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Let R be a commutative noetherian ring. For an artinian R-module M and
p ∈ SpecR, the set AssRHomR(Rp,M) of associated primes is studied and the
following equality is obtained:

AssRHomR(Rp,M) = {q ∈ CosuppRM |q ⊆ p}

whenever cosuppRM = CosuppRM . Some characterizations of cosupport of
artinian R-modules are provided. As consequences, the dual versions of some
classical equalities about support are given.
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1. INTRODUCTION

Unless stated to the contrary, we assume throughout this paper that R
is a commutative noetherian ring with non-zero identity.

The theory of cosupport, developed by Benson, Iyengar and Krause [2]
in the context of compactly generated R-linear triangulated categories, was
partially motivated by work of Neeman [11], who classified the colocalizing
subcategories of the derived category D(R). Despite the many ways in which
cosupport is dual to the more established notion of support introduced by
Benson, Iyengar and Krause [1], Foxby [5], Sather-Wagstaff and Wicklein [14],
the theory of cosupport is not completely satisfactory since this construction
is not as well understood as support. For example, the cosupport of the ring
of integers is empty.

We write SpecR for the set of prime ideals of R and MaxR for the set of
maximal ideals of R. For p ∈ SpecR, set κ(p) = Rp/pRp. For an ideal a in R,
set

V(a) = {p ∈ SpecR |a ⊆ p}.
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Let M be an R-module. Following [14], the “big” support of M is the set

SuppRM := {p ∈ SpecR|Mp ̸= 0}.

The “big” cosupport of M is the set

CosuppRM := {p ∈ SpecR|ExtiR(Rp,M) ̸= 0 for some i}.

The “small” support of M is the set

suppRM := {p ∈ SpecR|TorRi (κ(p),M) ̸= 0 for some i}.

The “small” cosupport of M is the set

cosuppRM =
{
p ∈ SpecR|ExtiR(κ(p),M) ̸= 0 for some i

}
.

Let S be a multiplicatively closed set of R. It is well known that if N is a
finitely generated R-module, then the localization S−1N is a finitely generated
S−1R-module. Thus

suppRN = SuppRN = V(AnnRN)

by Nakaymam’s lemma. However, the co-localization HomR(S
−1R,A) of an

artinian R-module A is almost never an artinian S−1R-module, and it may
even have infinite Goldie dimension (see [4, Example 3.8]).

Remark 1.1. (1) If R is complete, then for an artinian R-module
A, cosuppRA = CosuppRA = V(AnnRA) by using Matlis duality and [14,
Proposition 6.1].

(2) If (R,m) is local and A = E(R/m), then the equalities in (1) hold
true.

(3) For an artinian R-module A, the inclusion cosuppRA ⊆ CosuppRA
may be strict (see Remark 2.4).

(4) For an artinianR-moduleA, Melkersson and Schenzel [10, Lemma 7.3]
showed the equality CosuppRA = V(AnnRA), which does not hold for non-
artinian modules (see Remark 2.4).

For p ∈ SpecR and an artinian R-module M , we determine the associ-
ated prime of the co-localization HomR(Rp,M) in Section 2, and show that if
cosuppRM = CosuppRM , then

AssRHomR(Rp,M) = {q ∈ CosuppRM |q ⊆ p}.

In Section 3, some characterizations of cosupport of artinian modules are
provided, which are dual to those of classical support.

Next, we recall some notions which we need later.
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Let m ∈ MaxR andM be an R-module. We denote HomR(−, E(R/m)) by
Dm(−) and RHomR(⊕mDm(M), E(R/p)) by pM . Let M be an R-module. The
set AssRM of associated primes of M is the set of prime ideals p of R such that
there exists a cyclic submodule N ofM such that p = AnnRN . An R-module L
is cocyclic if L is a submodule of E(R/m) for some m ∈ MaxR. An R-module
M is said to be secondary if M ̸= 0 and for any x ∈ R, the multiplication
by x on M is either surjective or nilpotent. The radical of the annihilator of
M is then a prime ideal p and we say that M is p-secondary. A secondary
representation of M is an expression of M as a finite sum M = M1 + · · ·+Mn

of pi-secondary submodules. This representation is said to be minimal if the
prime ideals pi are all distinct and none of the summands Mi are redundant.
The set {p1, . . . , pn} is independent of the choice of minimal representation of
M . This set is denoted by AttRM and called the set of attached prime ideals
of M .

The concept of linear compactness was first introduced by Lefschetz [6]
for vector spaces of arbitrary dimension and extended for modules by Zelin-
sky [16] and Leptin [7]. M is said to be linearly topologized if M has a base of
neighborhoods of the zero element M consisting of submodules. M is called
Hausdorff if the intersection of all the neighborhoods of the zero element is 0.
A Hausdorff linearly topologized R-module M is said to be linearly compact if
F is a family of closed cosets (i.e., cosets of closed submodules) in M which
has the finite intersection property, then the cosets in F have a non-empty
intersection (see [8]). A Hausdorff linearly topologized R-module M is called
semi-discrete if every submodule of M is closed. The class of semi-discrete lin-
early compact modules contains all artinian modules and all finitely generated
modules over a complete ring.

2. ASSOCIATED PRIME OF THE CO-LOCALIZATION OF
ARTINIAN MODULES

This section determines the associated prime of HomR(Rp,M) for an
artinian module M . We begin with the following lemma.

Lemma 2.1. Let p be a non-maximal prime ideal of R and M an artinian
R-module. One has an inclusion

AssRHomR(Rp,M) ⊆ {q ∈ CosuppRM |q ⊆ p}.

Proof. SinceM is an artinian R-module, it follows from [15,Theorem 2.13]
that M has a composition series

0 = Mn ⊂ Mn−1 ⊂ · · · ⊂ M1 ⊂ M0 = M,
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where Mi−1/Mi is cocyclic and pi = (0 :R Mi−1/Mi) ∈ SpecR for i = 1, . . . , n.
We use induction on n. If n = 1 then M = M0/M1 is p1-secondary and so
HomR(Rp,M) is either 0 or p1-secondary by [4, Lemma 3.1]. Let

HomR(Rp,M) = 0

and the assertion holds. Assume that HomR(Rp,M) is p1-secondary and
let q ∈ AssRHomR(Rp,M). Then p1 = Rad(0 :R HomR(Rp,M)) ⊆ q and
HomR(Rp/qRp,M) ∼= HomR(R/q,HomR(Rp,M)) ̸= 0. Consequently, we no-
tice p1 ⊆ q ⊆ p and hence, q ∈ CosuppRM by [15, Proposition 2.3]. Now
assume that n > 1. One has a short exact sequence

0 → M1 → M → M/M1 → 0,

where M/M1 is p1-secondary and M1 has the following composition series:
0 = Mn ⊂ Mn−1 ⊂ · · · ⊂ M1. Also, by [4, Corollary 2.5], we have the next
exact sequence

0 → HomR(Rp,M1) → HomR(Rp,M) → HomR(Rp,M/M1) → 0.

Let q ∈ AssRHomR(Rp,M). Then, we have q ∈ AssRHomR(Rp,M1) or
q ∈ AssRHomR(Rp,M/M1). If q ∈ AssRHomR(Rp,M/M1) then q ⊆ p and
q ∈ CosuppRM/M1 ⊆ CosuppRM by the above proof and [15, Theorem 2.7].
If q ∈ AssRHomR(Rp,M1) then q ⊆ p and q ∈ CosuppRM1 ⊆ CosuppRM by
the induction and [15, Theorem 2.7], as required.

The next lemma is a more general version of [10, Lemma 4.1] as

cosuppRE(R/m) = CosuppRE(R/m) = SpecR.

Theorem 2.2. Let p be a non-maximal prime ideal of R and M an ar-
tinian R-module. If p ∈ cosuppRM , then there exists an equality

AssRHomR(Rp,M) = {q ∈ CosuppRM |q ⊆ p}.

Proof. The left-hand side is included in the right-hand side by Lemma 2.1.
On the other hand, let q ∈ CosuppRM and q ⊆ p. Since M is artinian,
there is an injective resolution M → E• with E• = 0 → E(R/m01) ⊕ · · · ⊕
E(R/m0n0) → E(R/m11) ⊕ · · · ⊕ E(R/m1n1) → · · · with each mij ∈ MaxR.
Then HomR(Rp,M) → HomR(Rp, E

•) is also an injective resolution as R-
modules. Hence

Ext∗R
(
R/p,HomR(Rp,M)

)
= H∗(HomR(R/p,HomR(Rp, E

•))
)

∼= H∗(HomR(Rp/pRp, E
•)
)

= Ext∗R(Rp/pRp,M) ̸= 0,
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it implies that Ext∗R(R/q,HomR(Rp,M)) ̸= 0. Thus, we have the next isomor-
phisms

Ext∗R/q

(
(R/q)p,HomR(R/q,M)

) ∼= Ext∗R(Rp/qRp,M)

= H∗(HomR(Rp/qRp, E
•)
)

∼= H∗(HomR(R/q,HomR(Rp, E
•))

)
= Ext∗R

(
R/q,HomR(Rp,M)

)
̸= 0.

As HomR(R/q,M) is a non-zero artinian R/q-module by [15, Theorem 4.3],
it follows from [4, Theorem 2.4] that HomR/q((R/q)p,HomR(R/q,M)) ̸= 0.
Now, by analogy with the proof of [10, Lemma 4.1], one can obtain the desired
inclusion.

Corollary 2.3. Let p be a non-maximal prime ideal of R and M an
artinian R-module. If cosuppRM = CosuppRM , then there exists an equality

AssRHomR(Rp,M) = {q ∈ CosuppRM |q ⊆ p}.

Proof. If HomR(Rp,M) = 0, then AnnRM ⊈ p. So

{q ∈ CosuppRM |q ⊆ p} = ∅

and the equality holds. If HomR(Rp,M) ̸= 0, then p ∈ cosuppRM by assump-
tion. The assertion follows by Theorem 2.2.

Remark 2.4. (1) For an artinian R-module M , the next inclusion
cosuppRM ⊆ CosuppRM may be strict. In fact, let R be a domain with
MaxR = {m, n}. Set M = E(R/m). As R is domain, AnnRM = 0, so
CosuppRM = V(AnnRM) = SpecR. Since suppRM = SuppRM = {m}, it
follows by [2, Theorem 4.13] that n ̸∈ cosuppRM .

(2) If (R,m) is a local ring, then cosuppRE(R/m) = CosuppRE(R/m) =
SpecR. However, the equality may not hold true when R is not local by the
above example.

(3) For any R-module M , the inclusion CosuppRM ⊆ V(AnnRM) may be
strict. For example, let (R,m) be a local domain with dimR > 0. Next, we set
M = HomR(⊕n>0R/mn, E(R/m)). Then

V(AnnRM) = V
(
AnnR(⊕n>0R/mn)

)
= SpecR

by [3, p. 139] as AssR(⊕n>0R/mn) = {m}. But CosuppRM ̸= SpecR by
Proposition 3.1.
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Corollary 2.5. Let N be a finitely generated R-module and M an ar-
tinian R-module. One has an equality

cosuppRHomR(N,M) = suppRN ∩ cosuppRM.

Proof. By [15, Theorem 3.4],

cosuppRHomR(N,M) ⊆ suppRN ∩ cosuppRM.

Conversely, let p ∈ suppRN ∩ cosuppRM . If p is maximal, then

HomR

(
R/p,HomR(N,M)

)
̸= 0,

and so p ∈ cosuppRHomR(N,M). We assume that p ̸= m. It follows from The-
orem 2.2 that p ∈ AssRHomR(Rp,M), so p ∈ AssRHomR(N,HomR(Rp,M)).
Consequently,

HomR

(
Rp/pRp,HomR(N,M)

) ∼= HomR

(
R/p,HomR(N,HomR(Rp,M)

)
̸= 0

and p ∈ cosuppRHomR(N,M), as desired.

The following corollary is a dual version of [13, Exercise 9.23] or [3,
Chap. II, p. 106, Corollary].

Corollary 2.6. Let a be a proper ideal of R and M an artinian R-
module. If M is a cogenerator, then

Rad
(
0 :R HomR(R/a,M)

)
= Rad

(
a+ (0 :R M)

)
.

Proof. As M is a cogenerator, cosuppRM = CosuppRM = V(AnnRM).
By [15, Theorem 3.4], one has CosuppRHomR(R/a,M) ⊆ V(a) ∩V(AnnRM).
On the other hand, it follows by Corollary 2.5 that

cosuppRHomR(R/a,M) = V(a) ∩ cosuppRM = V(a) ∩V(AnnRM).

Therefore,

V
(
AnnRHomR(R/a,M)

)
= CosuppRHomR(R/a,M)

= cosuppRHomR(R/a,M) = V(a+AnnRM),

as claimed.

3. COSUPPORT OF ARTINIAN MODULES

In this section, we give some characterizations of cosupport of artinian
R-modules, which are similar to those of classical support.

It is well known that p ∈ SuppRM if and only if there is a cyclic sub-
module N of M with AnnRN ⊆ p. The next lemma is a dual version of [14,
Fact 3.3] and the above fact for “big” cosupport, which is proved by Nam when
R is a local ring (see [11, Theorem 3.8]).
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Proposition 3.1. Let M be a linearly compact R-module. One has

CosuppRM = {p ∈ SpecR|HomR(Rp,M) ̸= 0}
= {p ∈ SpecR|pM ̸= 0}
= {p ∈ SpecR|∃ a cocyclic quotient L of M such that AnnRL⊆p}.

Proof. The first equality follows by [4, Theorem 2.4(ii)]. Hence [15, Corol-
lary 2.16] implies that CosuppRM ⊆ {p ∈ SpecR |pM ̸= 0}. On the other hand,
let pM ̸= 0 for p ∈ SpecR. Then there is an exact sequence

0 → N → M → A → 0,

where A is artinian with AnnRA ⊆ p, and so p ∈ CosuppRA by [15, Corol-
lary 2.5]. Since A is a linearly compact R-module with the discrete topology,
N is an open submodule of M , and hence N is closed in M . It means that N
is a linearly compact submodule of M . Hence [4, Corollary 2.5] implies that
the sequence

0 → HomR(Rp, N) → HomR(Rp,M) → HomR(Rp, A) → 0

is exact. As HomR(Rp, A) ̸= 0, we have HomR(Rp,M) ̸= 0 and p ∈ CosuppRM ,
the second equality holds. The third equality is proved by using the remark
after [15, Theorem 3.8].

If M = 0 or M has a secondary representation, then we say that M is
representable. It was shown by Macdonald [9] and Sharp [12] that artinian
modules and injective modules are representable.

Corollary 3.2. (1) Let N be a finitely generated R-module and
M a representable R-module. One has an inequality

CosuppR(N ⊗R M) = SuppRN ∩ CosuppRM.

(2) Let M be a linearly compact R-module. One has

CosuppRHomR(Rp,M) = {q ∈ CosuppRM |q ⊆ p}.

Proof. (1) Let p∈CosuppR(N⊗RM). It follows from [10, Lemma 5.1]
that HomR(Rp,M)⊗R Np

∼= HomR(Rp, N ⊗R M) ̸= 0. Hence

CosuppR(N ⊗R M) ⊆ SuppRN ∩ CosuppRM.

On the other hand, let p ∈ SuppRN ∩ CosuppRM . Then there is

q ∈ AttR(N ⊗R M) = SuppRN ∩AttRM

such that q ⊆ p. Thus, HomR(Rq,HomR(Rp, N ⊗R M)) ∼= HomR(Rq, N ⊗R

M) ̸= 0 by [15, Theorems 1.21 and 1.14], and so HomR(Rp, N ⊗R M) ̸= 0, as
desired.
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(2) This is an immediate consequence of Proposition 3.1.

The following result is a dual version of [14, Fact 3.3] for “small” cosup-
port.

Theorem 3.3. Let M be a semi-discrete linearly compact R-module. One
has

cosuppRM = {p ∈ SpecR|pExtiR(R/p,M) ̸= 0 for some i}
= {p ∈ SpecR|ExtiR(R/p, pM) ̸= 0 for some i}.

Proof. First assume that M is artinian. There is an injective resolution
M → E• with

E• = 0 → E(R/m01)⊕· · ·⊕E(R/m0n0) → E(R/m11)⊕· · ·⊕E(R/m1n1) → · · · ,

where each mij ∈ MaxR. Hence [8] and [4, Corollary 2.5] yield the next
isomorphisms

ExtiR
(
κ(p),M

)
= Hi

(
HomR(κ(p), E

•)
)

∼= Hi
(
HomR(Rp,HomR(R/p, E•))

)
∼= HomR

(
Rp,H

i(HomR(R/p, E•))
)

= HomR

(
Rp,Ext

i
R(R/p,M)

)
.

Consequently, we have the following equivalences:

p ∈ cosuppRM ⇐⇒ p ∈ CosuppRExt
i
R(R/p,M) for some i

⇐⇒ pExtiR(R/p,M) ̸= 0 for some i,

where the first one is determined by the above isomorphism, and the second
one by Proposition 3.1. As

pExtiR(R/p,M) ∼= HomR

(
TorRi (R/p,

⊕
m

Dm(M)), E(R/p)
) ∼= ExtiR(R/p, pM),

it implies that pExtiR(R/p,M) ̸= 0 for some i if and only if ExtiR(R/p, pM) ̸= 0
for some i.

Next, assume that M is a semi-discrete linearly compact R-module. Then
[17, Theorem] yields a short exact sequence 0 → N → M → A → 0, where A
is artinian and N is finitely generated. Let N → E•

N and A → E•
A be minimal

injective resolutions of N and A, respectively. Then M → E•
N ⊕ E•

A is an
injective resolution of M . For any p ∈ SpecR, we have

ExtiR
(
κ(p),M

)
= Hi

(
HomR(κ(p), E

•
N ⊕ E•

A)
)

∼= Hi
(
HomR(Rp,HomR(R/p, E•

N ))
)
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⊕HomR

(
Rp,H

i(HomR(R/p, E•
A))

)
.

If p ∈ cosuppRN then p is a maximal ideal, and so

Hi
(
HomR(Rp,HomR(R/p, E•

N ))
) ∼= HomR

(
Rp,H

i(HomR(R/p, E•
N ))

)
.

Therefore, we have the isomorphism ExtiR(κ(p),M)∼=HomR(Rp,Ext
i
R(R/p,M)).

If p ̸∈ cosuppRN , then Hi(HomR(Rp,HomR(R/p, E•
N ))) = 0 and hence

ExtiR
(
κ(p),M

) ∼= HomR

(
Rp,Ext

i
R(R/p,M)

)
.

Consequently, we get that p ∈ cosuppRM if and only if

p ∈ CosuppRExt
i
R(R/p,M)

for some i if and only if pExtiR(R/p,M) ̸= 0 for some i by Proposition 3.1, as
claimed.

Remark 3.4. The equality in Theorem 3.3 is not true, in general, when-
ever M is not semi-discrete linearly compact. Let (R,m) be a local domain
with dimR > 0 and M =

∏
i>0R/mi. By [14, Propositions 4.9 and 4.10], one

has cosuppRM = {m}. But 0ExtiR(R/0,M) ̸= 0.
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