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In this paper, we study the relationship between the k-th derivative of an entire
function and its shift sharing two distinct pairs of small functions. For such a
function f, a nonzero complex value ¢ and a positive integer k, we establish a
linear relationship between f(z+c¢) and f*)(z) which generalizes a result due to
Huang, Deng and Fang [Open Mathematics, 19 (2021), 144-156]. The examples
are also given in support of our result.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f be a meromorphic function in the complex plane C. Throughout
this paper, we adopt the standard notations of Nevanlinna value distribution
theory as described in [3,/6l/13]. We use S(r, f) to denote any quantity satisfying
S(r, f) = o{T(r, f)} for all r outside a possible exceptional set E of finite linear
measure. A meromorphic function a(z) is said to be a small function of f
provided that T'(r,a) = S(r, f). Let f and g be any two nonconstant functions
and let a and b be any two small functions of f and g. The functions f and
g are said to share a pair (a,b) CM if f — a and g — b have the same zeros
counting multiplicities; f and g are said to share a pair (a,b) IM if f —a and
g — b have the same zeros ignoring multiplicities. We see that f and ¢ share
(a,a) CM (resp., IM) if and only if f and g share a CM (resp., IM). The same
argument is also applicable when a and b are two values in CU{oo}. The order
p(f) and hyper-order ps(f) of a meromorphic function f is defined as follows:

log T log log T
p(f) = lim sup L(T’f) and pz(f) = lim sup M
ree logr r—00 log r
In 1977, Rubel and Yang [12] proved the following result.

THEOREM 1.1. If a nonconstant entire function f and its derivative f’
share two distinct finite complex values a, b CM, then f = f'.
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In 1979, replacing CM sharing as IM sharing, Mues and Steinmetz [§]
proved the following theorem.

THEOREM 1.2. Let f be a nonconstant entire function, and let a,b be two
distinct finite complex numbers. If f and f’ share a, b IM, then f = f’.

In case of small functions sharing, Zheng and Wang [14] proved the fol-
lowing result.

THEOREM 1.3. Let f be a nonconstant entire function, and let a(#£ o0),
b(# o0) be two distinct small functions of f. If f and f' share a,b CM, then
f=r.

In 2000, Qiu [10] proved the following result for IM sharing.

THEOREM 1.4. Let f be a nonconstant entire function, and let a(#£ o0),
b(# 00) be two distinct small functions of f. If f and f' share a,b IM, then
f=r.

Considering k-th derivative instead of first derivative, Li and Yang [7]
proved the result as follows.

THEOREM 1.5. Let f be a monconstant entire function, and let a, b be
two distinct small functions of f. If f and f*) share a CM and b IM, then

f=ft,
In 2020, Qi and Yang [|9] considered the first derivative of f and its shift
and proved the following result.

THEOREM 1.6. Let f be a transcendental entire function of finite order,
and let a(# 0) € C. If f'(2) and f(z+ c¢) share 0 CM and a IM, then we have

f(z) = f(z+0).
In 2024, Huang [4] extended the result of Qi and Yang [9], and the result
is as follows.

THEOREM 1.7. Let f(z) be a transcendental meromorphic function of
p2(f) < 1, let ¢ be a nonzero finite value, k be a positive integer, and let
a(z) # o0, b(z) # oo be two distinct small functions. If f*)(2) and f(z + ¢)
share a(z), co CM and share b(z) IM, then f®)(2) = f(z +¢).

In 2021, Huang, Deng and Fang [5] considered the sharing of two pairs of
small functions and obtained the following theorem.

THEOREM 1.8. Let f be a transcendental entire function, and let aq, a9,
b1 and bs be four small functions of f such that a1 #Z by and as Z ba, and none
of them is identically equal to oo. If f and f*) share (a1,a2) CM and (by, by)
[M, then (CLQ — bQ)f - (a1 — bl)f(k) = agbl — albz.
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Now the following question is inevitable.

Question 1.9. Is it possible to establish a linear relationship between f(z+
¢) and f)(z) whenever they share two pairs of small functions?

In this paper, we prove the following theorem which answers the above
question.

THEOREM 1.10. Let k > 1 be an integer and c(# 0) be a finite complex
value. Suppose that f is a transcendental entire function of finite order, and
a] Z 00, ag Z 00, by # 00, by £ oo are four small functions of f such that
a1 # by and ag # by, and a1, by are periodic functions with period c. If f(z+c)
and f®)(2) share (a1,az) CM and (by,by) IM, then

(a2 —b2) f(z +¢) — (a1 — b)) fP)(2) = azby — arbs.
We provide the following example in support of Theorem [1.10

Ezample 1.11. Let f(2) = €%*, a1 = e*, ag = 4, by = 0, by = 0. Consider
¢ = 2. Clearly, aj, b are periodic functions. Then we see that f(z+2) —a; =
et(e¥ —1), f"(2) —ag = 4(e¥* —1), f(2+2) —by = e*e?* and f"(2) — by = 4e?*.
Thus f(z 4+ 2) and f”(z) share (a1,a2) CM and (b1, b2) IM. Clearly, we find
that (GQ — bQ)f(Z + 2) — (a1 — bl)f”(z) = asby — a1bs.

In the next two examples, we show that the conditions in Theorem [1.10
are sufficient.

Ezample 1.12. Let f(2) = 2+ e*, a1 = e+ 2+ 1, a0 =4, by = 2+ 1
and by = 0. Consider ¢ = 1. Then we see that f(z + 1) —a; = €*(e* — 1),
f"(2) —az = 4(e** — 1), f(z +1) — by = €%e?* and f"(z) — by = 4e?*. Thus
f(z+ 1) and f”(z) share (ai,a2) CM and (by,bs) IM. Clearly, we find that
(CLQ — bz)f(z + 1) — (a1 — bl)f”(z) = a9b; — a1bs.

Ezample 1.13. Let f(2) =22 +e% a1 =3+ 22+ 224+ 1, a0 = 27, by =
224+2z+1 and by = 0. Take ¢ = 1. Then we see that f(z+1)—a; = e3(e3 —1),
f"(2) —ag =27(e* — 1), f(z +1) — by = e3e3* and f"(z) — by = 27¢%*. Thus
f(z+ 1) and f”(z) share (aj,a2) CM and (b1, b2) IM. Clearly, we find that
((LQ — bg)f(z + 1) — (a1 — bl)f”’(z) = a9b1 — a1bs.

The following example shows that the condition of sharing of two pairs
of small functions in Theorem [1.10]is sharp.

Ezample 1.14. Let f(z) = €*, a1 = €, az = 1, by = 2 and by = 0,
where c¢ is a nonzero finite complex value. Then f(z + ¢) — a; = e“(e® — 1),
['(z) —azs=¢€¢*—1, f(z4+¢) — by = e —2 and f”(z) — by = €*. Therefore
f(z +¢) and f”(z) share (a1,a2) CM but do not share (b1, b2) IM. Now it is
easy to verify that (a2 — be)f(z + ¢) — (a1 — b1) f"(2) # agbr — a1be.
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2. LEMMAS

In order to prove our results, we need the following lemmas.

LEmMMA 2.1 (3,11}, Second fundamental theorem]). Let f(z) be a noncon-
stant meromorphic function on C. Let ai,as,...,aq be distinct meromorphic
functions on C. Assume that a;’s are small functions with respect to f for all
1=1,...,q. Then the inequality

1
f—a

(- 2T )< N ( ) LS f),
j=1

holds for all v outside a set E C (0,+00) with finite Lebesgue measure.
z)

LEMMA 2.2 ([13]). Let fi(
functions in |z| < co. Then

and f2(z) be two nonconstant meromophic

where 0 < r < 00.

LEMMA 2.3 ([13]). Let f(z) be a nonconstant meromorphic function, and
let k be a positive integer. Then

(. 258) s

LEMMA 2.4 ([13]). Let f(z) be a nonconstant meromorphic function, and
let n be a positive integer. Suppose that (f) = aof + arf' + -+ + anf™,
where ag, ay,...,an(# 0) are small functions of f. Then

v\ _ ~

m{ =8(r, f), T(ry) <T(r,f)+kN(r, f)+S(r, f).

LeMMA 2.5 ([1L2]). Let f(2) be a meromorphic function of finite order.
Then for any ¢ € C — {0}, we have

) B R

LEMMA 2.6. Let f(z) be a nonconstant meromorphic function of finite
order and ¢ € C. Then for any periodic small function a of f with period c,
we have

m(r, G “(z)) = S(r, f).

f(z) —a(z)
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Proof. From the proof of Lemma 2.3 in [2], we have
flz+co) = f(2) _
n(n ) = s
Using this we can conclude that
f(z+¢) —al(?) fz+¢) - f(2)
n(nE ) < (et
= S(r, f).
This completes the proof of Lemma ]

) +0(1)

LEMMA 2.7 ([1]). Let f(z) be a transcendental meromorphic function with
finite order. Then
T(r,f(z)) =T(r, f(z+¢)) + S(r, f).

LEMMA 2.8. Let f(z) be a transcendental entire function, and let ay, as,
b1, by be four small functions of f such that a; # by and as # bs. Assume that

k
- 4 e S,
If f(z+¢) and f%)(2) share (a1,as) CM and (by,by) IM, then L(f(z +
c)) # 0, L(f®(2)) #0.
Proof. Suppose that L(f(z+ c)) = 0. Then we get
Flete)—a b
flz+c¢)—a1 a3 —br’

Integrating, we get f(z + ¢) — a1 = c(a; — b1), where ¢ is a nonzero constant.
Therefore using Lemma we obtain

T(r,f(2)) = T(r, f(z+¢)) + S(r, f)
=T(r,clar —b1) +a1) + S(r, f)
=S(r, f),

a contradiction. Hence, L(f(z+ ¢)) Z 0.
Using the same argument as proving L(f(z+ ¢)) # 0, it is easy to obtain

L(f®(z)) #0. O

LEMMA 2.9. Let f(z) be a transcendental entire function and ai, by be
two distinct small functions of f. Suppose that for j = 1,2,...,q, dj = a1 —
lij(a1 — b1) where l;’s are positive integers. Then

L(f(z40)) \ _
1. m(?“, m) = S(T, f),
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2 m< e >: (r, f),
f+0) ) —
3. m(’r f(z-‘gc) ()i )_ f)
Z+C))f(2+0) —
(G e ) = S ),
where L(f(z + c)) is deﬁned as in Lemma.§ and 2 < m < q.

Proof. By Lemmas [2.3] and 2.5 we have

1.
"fzte)—ar
/ (a1 —b1)(f'(z+c) —ay)
<m(r,a} — b)) + <r, e - >+S(r,f)
=S(r, f)
2.
7f(2+0)—b1
:m<r (all_bll)(f(z+0)—a1)—(al—b1)(f'(z+c)—a’1)>
7 f(z+c¢)—b
:m(r (a’l—b’l)(f(z+c)—b1)—(a1—bl)(f'(z+c)—b'1)>
7 f(z4+¢)—b
Y (a1 —b1)(f'(z+¢) = b))
<m(r,a1—b1)+m<r’ Fe4 0 —hi 1 )—i—S(r,f)
=5(r, f)
3.
m( L(f(z+¢) >
7f(z+c)_dj
:m< (aibi)(f(2+0)a1)(albl)(f'(2+0)a1)>
’ f(z4+¢) —d
Y (a1 —b1)(f'(z +¢) — (a} — ;(a} — b))
Sm(r,al—b1)+m<r, o —d )

(a1 = b1)(f'(z +¢) -
f(Z + C) — dj

gm(r,all—bll)+m<7‘, dl)) +S(r, f)
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4. We have
LU+ )+ ) Z f+0)
(flz4c)=di)(f(z+¢) —da)--- (f(z+¢) - fz+c ’
where ¢; = m,(z =1,2,...,q) are small functions of f. Therefore we
obtain
m( L(f(z+o)f <z+c> )
C(fzte) —di)(f(z+c) —d2) - (f(z+¢) — dm)
_ - Ci fz+c)
_m<§ ok )
Ui L(f(z+¢))
ng(r’f(wc >+S(T’f)
= 5(r, f)- O

LEMMA 2.10. Let f(z) be a transcendental entire function and ag,bs be
two distinct small functions of f. Suppose that for j = 1,2,...,q, d; = a2 —
li(ag — ba), where l;’s are positive integers. Then

L(Ff®) (2
L. m(r f(gc)( )( ))> S(T, f)a

(k) (4
f(k])c (2) )_S(T’f)’

2. m

4. m

LM ()M (2) —
" TR @) =) ([ (2)—da) - (f(’“(Z)*dm)) =50 1),

(k) (5
3. m(r, 152 = s ),
where L(f*)(2)) is defined as in Lemma and 2 <m <q.

Proof. Using the same arguments as in the proof of Lemma[2.9] the above
relations can be proved easily. [

3. PROOF OF THEOREM

Proof. Assume that
(a2 — bQ)f(Z + C) — (a1 — bl)f(k)(z) + a1bs — asby Z 0.

Let L(f(z + ¢)) and L(f%*)(2)) be defined as in Lemma Therefore by
Lemma we have L(f(z+¢)) # 0 and L(f*)(2)) £ 0.
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Set
(1) I fz4+c¢)—ay

TG —ay
Since f is a transcendental entire function and f(z+c) and f*)(z) share (a1, as)
CM, by , we have

) N0 =80, N () =S5
As f(z+c) and f*)(2) share (a1,a2) CM and (b1, bs) IM and f is a transcen-

dental entire function, by Lemmas and we obtain
T(r,f(z+c¢))

< N(r, W) + N(r, f(z+1c)—bl> + N(r, f(z+¢)) + S(r, f)

:N(r, f(k)(;j)_@> +N<r, f(k)(zl)—bz> +S(r, f)
( 1

(CLQ — bg)f(z + C) — (a1 — bl)f(’f)(z) + a1b2 — a2b1> + S(T’ f)

< T(r, (a2 — b2) f(z +¢) — (a1 — b)) f*)(2) + arby — agbi) + S(r, f)
m(r, (az — b2) f(z 4+ ¢) — (a1 — b1) f®)(2) + arby — asby) + S(r, f)

(a2 = ba) f(z 4 ¢) — (a1 — b)) f¥)(2)

' 7%) ) +st.0)

< T(r, f(2))+S(r, f)
=T(r, f(z+¢) +S(r f).

Thus, we have

— 1 — 1
® 70 16+0)= (1 g )+ ¥ (5 ) + 5000
and
T(r, f(z+¢)) = T(r,(ag — b2) f(z + ¢) — (a1 — b1) f*)(2) + arby — aghy)
+ S(r, f)

1
=N|r,
< (CLQ — bz)f(z + C) — (a1 — bl)f(k)(z) + a1b2 — a251>
(4) +S(r, f).
Now using Lemmas and , we get

T(r, U = m<7“, é) + S0 f)
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-n(r ) £

() ()

+ m<r, f(z—i—c)—al> +S(r, f)
)+ 500,

1
(5) §m<r, —f(z+c)—a1

From and , we have

m<1" 1 >:m<r GQ—bQ—(al—bl)U 1 )
"flz+c)—ay "(ag —b2) f(z +¢) — (a1 — b1) f®)(2) + arby — azby

1
Sm(“ (a2 — b2) (2 + ) — (a1 — b1) f®)(2) + arbs — b>

+m<r,a2—b2— al_bl) +S(r, f)
(6) <T(r,U)+S(r, f).
Combining and @, we have
1
(7) T(T,U):m(r,f(z+c)_al>—}—S(T,f).

Now can be rewritten as
(CL2 — bg)f(z + C) — (a1 — bl)f(k)(z) + a1by — asby

=ag — by — (a1 — b1)U71.

flz+c)—a
Since f(z + ¢) and f*)(2) share (by,bs) IM, from above we get
N [ Ry ——— < N r,
®) (rseroa) =¥ n )

<T(r,U)+ S(r, f).

From , and , we have

1
(v sera=a) ¥ )
1
C
1

1

‘N<T’f<z+c>—a1>+N< Fero - bl) 5 )
1

§N(r, W) +m< FGTO _a1> +5(r, f)-
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By the above relation and , we obtain

o Vo Fra) N e e

and

(10) N<7“7 f(z+10)bl> =T(r,U)+ S(r, f).

Set

o LG e )G+ 0) — (01— b)) + sty — oo
GG +0) —a)([G T 0)—br)

and

(12) 7= LM () (a2 = b2) (= + ) = (a1 — by)fP(2) + asbp — agby)

(f®)(2) — a2)(f*) (2) — ba)
From our assumption and Lemma we see that ¢ #Z 0 and obviously,

N(r,¢) = S(r, f). Using Lemmas and we obtain
T(r,¢) =m(r,¢)+5(r f)
— m(r L(f(Z—l—C))((a2—b2)f(z—|—c)—(a1—bl)f(k)(z)+a1b2_a2bl))
’ (f(z + ¢)—a1)(f(z+c)—b1)

+5(r, f)
o LU He)) flete)
: < 7 (f(2+0)—a1)(f(z+c)—b1)>

f(z+c)
+m<r L(f (2 + ¢))(a1bs — azb)
"(f(z+¢)—a)(f(z+¢) —br)

ol JED) v
(

<o) e 1)
= S(r, f).

Let d1 = a1 — k:(al —bl) and d2 = ag — ]{3((12 —bz), k 75 0, 1. By Lemma
and , we get

2T (r, f(2 +¢)) < N(r, f(ch)_al) +N(’“’ f(z+1c)—b1>
+N<T, M) +5(r, f)

)+ s05)
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<T(r,f(z+c¢)) —|—N<r, f(z—l—lc)—dl> +S(r, f)
<2T(r, f(z+¢)) — m(r, f(erlc)dl> +S(r, f),

which gives

1
(13) m<r, f(Z+C)—d1> = S(r, f).
Equation can be rewritten as
(14)
_[a2—da L(f®(2)) by—dy L(f(k)(z))} [(02—52)(f(2+0)—d1)_ I
T aa—by f®(2)—as  az—bs ¥ (2)—b F®) (2)—dy e
Set
. L(f(z +0) I 11,016)
(fz+e)—a)(f(z+c)=b1)  (fP(2) —a2)(fF)(2) — b2)

Now we consider the following two cases.

Case 1. Let £ = 0. Integrating both sides of , we get
fete—a [P - a
f(Z+C) —bl N f(k)(z) —b27

where A is a nonzero constant.

(16)

Subcase 1.1. If A =1, then from , we get
(a2 — b2) f(z +¢) — (a1 — b)) fP)(2) + arbg — aghy = 0,

which contradicts our initial assumption.

Subcase 1.2. If A # 1, then from , we have
as — by B (A — 1)f(z + C) — (Abl — al)

(17) fR(2) —ay flz+c¢)—a

and
T(r,f(z+¢) =T(r, f(k)(z)) + S(r, f).

Now it is easy to see that Af}:f‘l # ay, A%:{“ # by. Since f(z+ c¢) and f(k)(z)
share (a1, a2) CM, by (17), we get

1 1
N<T’ flz+0)— Af&:{“) - N<T’ ag — b2> =50 )
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Then by Nevanlinna’s second fundamental theorem, we have

2T (r, f(z+¢)) < N(r, m> +N<r’ f(z+1c)—b1)

N('r’, f(z+c) — Ai;l_l(h) + S(T’,f)

a contradiction to (3)).

Case 2. Consider £ # 0. Clearly, m(r,§) = S(r, f). Since f(z + ¢) and
f®)(2) share (a1,az) CM and (b, by) IM, all poles of & must come from the
zeros of f(z 4 ¢) — by. So we have

T(r,&) = m(r,&) + N(r,§)
(18) < N(r, W) + S0, ).

Using , , , and noting that T'(r,{) = S(r, f), we have
m(r, f(z =+ C)) = m(r, (ag — bg)f(z + C) — (a1 — bl)f(k)(z) + CL1b2 — agbl)

+S(r, f)
— m<r E((az = ba) f(z + ) = (a1 = b)) fP(2) + asby — a2b1)>
7 §
+S(r, f)
=mlr ¢ r
=m(r5g?) + s
§
ST(r,C_n> + S(r, f)
ST(T,C*U)JFT(T@)?LS(T’JC)
(19) <T(r,n)+N|r, 1 + S(r, f).

f(Z + C) — by
Again, it is easy to obtain that N(r,n) = S(r, f). By Lemma (@, (9) and
(10), we have

+5(r, f)

LW (=)
§m<r, 70 (2) = b2>

L(f® (2))((ag = ba) f(z + ¢) = (a1 = b1) fP)(2) + arby — a2b1))
(f®)(2) = a2)(f®)(2) — ba)
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e (az —b2) f(z+¢) — (a1 — b1) fPF)(2) + arby — azby ,
" <’ f ()—az >+S(’f)
(a2 = bo)f(z+¢) = (a1 = b)) W (2) + arby —ash1 f(z+¢) — @
§m<r’ flz+e)—a f(’“)(Z)—Cm)
+S(r, f)
§m(7‘, (ag —b2)U — (a1 — bl)) + S(r, f)

IA
3

(e —ar) S0
(20)

1
=N|r,—— .
(’r) f(Z + C) _ b1> + S(T, f)
Combining ([19) and (20)), we get

— 1
21 T < 2N _— .
(21) (1) <28 (n 5oy ) +500)
Now, if ag ) = as, then using Lemmas and 1) we get
T(r,U) = m(r, é) + S(r, f)

k) _ (k)
:m(r,ffk 4 )-l—S(T,f)

(z+c¢)—a;
% —a f(z) —a
§m<r’ f(z) —a > +m<r’ f(Z+C)—a1> 5 1)
—S(?” f)

Therefore from and (21)), we have T'(r f (z+¢)) = S(r, f), a contradiction.
If ag ) = = by, then from Lemma . ) and 1' we obtain

T(r,f(z+c)) §m<r, f(z—i—lc)—a1> +N<7", f(z—i—lc)—b1>+s(r’ f)

+5(r, f)
<n{r sy —m) Y 0 F =) 50 )
(22) <T(r, f®(2)) + S(r, f).

Again, it follows from Lemmas [2.4] and 2.7] that
T(r, () <T(r, f(2) + S(r. )
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(23) :T(r,f(z+c))+5(r,f).
Combining and , we get
(24) T(r, f(z+¢)) = T(r, fP(2)) + S(r, f).

Therefore by Nevanlinna’s second fundamental theorem, and , we have
27 (r, f(z + ¢)) = 2T (r, f ¥ (2)) + S(r, f)

_ — 1
=M e - az) i N(T’ f®(z) = bz)

) stes

(
+ d

V(o rerga) N 7mraw)
.

T@vwé—@>‘m@vwé—@>+““”

<T(r, f(z+¢)) +T(r, fF(2)) - m<7", f(k)(zl)_d2> +S(r, f)

<2T(r, f(z+¢)) — m(r, M) +S(r, f).

This implies
1
(25) m (T, f(k)(z)_dz> = S(T, f)
Now, by Nevanlinna’s first fundamental theorem, Lemmas ,

and (25), we obtain
m<r’ W) :T<T’ m> _N<T’W> +0(1)
4 o
< m( f(;(())dl> +m(r,M)
—N<ﬁi?(h>+mn

(rero=a) N mEg) S

1
(r f(z+¢) = T(r, fP(2) + 5, f)
(r, f).

IA
=

I IA
M
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Thus, using the above inequality and Lemma [2.10] we get
T(r,n) =m(r,n) + N(r,n)
<7“, as — do L(f(k)(z)) > n m<7“, by — dy L(f(k)(z)) )
ag — b2 f(k)(z) — ag ag — b2 f(k)(z) — b2
(a2 = b2)(f(z+¢) —dv)
+m (Ta f(k) (Z) _ d2

<m

—a1 + b1> + S(’I”, f)
(26) =S(r, f).
Now it follows from , @, and that

(27) N(r, M) _ N(r, M) + S f) = S(r, ).

Again by , and , we obtain
1

m(r,——— | =m|r,———

( f®)(2) — agk)) ( f®(2) — b

< T 1Y) =N (55 @) +S(r )
= T(r, f(z 4 0)) - N(r, f(ch)_bl) + S0 f)
(28) = S(r, f).
Using Lemma [2.6| and (28), we have
w( fu()lw) =¥ (v 70 5)
N eron)
:m<r’ f(z+t) —a1> + 5 )
<n(rma) (i ) 5
< m(r, ) agk)> + S(r, f)
(29) =S(r, f).

Hence by (3), and (29)), we get T'(r, f(z 4+ ¢)) = S(r, f), a contradiction.

Consequently, we have agk) % a9 and agk) % by. Therefore, from Nevan-

linna’s second fundamental theorem, Lemma , , , and the
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fact that f(z + c) and f¥)(z) share (a;,a2) CM and (by,by) IM, we obtain

T(r, f(z+¢)) < 2m(r, ) +S(r, f)

< 2m<7“, f(z)l_al> + 2m<r, Jm> +5(r, f)

1
<2 o) 7500

< 27(r, f(k)(z)) —2N <r,

flz+c¢)—a

f(k)(Z) . agk)) + S(Ta f)

__ 1 — 1
= N<T7 F®)(z) — a2> +N<T7 f#)(z) — bz>

1
ST S+ 0) N1 g ) 50
This gives
1
(30) N<7“, w) =S(r, f).

Now can be rewritten as

(31) fe+e)—ar=U(fP(z) —a?) + U@ - ay).

Let h = f®)(z) — agk). Differentiating k times, we get

32) fB(z+c)—al? =B+ LUEDY 4. 4 kUAED £ UR® 4 BR),
where B = U(agk) — ag). Clearly h # 0. Rewriting , we have

(33) hU(gU~' — D) = B®),

where

k
_ Wt —al
£ (2) - af

and

Uk guk-Dp kU'RE=D) pk)
- ot +

4 D= ‘
(34) U hU hU h
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Again from , we get N(r, %) = S(r, f). Now it follows from 1’ and
that

k (1) (1) (4) (4)
<2 () ¥ () o () ()
+5(r, f)
(35) =S(r,U)+ S(r, f).
Using Lemmas and , we get
T(r,U) S T(r, f(z+0) + T(r, /() + 5, f)
(36) <2T(r, f) + S(r, f).
So from and (36), we have T(r, D) = S(r, f).

Now we consider the following two subcases.

Subcase 2.1. Let gU™! — D # 0. We claim that D = 0. Otherwise, from ,
we see that N(r, U*%Dg*l) = S(r, f). Now applying Nevanlinna’s first and
second fundamental theorem, and , we obtain

T(r,U) =T(r,U ") +0(1)
< N(r,U™ 1)+ N<7“, Ull) +N(r, U1—1D91> +5(r,U)
< S(r, f)-

Hence from and (21), we get T(r, f(z 4+ ¢)) = S(r, f), a contradiction.
Thus D = 0. Therefore from , we get

FO (4 ¢) - agk) = B,
Integrating, we obtain
fz+0) =Ula}"” —a2) + P(2) + an,
where P(z) is a polynomial of degree at most k£ — 1. Therefore
(37) T(r,f(z+¢) =T(r,U)+ S(r, f).

Since f(z+¢) and f*)(z) share (a1, as) CM, it follows from , and
that
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Now applying Nevanlinna’s second fundamental theorem to f*)(z) and using

and , we obtain

_ 1 1
T(r7 f(k)(z)) < N(r, f(’f)(z)—ag) + N(r, w) + S(r, f)
S(r, f).

As f(z+¢)) and f®)(2) share (a1, az) CM and (by,bs) IM, from (3) and ,
we get

(39)

1

(" ero—a) T Feram) TS0
1

1 _
<r, 7}0(@@) - a2> + N(r, 7}0(@(2) - b2> +S(r, f)
T(r, fP(2)) + S(r, f)
T7 f)7

T(r,f(z+¢)) =N

I
=

I IA
)

a contradiction.

Subcase 2.2. Let gU™! — D = 0. Then from the equations and , we
have T'(r,U) < T(r,D) + T(r,g) = S(r, f). So from and (21), we get
T(r, f(z+¢)) = S(r, f), which gives a contradiction.

This completes the proof of Theorem O
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