n−x)2 = 2n(n−k)+x2+(k−x)2,

we observe

2x(k − x)

(n− k + x)2 + (n− x)2
≤ x2 + (k − x)2

2n(n− k) + x2 + (k − x)2
< 1.

Hence, it follows from n− x ≥ 2 and k − 2x ≥ 2 that

d

dx
η(x) > (k − 2x)

[
log

(
(n− k + x)2 + (n− x)2

)
− 1

]
≥ 0.

Therefore, we conclude

log

(
ϕH(vr−1)

a(r−1)−1

ϕG(vr−1)
a(r−1)

)
=

1

2

[
η(x+ 1)− η(x)

]
> 0,

on 1 ≤ x ≤ k
2 − 1 or

(9)
ϕH(vr−1)

a(r−1)−1

ϕG(vr−1)
a(r−1)

> 1.

Finally, from (1), (8) and (9),

Πso(H)

Πso(G)
=

(ϕH(v1))
a1 · · · (ϕH(vr−2))

a(r−2)(ϕH(vr−1))
a(r−1)−1

(ϕG(v1))a1 · · · (ϕG(vr−2))
a(r−2)(ϕG(vr−1))

a(r−1)
> 1,

a contradiction.

For the next theorem, we call G ∈ G(n, r) is r-critical if χ(H) < χ(G) = r
for every proper subgraph H of G.

Proposition 2.6. There is no r-critical graph in G(r + 1, r).

Proof. Assume G ∈ G(r + 1, r) is a r-critical graph. Since the number
of vertices is only one more than the chromatic number, only two vertices of
G, say v and w, share the same color. Also, since δ ≥ r − 1, v and w are
adjacent to the remaining r− 1 vertices, which means dv = dw = r− 1. By the
assumption, G− v (deleting v from G) is (r− 1)-colorable. But since v and w
have the same neighbors in G, assigning v the same color as w when adding it
back to G− v shows that G is (r − 1)-colorable, a contradiction.

A pendant path P = a1a2 · · · ak of G is a subgraph of G which satisfies
da1,G ≥ 3 for one end vertex a1, dak,G = 1 for the other end vertex ak, and
dai,G = 2 for the rest vertices of P = a1a2 · · · ak. Both Kin,r and Cn,r have a
pendent path Pn−r+1 (Figure 4).
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Figure 4 – Ki7,4 is minimal in G(7, 4). C8,3 and C8,5 are minimal in
G(8, 3).

Lemma 2.7 ([10]). Suppose a graph G has two pendant paths P =a1a2· · ·ak
and P ′ = b1b2 · · · bl with dak = dbl = 1, and possibly a1 = b1. Then

Πso(G− a1a2 + a2bl) < Πso(G).

Lemma 2.8 ([10]). Suppose G is a unicyclic graph with n vertices. Then

Πso(Cn) ≤ Πso(G),

with equality if and only if G = Cn.

Lemma 2.9 ([10]). Suppose G is a unicyclic graph with n vertices and
girth g. Then

Πso(Cn,g) ≤ Πso(G),

with equality if and only if G = Cn,g.

Now, we are ready to characterize the minimal graph having n vertices
and chromatic number r. It was shown by Zhang et al. [17] that Kin,r is
minimal for the Sombor index in G(n, r).

Theorem 2.10. Let G ∈ G(n, r), n ≥ r ≥ 2. When r ̸= 3,

(10) Πso(G) ≥ Πso(Kin,r)

for all n ≥ r. Equality holds if and only if G = Kin,r. When r = 3,

Πso(G) ≥


Πso(Cn) for all odd n ≥ 3,

Πso(Cn,3) for n = 4 or 6,

Πso(Cn,2k+1), 1 ≤ k ≤ n
2 − 2 for all even n ≥ 8.

Proof. We consider three cases.

Case 1: r = 2. It is trivial that Πso(Pn) ≤ Πso(G) for all connected graph
G of order n from Lemmas 2.1 and 2.7. Since Pn = Kin,2 belongs to bipartite
graphs, the proof is done for the case of r = 2.

Case 2: r ≥ 4. When n = r, the only graph in G(r, r) is Kr. So, there is
nothing to prove. For the remaining part of n ≥ r+1, the proof is by induction
on n. When n = r + 1, by Proposition 2.6, there exists a vertex v such that
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χ(G − v) = r for every G ∈ G(r + 1, r), where G − v is Kr. Therefore, by
Lemma 2.1, we may remove edges of v until dv = 1 in G to conclude that

(11) Πso(Kir+1,r) ≤ Πso(G)

for all G ∈ G(r + 1, r). Note that equality holds if and only if G = Kir+1,r.
Assume the result (10) holds for n, and let G ∈ G(n+ 1, r). We consider

h(x, y) =
√
x2 + y2.

(i) If G is r-critical, from δ ≥ r − 1 and Proposition 2.2, we have

Πso(G)

Πso(Kin+1,r)
≥ (

√
2(r − 1))

1
2
(n+1)(r−1)

h(r − 1, r − 1)(
r−1
2 )h(r, r − 1)r−1h(r, 2)h(2, 2)n−r−1 h(2, 1)

=
(
√
2(r − 1))

1
2
(r−1)(n−r+3)√

r2 + (r − 1)2
r−1√

8
n−r−1√

5(r2 + 4)

=
(r − 1)

3
2
(r−1)

√
2r2 − 2r + 1

r−1

(
√
2(r − 1))

1
2
(r−1)(n−r−1)

√
8
n−r−1

(4(r − 1))
1
2
(r−1)√

5(r2 + 4)

>

(
(r − 1)3

2r2 − 2r + 1

) 1
2
(r−1)(

3
√
2√
8

)n−r−1(
64(r − 1)3

5(r2 + 4)

) 1
2

> 1

as r ≥ 4. Thus, Πso(G) > Πso(Kin+1,r) holds.
(ii) If G is not r-critical and can be made r-critical in G(n + 1, r) by

removing edges, Πso(G) > Πso(Kin+1,r) is established according to the result
of (i) and by Lemma 2.1 again.

(iii) If G is not r-critical and there is a vertex for which G− v ∈ G(n, r),
define H as H = G−v. We may reduce Πso(G) by erasing the edges of v one by
one until it reaches H+wv, where w is a neighbor of v in H and dv,H+wv = 1.
Since H ∈ G(n, r), Πso(H) ≥ Πso(Kin,r) is satisfied by induction hypothesis.
Therefore,

Πso(G) ≥ Πso(H+ wv)

= Πso(H) ·

∏
vi∈NH(w)

h(dvi , dw,H + 1)∏
vi∈NH(w)

h(dvi , dw,H)
· h(dw,H + 1, 1),

where NH(w) is the set of neighbors of w in H. Since
h(dvi ,dw,H+1)

h(dvi ,dw,H)
> 1, for a

vk ∈ NH(w), ∏
vi∈NH(w)

h(dvi , dw,H + 1)∏
vi∈NH(w)

h(dvi , dw,H)
≥

h(dvk , dw,H + 1)

h(dvk , dw,H)
.
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Put a function f(x) as

f(x) =

(
h(k, x+ 1)

h(k, x)
· h(x+ 1, 1)

)2

=
((x+ 1)2 + k2)((x+ 1)2 + 1)

x2 + k2

on x ≥ 1 and k ≥ 1. Then f(x) is increasing because

d

dx
f(x)=

2x5+4x4+4k2x3+(10k2−16)x2+(2k4+10k2−4)x+2k2(k2+3)

(x2+k2)2
>0.

As a result,

Πso(G) ≥ Πso(H) · h(dvk , 2)
h(dvk , 1)

· h(2, 1)(12)

≥ Πso(Kin,r) ·
h(dvk , 2)

h(dvk , 1)
· h(2, 1)(13)

= Πso(Kin+1,r).(14)

The equality of (12) is satisfied when dw,H = 1 and the equality of (13) holds
if and only if H = Kin,r by assumption. There is only one vertex of degree 1
in Kin,r and this makes the equality of (14) true. Hence, the proof for r ≥ 4
is done.

Case 3: r = 3. Since 3-critical graphs always contain an odd cycle, every
graph in G(n, 3) can be transformed into an odd-unicyclic graph–a unicyclic
graph whose cycle is odd–by removing edges to make it contain a minimal
number of edges. Here, an odd-unicyclic graph means a unicyclic graph whose
cycle is odd. So, we only need to compare the value Πso(G) of odd-unicyclic
graphs. When n is odd, by Lemma 2.8, Πso(Cn) ≤ Πso(G), done. When
n = 4, G ∈ G(4, 3) and by (11), we have Πso(C4,3) = Πso(Ki4,3) ≤ Πso(G),
done. When n = 6, G ∈ G(6, 3) can contain only two odd cycles C3, and
C5. By Lemma 2.9, C6,3 and C6,5 are minimal graphs having girth 3 and 5,
respectively. But we have

Πso(C6,3)

Πso(C6,5)
=

h(2, 2)2 · h(2, 3)3 · h(2, 1)
h(2, 2)3 · h(2, 3)2 · h(3, 1)

=

√
65√
80

< 1.

Hence, Πso(C6,3) ≤ Πso(G), done. A similar method applies when n ≥ 8 and
even. But simple computation gives

Πso(Cn,3) = Πso(Cn,4) = · · · = Πso(Cn,n−2) < Πso(Cn,n−1).

Therefore, multiple odd-unicyclic graphs have the same minimum value, i.e.,

Πso(Cn,2k+1) ≤ Πso(G),

for 2k + 1 ≤ n− 2 or k ≤ n−3
2 . More exactly, k ≤ n−4

2 for n is even.
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Remark 2.11. A similar method to the above proof can be applied to the
Sombor index, so we modify the result of Theorem 2 in [17] by adding the
missing graph in the “equality condition” as in the theorem above when r = 3.

3. BOUNDS FOR PRODUCTS OF GRAPHS

Let G = (V(G),E(G)) and H = (V(H),E(H)) be two graphs. We define
G∪H := G(V(G)∪V(H),E(G)∪E(H)). G and H are disjoint ifV(G)∩V(H) =
ϕ, and edge-disjoint if E(G) ∩E(H) = ϕ. G is the complement of G.

Lemma 3.1. Let two graphs G and H be edge-disjoint on the same vertex
set V = V(G) = V(H) with |V| = n. Then

Πso(G)Πso(H) ≤ Πso(G ∪H).

Equality holds if and only if dv,G = 0 or dv,H = 0 for every v ∈ V. Especially,

Πso(G)Πso(G) ≤ Πso(Kn).

Equality holds if and only if G = Kn or G = Kn.

Proof. Since G and H are edge-disjoint, dv,G∪H = dv,G + dv,H holds, im-
plying that du,G ≤ du,G∪H and du,H ≤ du,G∪H. Thus,

Πso(Kn) ≥ Πso(G ∪H)(15)

=
∏

uv∈E(G∪H)

√
d 2
u,G∪H + d 2

v,G∪H,

=
∏

uv∈E(G∪H)

√
(du,G + du,H) 2 + (dv,G + dv,H) 2

≥
∏

uv∈E(G)

√
d 2
u,G + d 2

v,G

∏
uv∈E(H)

√
d 2
u,H + d 2

v,H(16)

= Πso(G)Πso(H).

The equality in (15) holds if and only if Kn = G ∪ H. Another equality in
(16) is true if and only if dv,G = dv,G∪H or dv,H = dv,G∪H for all v ∈ V. This
condition occurs if and only if dv,G = 0 or dv,H = 0 for all v ∈ V. Both equals
are valid if and only if G = Kn or H = Kn.

The cartesian product G □ H of graphs G and H has a vertex set V(G)×
V(H) and an edge set satisfying the following condition: two vertices (u, v),
(u,′ v′) ∈ V(G)×V(H) are adjacent if and only if (1) u = u′ and vv′ ∈ E(H),
or (2) v = v′ and uu′ ∈ E(G) [13].
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Lemma 3.2. Let G be a graph of order n. Then

Πso(G □ Kn) = Πso(G)n.

Proof. By definition of the cartesian product of graph,

G □ Kn =

n⋃
k=1

Gk,

where Gk, 1 ≤ k ≤ n, are disjoint but each Gk is isomorphic to G. Therefore,

Πso(G □ Kn) = Πso

( n⋃
k=1

Gk

)
=

n∏
k=1

Πso(Gk) = Πso(G)n.

Theorem 3.3. Let G and H be two disjoint graphs with |V(G)| = n and
|V(H)| = p. Then

Πso(G □ H) ≥ Πso(G)|V(H)|Πso(H)|V(G)|.

Equality holds if and only if G = Kn or H = Kp.

Proof. Let V(G) = V(Kn), V(H) = V(Kp). Then G □ H is represented
as

G □ H = (G □ Kp) ∪ (Kn □ H).

Since G □ Kp and Kn □ H are edge-disjoint on the same vertex set, by Lem-
mas 3.1 and 3.2,

Πso(G □ H) = Πso
(
(G □ Kp) ∪ (Kn □ H)

)
≥ Πso(G □ Kp) Πso(Kn □ H)(17)

= Πso(G)pΠso(H)n.

Let (u, v) ∈ V(G □ H). By Lemma 3.2, equality in (17) holds true if and
only if d(u,v),G□Kp

= 0 or d(u,v),Kn□H = 0 for all (u, v) ∈ V(G□H). Since
d(u,v),G□H = du,G + dv,H,

d(u,v),G□Kp
= du,G + dv,Kp

= du,G

and

d(u,v),Kn□H = du,Kn
+ dv,H = dv,H.

Claim. du,G = 0 or dv,H = 0 for all (u, v) ∈ V(G□H) if and only if
G = Kn or H = Kp.

Proof of Claim. If G = Kn or H = Kp, it is clear that du,G = 0 or
dv,H = 0. Conversely, suppose G ̸= Kn and H ̸= Kp. Then there exist vertices
u ∈ V(G) and v ∈ V(H) such that du,G > 0 and dv,H > 0, contradiction. This
completes the proof.
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The tensor product G×H of graphs G and H is a graph whose vertex set
is V(G)×V(H) and an edge set satisfies the following condition: two vertices
(u, v), (u′, v′) ∈ V(G) × V(H) are adjacent if and only if uu′ ∈ E(G) and
vv′ ∈ E(G) [14].

Theorem 3.4. Let G be a graph of order n. Then

Πso(G×K2) = Πso(G) 2.

Proof. Let

V(G×K2) =
{
(vi, uj)| 1 ≤ i ≤ n, j = 1, 2

}
for V(G) = {vi| 1 ≤ i ≤ n}, V(K2) = {u1, u2}. By the definition of tensor
product of graphs, the edge set of G×K2 becomes

E(G×K2) =
{(

(vi, u1)(vj , u2)
)
| vivj ∈ E(G)

}
.

This means that, for each vivj ∈ E(G) and u1u2 ∈ E(K2), there are two
different edges ((vi, u1)(vj , u2)) and ((vj , u1)(vi, u2)) in G × K2. In addition,
since NG×K2((vi, u1)) = {(v, u2)| v ∈ NG(vi)}, we have d(vi,uj),G×K2

= dvi,G.
Therefore,

Πso(G×K2) =
∏

((vi,u1)(vj ,u2))
∈E(G×K2)

√
d 2
(vi,u1),G×K2

+ d 2
(vj ,u2),G×K2

=
∏

(vi,vj)∈E(G)

(√
d 2
vi,G + d 2

vj ,G

√
d 2
vj ,G + d 2

vi,G

)

=

( ∏
(vi,vj)∈E(G)

√
d 2
vi,G + d 2

vj ,G

)2

= Πso(G)2.

Theorem 3.5. Let G and H be two disjoint graphs with |V(G)| = n and
|V(H)| = p. Then

Πso(G)|E(H)|Πso(H)|E(G)| ≤ Πso(G×H) ≤
(
Πso(G)|E(H)|Πso(H)|E(G)|)2.

The first equality holds if and only if

G = (∪n′
i=1K2) ∪Kn−2n′ and H = (∪p′

j=1K2) ∪Kp−2p′

for some 1 ≤ n′ ≤ n
2 , 1 ≤ p′ ≤ p

2 , or

G = Kn or H = Kp.

The second equality holds if and only if G = Kn or H = Kp.
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Proof. Since the edge set of G×H is defined as

E(G×H) =
{(

(ui, vk)(uj , vl)
)
| uiuj ∈ E(G) and vkul ∈ E(H)

}
,

the degree of a vertex (ui, vk) ∈ V(G × H) is the product of |NG(ui)| and
|NH(vk)|, or

d(ui,vk),G×H = dui,G dvk,H.
Suppose G ̸= Kn and H ̸= Kp. Then by Theorem 3.4,

Πso(G×H) =
∏

((ui,vk)(uj ,vl))
∈E(G×H)

√
d 2
(ui,vk),G×H + d 2

(uj ,vl),G×H

=
∏

(vk,vl)
∈E(H)

∏
(ui,uj)
∈E(G)

√
(dui,Gdvk,H)

2 + (duj ,Gdvl,H)
2
√

(dui,Gdvl,H)
2 + (duj ,Gdvk,H)

2

<
∏

(vk,vl)
∈E(H)

∏
(ui,uj)
∈E(G)

√
(d 2

ui,G + d 2
uj ,G)(d

2
vk,H + d 2

vl,H)
√

(d 2
ui,G + d 2

uj ,G)(d
2
vl,H + d 2

vk,H)

=
∏

(vk,vl)
∈E(H)

∏
(ui,uj)
∈E(G)

(√
d 2
ui,G + d 2

uj ,G

)2 (√
d 2
vk,H + d 2

vl,H

)2

=
∏

(vk,vl)
∈E(H)

Πso(G) 2
(√

d 2
vk,H + d 2

vl,H

)2|E(G)|

= Πso(G)2|E(H)|Πso(H)2|E(G)|.

Furthermore, when G ̸= Kn and H ̸= Kp,

Πso(G×H)

(18)

=
∏

(vk,vl)
∈E(H)

∏
(ui,uj)
∈E(G)

√
(dui,Gdvk,H)

2 + (duj ,Gdvl,H)
2
√

(dui,Gdvl,H)
2 + (duj ,Gdvk,H)

2

≥
∏

(vk,vl)
∈E(H)

∏
(ui,uj)
∈E(G)

√
(d 2

ui,G + d 2
uj ,G)

√
(d 2

vl,H + d 2
vk,H)

(19)

=
∏

(vk,vl)
∈E(H)

Πso(G)
(√

d 2
vk,H + d 2

vl,H

)|E(G)|
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= Πso(G)|E(H)|Πso(H)|E(G)|.

Equality (19) is satisfied if and only if dui,G = duj ,G = dvk,H = dvl,H = 1 for all
uiuj ∈ E(G) and vkvl ∈ E(H) if and only if G and H are the form of

G = (∪n′
i=1K2) ∪Kn−2n′ and H = (∪p′

j=1K2) ∪Kp−2p′ .

Finally, suppose G = Kn or H = Kp. Then E(G×H) = ϕ, so Πso(G×H) = 1.
Hence, bounds on both sides satisfy

Πso(G)|E(H)|Πso(H)|E(G)| =
(
Πso(G)|E(H)|Πso(H)|E(G)|)2 = 1

and these make both equalities valid.

The strong product G ⊠ H of graphs G and H is a graph on the vertex
set V(G)×V(H), whose edge set satisfies the following condition: two vertices
(u, v), (u′, v′) ∈ V(G)×V(H) are adjacent if and only if (1) u = u′ and vv′ ∈
E(H), or (2) v = v′ and uu′ ∈ E(G), or (3) uu′ ∈ E(G) and vv′ ∈ E(G) [8].

Theorem 3.6. Let G and H be two disjoint graphs. Then

(20) Πso(G⊠H) ≥ Πso(G)|V(H)|+|E(H)|Πso(H)|V(G)|+|E(G)|.

The equality holds if and only if G = Kn or H = Kp.

Proof. Suppose G ̸= Kn and G ̸= Kp. G⊠H can be expressed as

G⊠H = (G□H) ∪ (G×H).

Since G□H and G×H are edge-disjoint on the same set of vertices, it follows
from Proposition 3.1, Theorem 3.3, and Theorem 3.5 that

Πso(G⊠H) = Πso
(
(G □ H) ∪ (G×H)

)
> Πso(G□H)Πso(G×H)(21)

> Πso(G)|V(H)|Πso(H)|V(G)|Πso(G)|E(H)|Πso(H)|E(G)|.

Note that the equality does not hold in (21) because there exist u ∈ V(G), v ∈
V(H) such that du,G > 0, dv,H > 0, which explains d(u,v),G□H = du,G+dv,H > 0
and d(u,v),G×H = du,Gdv,H > 0.

Suppose G = Kn. Then we obtain G⊠H = G□H from E(G×H) = ϕ.
Hence, the left side of equation (20) is equal to Πso(G□H) = Πso(H)|V(G)|

from Lemma 3.2. The right side of (20) also gives the same value and proves
the equality.
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4. DISCUSSION

To conclude, it is still uncertain whether there are infinitely many graphs
where SO(G) < SO(H) but Πso(G) > Πso(H). However, despite the existence
of many such graphs, it has been established that the extremal graphs in certain
classes considered are equal for both indices. In this article, we prove that this
result also applies to the class G(n, r). We have confirmed that the methods
used in the proof can similarly be applied to the Sombor index, thereby ad-
dressing the missing part of the “equality condition” in Theorem 2 from Zhang
et al.’s paper [17]. The theorems presented in Section 3 illustrate how graph
indices can be utilized in various graph operations. These approaches can offer
a way to predict bounds when applying graph indices to large networks.
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