THE CO-LOCALIZATION AND COSUPPORT OF ARTINIAN MODULES

XU CHENG and XIAOYAN YANG

Communicated by Sorin Dăscălescu

Let R be a commutative noetherian ring. For an artinian R-module M and $\mathfrak{p} \in \operatorname{Spec} R$, the set $\operatorname{Ass}_R \operatorname{Hom}_R(R_{\mathfrak{p}}, M)$ of associated primes is studied and the following equality is obtained:

$$\mathrm{Ass}_R\mathrm{Hom}_R(R_{\mathfrak{p}},M) = \{\mathfrak{q} \in \mathrm{Cosupp}_R M | \mathfrak{q} \subseteq \mathfrak{p}\}$$

whenever $\operatorname{cosupp}_R M = \operatorname{Cosupp}_R M$. Some characterizations of cosupport of artinian R-modules are provided. As consequences, the dual versions of some classical equalities about support are given.

AMS 2020 Subject Classification: 13C05, 13B30.

Key words: cosupport, support, artinian module.

1. INTRODUCTION

Unless stated to the contrary, we assume throughout this paper that R is a commutative noetherian ring with non-zero identity.

The theory of cosupport, developed by Benson, Iyengar and Krause [2] in the context of compactly generated R-linear triangulated categories, was partially motivated by work of Neeman [11], who classified the colocalizing subcategories of the derived category D(R). Despite the many ways in which cosupport is dual to the more established notion of support introduced by Benson, Iyengar and Krause [1], Foxby [5], Sather-Wagstaff and Wicklein [14], the theory of cosupport is not completely satisfactory since this construction is not as well understood as support. For example, the cosupport of the ring of integers is empty.

We write $\operatorname{Spec} R$ for the set of prime ideals of R and $\operatorname{Max} R$ for the set of maximal ideals of R. For $\mathfrak{p} \in \operatorname{Spec} R$, set $\kappa(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p} R_{\mathfrak{p}}$. For an ideal \mathfrak{a} in R, set

$$V(\mathfrak{a}) = \{ \mathfrak{p} \in Spec R | \mathfrak{a} \subseteq \mathfrak{p} \}.$$

MATH. REPORTS 27(77) (2025), 3-4, 153-162

doi: 10.59277/mrar.2025.27.77.3.4.153

The authors' work on this material was supported by The National Natural Science Foundation of China (Grant no. 12571035).

Let M be an R-module. Following [14], the "big" support of M is the set

$$\mathrm{Supp}_R M := \{ \mathfrak{p} \in \mathrm{Spec} R | M_{\mathfrak{p}} \neq 0 \}.$$

The "big" cosupport of M is the set

$$\operatorname{Cosupp}_R M := \{ \mathfrak{p} \in \operatorname{Spec} R | \operatorname{Ext}_R^i(R_{\mathfrak{p}}, M) \neq 0 \text{ for some } i \}.$$

The "small" support of M is the set

$$\operatorname{supp}_R M := \{ \mathfrak{p} \in \operatorname{Spec} R | \operatorname{Tor}_i^R(\kappa(\mathfrak{p}), M) \neq 0 \text{ for some } i \}.$$

The "small" cosupport of M is the set

$$\operatorname{cosupp}_R M = \{ \mathfrak{p} \in \operatorname{Spec} R | \operatorname{Ext}_R^i(\kappa(\mathfrak{p}), M) \neq 0 \text{ for some } i \}.$$

Let S be a multiplicatively closed set of R. It is well known that if N is a finitely generated R-module, then the localization $S^{-1}N$ is a finitely generated $S^{-1}R$ -module. Thus

$$\operatorname{supp}_R N = \operatorname{Supp}_R N = \operatorname{V}(\operatorname{Ann}_R N)$$

by Nakaymam's lemma. However, the co-localization $\operatorname{Hom}_R(S^{-1}R,A)$ of an artinian R-module A is almost never an artinian $S^{-1}R$ -module, and it may even have infinite Goldie dimension (see [4, Example 3.8]).

Remark 1.1. (1) If R is complete, then for an artinian R-module A, $\operatorname{cosupp}_R A = \operatorname{Cosupp}_R A = \operatorname{V}(\operatorname{Ann}_R A)$ by using Matlis duality and [14, Proposition 6.1].

- (2) If (R, \mathfrak{m}) is local and $A = E(R/\mathfrak{m})$, then the equalities in (1) hold true.
- (3) For an artinian R-module A, the inclusion $\operatorname{cosupp}_R A \subseteq \operatorname{Cosupp}_R A$ may be strict (see Remark 2.4).
- (4) For an artinian R-module A, Melkersson and Schenzel [10, Lemma 7.3] showed the equality $\operatorname{Cosupp}_R A = \operatorname{V}(\operatorname{Ann}_R A)$, which does not hold for non-artinian modules (see Remark 2.4).

For $\mathfrak{p} \in \operatorname{Spec} R$ and an artinian R-module M, we determine the associated prime of the co-localization $\operatorname{Hom}_R(R_{\mathfrak{p}}, M)$ in Section 2, and show that if $\operatorname{cosupp}_R M = \operatorname{Cosupp}_R M$, then

$$\mathrm{Ass}_R\mathrm{Hom}_R(R_{\mathfrak{p}},M)=\{\mathfrak{q}\in\mathrm{Cosupp}_RM\,|\,\mathfrak{q}\subseteq\mathfrak{p}\}.$$

In Section 3, some characterizations of cosupport of artinian modules are provided, which are dual to those of classical support.

Next, we recall some notions which we need later.

Let $\mathfrak{m} \in \operatorname{Max} R$ and M be an R-module. We denote $\operatorname{Hom}_R(-, E(R/\mathfrak{m}))$ by $D_{\mathfrak{m}}(-)$ and $\operatorname{RHom}_R(\oplus_{\mathfrak{m}} D_{\mathfrak{m}}(M), E(R/\mathfrak{p}))$ by $\mathfrak{p} M$. Let M be an R-module. The set $\operatorname{Ass}_R M$ of associated primes of M is the set of prime ideals \mathfrak{p} of R such that there exists a cyclic submodule N of M such that $\mathfrak{p} = \operatorname{Ann}_R N$. An R-module L is cocyclic if L is a submodule of $E(R/\mathfrak{m})$ for some $\mathfrak{m} \in \operatorname{Max} R$. An R-module M is said to be secondary if $M \neq 0$ and for any $x \in R$, the multiplication by x on M is either surjective or nilpotent. The radical of the annihilator of M is then a prime ideal \mathfrak{p} and we say that M is \mathfrak{p} -secondary. A secondary representation of M is an expression of M as a finite sum $M = M_1 + \cdots + M_n$ of \mathfrak{p}_i -secondary submodules. This representation is said to be minimal if the prime ideals \mathfrak{p}_i are all distinct and none of the summands M_i are redundant. The set $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ is independent of the choice of minimal representation of M. This set is denoted by $\operatorname{Att}_R M$ and called the set of attached prime ideals of M.

The concept of linear compactness was first introduced by Lefschetz [6] for vector spaces of arbitrary dimension and extended for modules by Zelinsky [16] and Leptin [7]. M is said to be linearly topologized if M has a base of neighborhoods of the zero element \mathcal{M} consisting of submodules. M is called Hausdorff if the intersection of all the neighborhoods of the zero element is 0. A Hausdorff linearly topologized R-module M is said to be linearly compact if \mathcal{F} is a family of closed cosets (i.e., cosets of closed submodules) in M which has the finite intersection property, then the cosets in \mathcal{F} have a non-empty intersection (see [8]). A Hausdorff linearly topologized R-module M is called semi-discrete if every submodule of M is closed. The class of semi-discrete linearly compact modules contains all artinian modules and all finitely generated modules over a complete ring.

2. ASSOCIATED PRIME OF THE CO-LOCALIZATION OF ARTINIAN MODULES

This section determines the associated prime of $\operatorname{Hom}_R(R_{\mathfrak{p}}, M)$ for an artinian module M. We begin with the following lemma.

Lemma 2.1. Let \mathfrak{p} be a non-maximal prime ideal of R and M an artinian R-module. One has an inclusion

$$\mathrm{Ass}_R\mathrm{Hom}_R(R_{\mathfrak{p}},M)\subseteq\{\mathfrak{q}\in\mathrm{Cosupp}_RM|\mathfrak{q}\subseteq\mathfrak{p}\}.$$

Proof. Since M is an artinian R-module, it follows from [15, Theorem 2.13] that M has a composition series

$$0 = M_n \subset M_{n-1} \subset \cdots \subset M_1 \subset M_0 = M,$$

where M_{i-1}/M_i is cocyclic and $\mathfrak{p}_i = (0:_R M_{i-1}/M_i) \in \operatorname{Spec} R$ for $i = 1, \ldots, n$. We use induction on n. If n = 1 then $M = M_0/M_1$ is \mathfrak{p}_1 -secondary and so $\operatorname{Hom}_R(R_{\mathfrak{p}}, M)$ is either 0 or \mathfrak{p}_1 -secondary by [4, Lemma 3.1]. Let

$$\operatorname{Hom}_R(R_{\mathfrak{p}}, M) = 0$$

and the assertion holds. Assume that $\operatorname{Hom}_R(R_{\mathfrak{p}}, M)$ is \mathfrak{p}_1 -secondary and let $\mathfrak{q} \in \operatorname{Ass}_R \operatorname{Hom}_R(R_{\mathfrak{p}}, M)$. Then $\mathfrak{p}_1 = \operatorname{Rad}(0:_R \operatorname{Hom}_R(R_{\mathfrak{p}}, M)) \subseteq \mathfrak{q}$ and $\operatorname{Hom}_R(R_{\mathfrak{p}}/\mathfrak{q}R_{\mathfrak{p}}, M) \cong \operatorname{Hom}_R(R/\mathfrak{q}, \operatorname{Hom}_R(R_{\mathfrak{p}}, M)) \neq 0$. Consequently, we notice $\mathfrak{p}_1 \subseteq \mathfrak{q} \subseteq \mathfrak{p}$ and hence, $\mathfrak{q} \in \operatorname{Cosupp}_R M$ by [15, Proposition 2.3]. Now assume that n > 1. One has a short exact sequence

$$0 \to M_1 \to M \to M/M_1 \to 0$$
,

where M/M_1 is \mathfrak{p}_1 -secondary and M_1 has the following composition series: $0 = M_n \subset M_{n-1} \subset \cdots \subset M_1$. Also, by [4, Corollary 2.5], we have the next exact sequence

$$0 \to \operatorname{Hom}_R(R_{\mathfrak{p}}, M_1) \to \operatorname{Hom}_R(R_{\mathfrak{p}}, M) \to \operatorname{Hom}_R(R_{\mathfrak{p}}, M/M_1) \to 0.$$

Let $\mathfrak{q} \in \mathrm{Ass}_R \mathrm{Hom}_R(R_{\mathfrak{p}}, M)$. Then, we have $\mathfrak{q} \in \mathrm{Ass}_R \mathrm{Hom}_R(R_{\mathfrak{p}}, M_1)$ or $\mathfrak{q} \in \mathrm{Ass}_R \mathrm{Hom}_R(R_{\mathfrak{p}}, M/M_1)$. If $\mathfrak{q} \in \mathrm{Ass}_R \mathrm{Hom}_R(R_{\mathfrak{p}}, M/M_1)$ then $\mathfrak{q} \subseteq \mathfrak{p}$ and $\mathfrak{q} \in \mathrm{Cosupp}_R M/M_1 \subseteq \mathrm{Cosupp}_R M$ by the above proof and [15, Theorem 2.7]. If $\mathfrak{q} \in \mathrm{Ass}_R \mathrm{Hom}_R(R_{\mathfrak{p}}, M_1)$ then $\mathfrak{q} \subseteq \mathfrak{p}$ and $\mathfrak{q} \in \mathrm{Cosupp}_R M_1 \subseteq \mathrm{Cosupp}_R M$ by the induction and [15, Theorem 2.7], as required. \square

The next lemma is a more general version of [10, Lemma 4.1] as

$$\operatorname{cosupp}_R E(R/\mathfrak{m}) = \operatorname{Cosupp}_R E(R/\mathfrak{m}) = \operatorname{Spec} R.$$

THEOREM 2.2. Let \mathfrak{p} be a non-maximal prime ideal of R and M an artinian R-module. If $\mathfrak{p} \in \operatorname{cosupp}_R M$, then there exists an equality

$$\mathrm{Ass}_R\mathrm{Hom}_R(R_{\mathfrak{p}},M)=\{\mathfrak{q}\in\mathrm{Cosupp}_RM|\mathfrak{q}\subseteq\mathfrak{p}\}.$$

Proof. The left-hand side is included in the right-hand side by Lemma 2.1. On the other hand, let $\mathfrak{q} \in \operatorname{Cosupp}_R M$ and $\mathfrak{q} \subseteq \mathfrak{p}$. Since M is artinian, there is an injective resolution $M \to E^{\bullet}$ with $E^{\bullet} = 0 \to E(R/\mathfrak{m}_{01}) \oplus \cdots \oplus E(R/\mathfrak{m}_{0n_0}) \to E(R/\mathfrak{m}_{11}) \oplus \cdots \oplus E(R/\mathfrak{m}_{1n_1}) \to \cdots$ with each $\mathfrak{m}_{i_j} \in \operatorname{Max} R$. Then $\operatorname{Hom}_R(R_{\mathfrak{p}}, M) \to \operatorname{Hom}_R(R_{\mathfrak{p}}, E^{\bullet})$ is also an injective resolution as R-modules. Hence

$$\operatorname{Ext}_{R}^{*}(R/\mathfrak{p}, \operatorname{Hom}_{R}(R_{\mathfrak{p}}, M)) = \operatorname{H}^{*}(\operatorname{Hom}_{R}(R/\mathfrak{p}, \operatorname{Hom}_{R}(R_{\mathfrak{p}}, E^{\bullet})))$$

$$\cong \operatorname{H}^{*}(\operatorname{Hom}_{R}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, E^{\bullet}))$$

$$= \operatorname{Ext}_{R}^{*}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, M) \neq 0,$$

it implies that $\operatorname{Ext}_R^*(R/\mathfrak{q},\operatorname{Hom}_R(R_\mathfrak{p},M))\neq 0$. Thus, we have the next isomorphisms

$$\operatorname{Ext}_{R/\mathfrak{q}}^* \big((R/\mathfrak{q})_{\mathfrak{p}}, \operatorname{Hom}_R(R/\mathfrak{q}, M) \big) \cong \operatorname{Ext}_R^* \big(R_{\mathfrak{p}}/\mathfrak{q} R_{\mathfrak{p}}, M \big)$$

$$= \operatorname{H}^* \big(\operatorname{Hom}_R (R_{\mathfrak{p}}/\mathfrak{q} R_{\mathfrak{p}}, E^{\bullet}) \big)$$

$$\cong \operatorname{H}^* \big(\operatorname{Hom}_R (R/\mathfrak{q}, \operatorname{Hom}_R (R_{\mathfrak{p}}, E^{\bullet})) \big)$$

$$= \operatorname{Ext}_R^* \big(R/\mathfrak{q}, \operatorname{Hom}_R (R_{\mathfrak{p}}, M) \big) \neq 0.$$

As $\operatorname{Hom}_R(R/\mathfrak{q}, M)$ is a non-zero artinian R/\mathfrak{q} -module by [15, Theorem 4.3], it follows from [4, Theorem 2.4] that $\operatorname{Hom}_{R/\mathfrak{q}}((R/\mathfrak{q})_{\mathfrak{p}}, \operatorname{Hom}_R(R/\mathfrak{q}, M)) \neq 0$. Now, by analogy with the proof of [10, Lemma 4.1], one can obtain the desired inclusion. \square

COROLLARY 2.3. Let \mathfrak{p} be a non-maximal prime ideal of R and M an artinian R-module. If $\operatorname{cosupp}_R M = \operatorname{Cosupp}_R M$, then there exists an equality

$$\mathrm{Ass}_R\mathrm{Hom}_R(R_{\mathfrak{p}},M) = \{\mathfrak{q} \in \mathrm{Cosupp}_R M | \mathfrak{q} \subseteq \mathfrak{p}\}.$$

Proof. If
$$\operatorname{Hom}_R(R_{\mathfrak{p}}, M) = 0$$
, then $\operatorname{Ann}_R M \nsubseteq \mathfrak{p}$. So $\{\mathfrak{q} \in \operatorname{Cosupp}_R M | \mathfrak{q} \subset \mathfrak{p}\} = \emptyset$

and the equality holds. If $\operatorname{Hom}_R(R_{\mathfrak{p}}, M) \neq 0$, then $\mathfrak{p} \in \operatorname{cosupp}_R M$ by assumption. The assertion follows by Theorem 2.2. \square

- Remark 2.4. (1) For an artinian R-module M, the next inclusion $\operatorname{cosupp}_R M \subseteq \operatorname{Cosupp}_R M$ may be strict. In fact, let R be a domain with $\operatorname{Max} R = \{\mathfrak{m},\mathfrak{n}\}$. Set $M = E(R/\mathfrak{m})$. As R is domain, $\operatorname{Ann}_R M = 0$, so $\operatorname{Cosupp}_R M = \operatorname{V}(\operatorname{Ann}_R M) = \operatorname{Spec} R$. Since $\operatorname{supp}_R M = \operatorname{Supp}_R M = \{\mathfrak{m}\}$, it follows by [2, Theorem 4.13] that $\mathfrak{n} \notin \operatorname{cosupp}_R M$.
- (2) If (R, \mathfrak{m}) is a local ring, then $\operatorname{cosupp}_R E(R/\mathfrak{m}) = \operatorname{Cosupp}_R E(R/\mathfrak{m}) = \operatorname{Spec} R$. However, the equality may not hold true when R is not local by the above example.
- (3) For any R-module M, the inclusion $\operatorname{Cosupp}_R M \subseteq \operatorname{V}(\operatorname{Ann}_R M)$ may be strict. For example, let (R,\mathfrak{m}) be a local domain with $\dim R > 0$. Next, we set $M = \operatorname{Hom}_R(\bigoplus_{n>0} R/\mathfrak{m}^n, E(R/\mathfrak{m}))$. Then

$$V(Ann_R M) = V(Ann_R(\bigoplus_{n>0} R/\mathfrak{m}^n)) = Spec R$$

by [3, p. 139] as $\operatorname{Ass}_R(\bigoplus_{n>0}R/\mathfrak{m}^n)=\{\mathfrak{m}\}$. But $\operatorname{Cosupp}_RM\neq\operatorname{Spec}R$ by Proposition 3.1.

COROLLARY 2.5. Let N be a finitely generated R-module and M an artinian R-module. One has an equality

$$\operatorname{cosupp}_R \operatorname{Hom}_R(N, M) = \operatorname{supp}_R N \cap \operatorname{cosupp}_R M.$$

Proof. By [15, Theorem 3.4],

$$\operatorname{cosupp}_R \operatorname{Hom}_R(N, M) \subseteq \operatorname{supp}_R N \cap \operatorname{cosupp}_R M.$$

Conversely, let $\mathfrak{p} \in \operatorname{supp}_R N \cap \operatorname{cosupp}_R M$. If \mathfrak{p} is maximal, then

$$\operatorname{Hom}_R(R/\mathfrak{p}, \operatorname{Hom}_R(N, M)) \neq 0,$$

and so $\mathfrak{p} \in \operatorname{cosupp}_R \operatorname{Hom}_R(N, M)$. We assume that $\mathfrak{p} \neq \mathfrak{m}$. It follows from Theorem 2.2 that $\mathfrak{p} \in \operatorname{Ass}_R \operatorname{Hom}_R(R_{\mathfrak{p}}, M)$, so $\mathfrak{p} \in \operatorname{Ass}_R \operatorname{Hom}_R(N, \operatorname{Hom}_R(R_{\mathfrak{p}}, M))$. Consequently,

$$\operatorname{Hom}_R(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, \operatorname{Hom}_R(N, M)) \cong \operatorname{Hom}_R(R/\mathfrak{p}, \operatorname{Hom}_R(N, \operatorname{Hom}_R(R_{\mathfrak{p}}, M)) \neq 0$$

and $\mathfrak{p} \in \operatorname{cosupp}_R \operatorname{Hom}_R(N, M)$, as desired. \square

The following corollary is a dual version of [13, Exercise 9.23] or [3, Chap. II, p. 106, Corollary].

Corollary 2.6. Let $\mathfrak a$ be a proper ideal of R and M an artinian R-module. If M is a cogenerator, then

$$\operatorname{Rad}(0:_R \operatorname{Hom}_R(R/\mathfrak{a}, M)) = \operatorname{Rad}(\mathfrak{a} + (0:_R M)).$$

Proof. As M is a cogenerator, $\operatorname{cosupp}_R M = \operatorname{Cosupp}_R M = \operatorname{V}(\operatorname{Ann}_R M)$. By [15, Theorem 3.4], one has $\operatorname{Cosupp}_R \operatorname{Hom}_R(R/\mathfrak{a}, M) \subseteq \operatorname{V}(\mathfrak{a}) \cap \operatorname{V}(\operatorname{Ann}_R M)$. On the other hand, it follows by Corollary 2.5 that

$$\mathrm{cosupp}_R\mathrm{Hom}_R(R/\mathfrak{a},M)=\mathrm{V}(\mathfrak{a})\cap\mathrm{cosupp}_RM=\mathrm{V}(\mathfrak{a})\cap\mathrm{V}(\mathrm{Ann}_RM).$$
 Therefore,

$$V(Ann_R Hom_R(R/\mathfrak{a}, M)) = Cosupp_R Hom_R(R/\mathfrak{a}, M)$$

= $cosupp_R Hom_R(R/\mathfrak{a}, M) = V(\mathfrak{a} + Ann_R M),$

as claimed. \square

3. COSUPPORT OF ARTINIAN MODULES

In this section, we give some characterizations of cosupport of artinian R-modules, which are similar to those of classical support.

It is well known that $\mathfrak{p} \in \operatorname{Supp}_R M$ if and only if there is a cyclic submodule N of M with $\operatorname{Ann}_R N \subseteq \mathfrak{p}$. The next lemma is a dual version of [14, Fact 3.3] and the above fact for "big" cosupport, which is proved by Nam when R is a local ring (see [11, Theorem 3.8]).

Proposition 3.1. Let M be a linearly compact R-module. One has

Cosupp_R
$$M = \{ \mathfrak{p} \in \operatorname{Spec} R | \operatorname{Hom}_R(R_{\mathfrak{p}}, M) \neq 0 \}$$

= $\{ \mathfrak{p} \in \operatorname{Spec} R | \mathfrak{p} M \neq 0 \}$
= $\{ \mathfrak{p} \in \operatorname{Spec} R | \exists \ a \ cocyclic \ quotient \ L \ of \ M \ such \ that \ \operatorname{Ann}_R L \subseteq \mathfrak{p} \}.$

Proof. The first equality follows by [4, Theorem 2.4(ii)]. Hence [15, Corollary 2.16] implies that $\operatorname{Cosupp}_R M \subseteq \{\mathfrak{p} \in \operatorname{Spec} R | \mathfrak{p} M \neq 0\}$. On the other hand, let $\mathfrak{p} M \neq 0$ for $\mathfrak{p} \in \operatorname{Spec} R$. Then there is an exact sequence

$$0 \to N \to M \to A \to 0$$
,

where A is artinian with $\operatorname{Ann}_R A \subseteq \mathfrak{p}$, and so $\mathfrak{p} \in \operatorname{Cosupp}_R A$ by [15, Corollary 2.5]. Since A is a linearly compact R-module with the discrete topology, N is an open submodule of M, and hence N is closed in M. It means that N is a linearly compact submodule of M. Hence [4, Corollary 2.5] implies that the sequence

$$0 \to \operatorname{Hom}_R(R_{\mathfrak{p}}, N) \to \operatorname{Hom}_R(R_{\mathfrak{p}}, M) \to \operatorname{Hom}_R(R_{\mathfrak{p}}, A) \to 0$$

is exact. As $\operatorname{Hom}_R(R_{\mathfrak{p}}, A) \neq 0$, we have $\operatorname{Hom}_R(R_{\mathfrak{p}}, M) \neq 0$ and $\mathfrak{p} \in \operatorname{Cosupp}_R M$, the second equality holds. The third equality is proved by using the remark after [15, Theorem 3.8]. \square

If M=0 or M has a secondary representation, then we say that M is representable. It was shown by Macdonald [9] and Sharp [12] that artinian modules and injective modules are representable.

Corollary 3.2. (1) Let N be a finitely generated R-module and M a representable R-module. One has an inequality

$$\operatorname{Cosupp}_R(N \otimes_R M) = \operatorname{Supp}_R N \cap \operatorname{Cosupp}_R M.$$

(2) Let M be a linearly compact R-module. One has

$$\operatorname{Cosupp}_R \operatorname{Hom}_R(R_{\mathfrak{p}}, M) = \{ \mathfrak{q} \in \operatorname{Cosupp}_R M | \mathfrak{q} \subseteq \mathfrak{p} \}.$$

Proof. (1) Let $\mathfrak{p} \in \text{Cosupp}_R(N \otimes_R M)$. It follows from [10, Lemma 5.1] that $\text{Hom}_R(R_{\mathfrak{p}}, M) \otimes_R N_{\mathfrak{p}} \cong \text{Hom}_R(R_{\mathfrak{p}}, N \otimes_R M) \neq 0$. Hence

$$\operatorname{Cosupp}_R(N \otimes_R M) \subseteq \operatorname{Supp}_R N \cap \operatorname{Cosupp}_R M.$$

On the other hand, let $\mathfrak{p} \in \operatorname{Supp}_R N \cap \operatorname{Cosupp}_R M$. Then there is

$$\mathfrak{q} \in \operatorname{Att}_R(N \otimes_R M) = \operatorname{Supp}_R N \cap \operatorname{Att}_R M$$

such that $\mathfrak{q} \subseteq \mathfrak{p}$. Thus, $\operatorname{Hom}_R(R_{\mathfrak{q}}, \operatorname{Hom}_R(R_{\mathfrak{p}}, N \otimes_R M)) \cong \operatorname{Hom}_R(R_{\mathfrak{q}}, N \otimes_R M) \neq 0$ by [15, Theorems 1.21 and 1.14], and so $\operatorname{Hom}_R(R_{\mathfrak{p}}, N \otimes_R M) \neq 0$, as desired.

(2) This is an immediate consequence of Proposition 3.1. \Box

The following result is a dual version of [14, Fact 3.3] for "small" cosupport.

Theorem 3.3. Let M be a semi-discrete linearly compact R-module. One has

$$\operatorname{cosupp}_{R} M = \{ \mathfrak{p} \in \operatorname{Spec} R | {}^{\mathfrak{p}} \operatorname{Ext}_{R}^{i}(R/\mathfrak{p}, M) \neq 0 \text{ for some } i \}$$
$$= \{ \mathfrak{p} \in \operatorname{Spec} R | \operatorname{Ext}_{R}^{i}(R/\mathfrak{p}, {}^{\mathfrak{p}}M) \neq 0 \text{ for some } i \}.$$

Proof. First assume that M is artinian. There is an injective resolution $M \to E^{\bullet}$ with

$$E^{\bullet} = 0 \to E(R/\mathfrak{m}_{01}) \oplus \cdots \oplus E(R/\mathfrak{m}_{0n_0}) \to E(R/\mathfrak{m}_{11}) \oplus \cdots \oplus E(R/\mathfrak{m}_{1n_1}) \to \cdots,$$

where each $\mathfrak{m}_{ij} \in \text{Max}R$. Hence [8] and [4, Corollary 2.5] yield the next isomorphisms

$$\operatorname{Ext}_{R}^{i}(\kappa(\mathfrak{p}), M) = \operatorname{H}^{i}(\operatorname{Hom}_{R}(\kappa(\mathfrak{p}), E^{\bullet}))$$

$$\cong \operatorname{H}^{i}(\operatorname{Hom}_{R}(R_{\mathfrak{p}}, \operatorname{Hom}_{R}(R/\mathfrak{p}, E^{\bullet})))$$

$$\cong \operatorname{Hom}_{R}(R_{\mathfrak{p}}, \operatorname{H}^{i}(\operatorname{Hom}_{R}(R/\mathfrak{p}, E^{\bullet})))$$

$$= \operatorname{Hom}_{R}(R_{\mathfrak{p}}, \operatorname{Ext}_{R}^{i}(R/\mathfrak{p}, M)).$$

Consequently, we have the following equivalences:

$$\mathfrak{p} \in \operatorname{cosupp}_R M \iff \mathfrak{p} \in \operatorname{Cosupp}_R \operatorname{Ext}^i_R(R/\mathfrak{p}, M) \text{ for some } i$$

$$\iff {}^{\mathfrak{p}} \operatorname{Ext}^i_R(R/\mathfrak{p}, M) \neq 0 \text{ for some } i,$$

where the first one is determined by the above isomorphism, and the second one by Proposition 3.1. As

$${}^{\mathfrak{p}}\mathrm{Ext}^{i}_{R}(R/\mathfrak{p},M)\cong\mathrm{Hom}_{R}\big(\mathrm{Tor}^{R}_{i}(R/\mathfrak{p},\bigoplus_{\mathfrak{m}}D_{\mathfrak{m}}(M)),E(R/\mathfrak{p})\big)\cong\mathrm{Ext}^{i}_{R}(R/\mathfrak{p},{}^{\mathfrak{p}}M),$$

it implies that ${}^{\mathfrak{p}}\operatorname{Ext}^{i}_{R}(R/\mathfrak{p},M)\neq 0$ for some i if and only if $\operatorname{Ext}^{i}_{R}(R/\mathfrak{p},{}^{\mathfrak{p}}M)\neq 0$ for some i.

Next, assume that M is a semi-discrete linearly compact R-module. Then [17, Theorem] yields a short exact sequence $0 \to N \to M \to A \to 0$, where A is artinian and N is finitely generated. Let $N \to E_N^{\bullet}$ and $A \to E_A^{\bullet}$ be minimal injective resolutions of N and A, respectively. Then $M \to E_N^{\bullet} \oplus E_A^{\bullet}$ is an injective resolution of M. For any $\mathfrak{p} \in \operatorname{Spec} R$, we have

$$\operatorname{Ext}_{R}^{i}(\kappa(\mathfrak{p}), M) = \operatorname{H}^{i}(\operatorname{Hom}_{R}(\kappa(\mathfrak{p}), E_{N}^{\bullet} \oplus E_{A}^{\bullet}))$$
$$\cong \operatorname{H}^{i}(\operatorname{Hom}_{R}(R_{\mathfrak{p}}, \operatorname{Hom}_{R}(R/\mathfrak{p}, E_{N}^{\bullet})))$$

$$\oplus \operatorname{Hom}_R(R_{\mathfrak{p}}, \operatorname{H}^i(\operatorname{Hom}_R(R/\mathfrak{p}, E_A^{\bullet}))).$$

If $\mathfrak{p} \in \text{cosupp}_R N$ then \mathfrak{p} is a maximal ideal, and so

$$\mathrm{H}^i\big(\mathrm{Hom}_R(R_{\mathfrak{p}},\mathrm{Hom}_R(R/\mathfrak{p},E_N^{\bullet}))\big) \cong \mathrm{Hom}_R\big(R_{\mathfrak{p}},\mathrm{H}^i(\mathrm{Hom}_R(R/\mathfrak{p},E_N^{\bullet}))\big).$$

Therefore, we have the isomorphism $\operatorname{Ext}_R^i(\kappa(\mathfrak{p}), M) \cong \operatorname{Hom}_R(R_{\mathfrak{p}}, \operatorname{Ext}_R^i(R/\mathfrak{p}, M))$. If $\mathfrak{p} \not\in \operatorname{cosupp}_R N$, then $\operatorname{H}^i(\operatorname{Hom}_R(R_{\mathfrak{p}}, \operatorname{Hom}_R(R/\mathfrak{p}, E_N^{\bullet}))) = 0$ and hence

$$\operatorname{Ext}_R^i(\kappa(\mathfrak{p}), M) \cong \operatorname{Hom}_R(R_{\mathfrak{p}}, \operatorname{Ext}_R^i(R/\mathfrak{p}, M)).$$

Consequently, we get that $\mathfrak{p} \in \text{cosupp}_R M$ if and only if

$$\mathfrak{p} \in \mathrm{Cosupp}_R \mathrm{Ext}^i_R(R/\mathfrak{p}, M)$$

for some i if and only if ${}^{\mathfrak{p}}\mathrm{Ext}^i_R(R/\mathfrak{p},M)\neq 0$ for some i by Proposition 3.1, as claimed. \square

Remark 3.4. The equality in Theorem 3.3 is not true, in general, whenever M is not semi-discrete linearly compact. Let (R, \mathfrak{m}) be a local domain with $\dim R > 0$ and $M = \prod_{i>0} R/\mathfrak{m}^i$. By [14, Propositions 4.9 and 4.10], one has $\operatorname{cosupp}_R M = \{\mathfrak{m}\}$. But ${}^0\mathrm{Ext}^i_R(R/0, M) \neq 0$.

Acknowledgments. The authors would like to express their sincere thanks to the referee for his/her valuable comments and suggestions.

REFERENCES

- [1] D.J. Benson, S.B. Iyengar, and H. Krause, Local cohomology and support for triangulated categories. Ann. Sci. École Norm. Sup. 41 (2008), 4, 573–619.
- [2] D.J. Benson, S.B. Iyengar, and H. Krause, Colocalising subcategories and cosupport. J. Reine Angew. Math. 673 (2012), 161–207.
- [3] N. Bourbaki, Algèbre commutative. Chapitres 3, 4, Herman, Paris, 1967.
- [4] N.T. Cuong and L.T. Nhan, On representable linearly compact modules. Proc. Amer. Math. Soc. 130 (2002), 7, 1927–1936.
- [5] H.-B. Foxby, Bounded complexes of flat modules. J. Pure Appl. Algebra 15 (1979), 2, 149–172.
- [6] S. Lefschetz, Algebraic Topology, Vol. 27. American Mathematical Society Colloquium Publications, American Mathematical Society, New York, 1942.
- [7] H. Leptin, Linear kompakte Moduln und Ringe. Math. Z. 62 (1955), 241–267.
- [8] I.G. Macdonald, Duality over complete local rings. Topology 1 (1962), 213–235.
- [9] I.G. Macdonald, Secondary representation of modules over a commutative ring. In: Symposia Mathematica, Vol. 11, pp. 23–43. Academic Press, London, New Yor, 1973.
- [10] L. Melkersson and P. Schenzel, The co-localization of an Artinian module. Proc. Edinburgh Math. Soc. (2) 38 (1995), 1, 121–131.

- [11] A. Neeman, Colocalizing subcategories of D(R). J. Reine Angew. Math. 653 (2011), 221–243.
- [12] R.Y. Sharp, Secondary representations for injective modules over commutative Noetherian rings. Proc. Edinburgh Math. Soc. (2) 20 (1976), 2, 143–151.
- [13] R.Y. Sharp, Steps in Commutative Algebra. London Math. Soc. Stud. Texts 19, Cambridge Univ. Press, Cambridge, 1990.
- [14] S. Sather-Wagstaff and R. Wicklein, Support and adic finiteness for complexes. Comm. Algebra 45 (2017), 6, 2569–2592.
- [15] S. Yassemi, Coassociated primes. Comm. Algebra 23 (1995), 4, 1473–1498.
- [16] D. Zelinsky, Linearly compact modules and rings. Amer. J. Math. 75 (1953), 79–90.
- [17] H. Zöschinger, Linear-kompakte Moduln über noetherschen Ringen. Arch. Math. (Basel) 41 (1983), 2, 121–130.

Received 7 September 2024

Xu Cheng
Xiaoyan Yang
School of Science,
Zhejiang University of Science and Technology,
Hangzhou 310023, P. R. China
cx22620250163.com
yangxy@zust.edu.cn