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Let R be a commutative noetherian ring. For an artinian R-module M and
p € SpecR, the set AssgHompg (R, M) of associated primes is studied and the
following equality is obtained:

AsspHompg(Rp, M) = {q € CosupppM|q C p}

whenever cosupppM = CosupppM. Some characterizations of cosupport of
artinian R-modules are provided. As consequences, the dual versions of some
classical equalities about support are given.
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1. INTRODUCTION

Unless stated to the contrary, we assume throughout this paper that R
is a commutative noetherian ring with non-zero identity.

The theory of cosupport, developed by Benson, Iyengar and Krause [2]
in the context of compactly generated R-linear triangulated categories, was
partially motivated by work of Neeman [LI], who classified the colocalizing
subcategories of the derived category D(R). Despite the many ways in which
cosupport is dual to the more established notion of support introduced by
Benson, Iyengar and Krause [1], Foxby [5], Sather-Wagstaff and Wicklein [14],
the theory of cosupport is not completely satisfactory since this construction
is not as well understood as support. For example, the cosupport of the ring
of integers is empty.

We write SpecR for the set of prime ideals of R and MaxR for the set of
maximal ideals of R. For p € SpecR, set x(p) = Ry/pRy. For an ideal a in R,
set

V(a) = {p € SpecR|a C p}.
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Let M be an R-module. Following [14], the “big” support of M is the set
SupprM = {p € SpecR|M, # 0}.

The “big” cosupport of M is the set

Cosuppp M := {p € SpecR|Ext’y(R,, M) # 0 for some 7}.
The “small” support of M is the set

supppM := {p € SpecR|Tor?(k(p), M) # 0 for some 7}.
The “small” cosupport of M is the set

cosupprM = {p € SpecR|Exth (k(p), M) # 0 for some i}

Let S be a multiplicatively closed set of R. It is well known that if N is a
finitely generated R-module, then the localization S~'N is a finitely generated
S~1!R-module. Thus

supprN = Suppr N = V(AnngN)

by Nakaymam’s lemma. However, the co-localization Hompg(S™!R, A) of an
artinian R-module A is almost never an artinian S~!'R-module, and it may
even have infinite Goldie dimension (see [4, Example 3.8]).

Remark 1.1. (1) If R is complete, then for an artinian R-module
A, cosuppprA = CosupprA = V(AnngrA) by using Matlis duality and [14]
Proposition 6.1].

(2) If (R,m) is local and A = E(R/m), then the equalities in (1) hold
true.

(3) For an artinian R-module A, the inclusion cosupppA C CosupprA
may be strict (see Remark [2.4).

(4) For an artinian R-module A, Melkersson and Schenzel [10, Lemma 7.3]
showed the equality CosuppprA = V(AnngrA), which does not hold for non-
artinian modules (see Remark .

For p € SpecR and an artinian R-module M, we determine the associ-
ated prime of the co-localization Hompg(Ry, M) in Section [2, and show that if
cosuppr M = Cosuppr M, then

AsspHompg(Ry, M) = {q € CosupppM |q C p}.

In Section (3| some characterizations of cosupport of artinian modules are
provided, which are dual to those of classical support.
Next, we recall some notions which we need later.
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Let m € MaxR and M be an R-module. We denote Hompg(—, E(R/m)) by
Dy (—) and RHomp(®mDm(M), E(R/p)) by PM. Let M be an R-module. The
set AsspM of associated primes of M is the set of prime ideals p of R such that
there exists a cyclic submodule N of M such that p = AnngN. An R-module L
is cocyclic if L is a submodule of E(R/m) for some m € MaxR. An R-module
M is said to be secondary if M # 0 and for any x € R, the multiplication
by x on M is either surjective or nilpotent. The radical of the annihilator of
M is then a prime ideal p and we say that M is p-secondary. A secondary
representation of M is an expression of M as a finite sum M = My +---+ M,
of p;-secondary submodules. This representation is said to be minimal if the
prime ideals p; are all distinct and none of the summands M; are redundant.
The set {p1,...,pn} is independent of the choice of minimal representation of
M. This set is denoted by AttgM and called the set of attached prime ideals
of M.

The concept of linear compactness was first introduced by Lefschetz [6]
for vector spaces of arbitrary dimension and extended for modules by Zelin-
sky [16] and Leptin [7]. M is said to be linearly topologized if M has a base of
neighborhoods of the zero element M consisting of submodules. M is called
Hausdorff if the intersection of all the neighborhoods of the zero element is 0.
A Hausdorff linearly topologized R-module M is said to be linearly compact if
F is a family of closed cosets (i.e., cosets of closed submodules) in M which
has the finite intersection property, then the cosets in F have a non-empty
intersection (see [§]). A Hausdorff linearly topologized R-module M is called
semi-discrete if every submodule of M is closed. The class of semi-discrete lin-
early compact modules contains all artinian modules and all finitely generated
modules over a complete ring.

2. ASSOCIATED PRIME OF THE CO-LOCALIZATION OF
ARTINTAN MODULES

This section determines the associated prime of Hompg(Ry, M) for an
artinian module M. We begin with the following lemma.

LEMMA 2.1. Let p be a non-mazximal prime ideal of R and M an artinian
R-module. One has an inclusion

AssgHompg(Ry, M) C {q € CosupppM|q C p}.

Proof. Since M is an artinian R-module, it follows from [I5, Theorem 2.13]
that M has a composition series

0O=M,CcM, C---CM CMy=M,
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where M;_1/M; is cocyclic and p; = (0 :g M;—1/M;) € SpecR for i = 1,...,n.
We use induction on n. If n = 1 then M = My/M; is pi-secondary and so
Homp(Ry, M) is either 0 or pj-secondary by [4, Lemma 3.1]. Let

Homp(Ry, M) =0
and the assertion holds. Assume that Hompg(R,, M) is pi-secondary and
let ¢ € AssgHompg(Rp, M). Then p; = Rad(0 :p Hompg(R,, M)) C q and
Hompg(Ry/qRy, M) = Hompg(R/q, Hompg(R,, M)) # 0. Consequently, we no-

tice p1 € q C p and hence, q € CosupppM by [15, Proposition 2.3]. Now
assume that n > 1. One has a short exact sequence

0— M — M — M/M; — 0,

where M/M; is pi-secondary and M; has the following composition series:
0=M, C Mp_1 C--- C M. Also, by [, Corollary 2.5], we have the next
exact sequence

0 — Homp(Ry, M) — Hompg(Ry, M) — Hompg(Ry, M/M;) — 0.

Let q € AssgHompg(Rp, M). Then, we have q € AssgHomp(R,, M) or
q € AssgHompg(R,, M/M,). If ¢ € AssgHomp(Rp, M/M;) then q C p and
q € CosupprM/M; C CosupprM by the above proof and [I5, Theorem 2.7].
If q € AssgHompg(Ry, M) then q C p and q € Cosuppp M € CosupppM by
the induction and [I5, Theorem 2.7], as required. [

The next lemma is a more general version of [10, Lemma 4.1] as
cosupppE(R/m) = Cosuppr E(R/m) = SpecR.

THEOREM 2.2. Let p be a non-mazximal prime ideal of R and M an ar-
tinian R-module. If p € cosuppr M, then there exists an equality

AsspHomp(Ry, M) = {q € CosupprM|q C p}.

Proof. The left-hand side is included in the right-hand side by Lemma[2.1]
On the other hand, let q € CosupppM and q C p. Since M is artinian,
there is an injective resolution M — E*® with E®* = 0 — E(R/mg1) @ -+ @
E(R/mon,) — E(R/mi1) © --- © E(R/myy,) — --- with each m;; € MaxR.
Then Hompg(Ry, M) — Hompg(R,, E®) is also an injective resolution as R-
modules. Hence

Ext(R/p, Hompg(R,, M)) = H*(Homp(R/p, Hompg(R,, E*)))
& H*(HomR(RP/pRp,E'))
= Exty(Ry/pRy, M) # 0,
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it implies that Ext;(R/q, Homp(Ry, M)) # 0. Thus, we have the next isomor-
phisms
Ext} o ((R/q)p, Homp(R/q, M)) = Ext(Ry/qRy, M)
= H*(Hompg(R,/qRy, E*))
=~ H*(Hompg(R/q, Homg(R,, E*)))
= Extk(R/q, Hompg(R,, M)) # 0.
As Homp(R/q, M) is a non-zero artinian R/g-module by [I5, Theorem 4.3],
it follows from [4, Theorem 2.4] that Hompg/((R/q)y, Homgr(R/q, M)) # 0.

Now, by analogy with the proof of [I0, Lemma 4.1], one can obtain the desired
inclusion. [J

COROLLARY 2.3. Let p be a non-maximal prime ideal of R and M an
artinian R-module. If cosupprM = CosupprM, then there exists an equality

AssgHomp(Ry, M) = {q € CosupprM|q C p}.

Proof. 1f Hompg(Ry, M) = 0, then AnngM ¢ p. So
{q € CosupprM|q Cp} =10

and the equality holds. If Hompg(Ry, M) # 0, then p € cosupprM by assump-
tion. The assertion follows by Theorem O]

Remark 2.4. (1) For an artinian R-module M, the next inclusion
cosupppM C CosupppM may be strict. In fact, let R be a domain with
MaxR = {m,n}. Set M = E(R/m). As R is domain, AnngM = 0, so
CosupprM = V(AnnzpM) = SpecR. Since supppM = SupppM = {m}, it
follows by [2, Theorem 4.13] that n ¢ cosupprM.

(2) If (R, m) is a local ring, then cosupprF(R/m) = CosupprE(R/m) =
SpecR. However, the equality may not hold true when R is not local by the
above example.

(3) For any R-module M, the inclusion Cosuppp M C V(AnngM) may be
strict. For example, let (R, m) be a local domain with dimR > 0. Next, we set
M = Hompg(®p>oR/m"™, E(R/m)). Then

V(Anng M) = V(Anng(®nsoR/m™)) = SpecR

by B p. 139] as Asspr(®n>oR/m") = {m}. But CosupppM # SpecR by
Proposition [3.1]
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COROLLARY 2.5. Let N be a finitely generated R-module and M an ar-
tinian R-module. One has an equality

cosupppHompg(N, M) = suppp N N cosuppp M.

Proof. By [15, Theorem 3.4],
cosupp pHompg(N, M) C suppp N N cosupp M.
Conversely, let p € suppr N N cosuppp M. If p is maximal, then
Homp (R/p, Hompg(N, M)) # 0,
and so p € cosupppHomp(N, M). We assume that p # m. It follows from The-
orem that p € AsspHomp(Rp, M), so p € AssgHompg(N, Hompg(R,, M)).
Consequently,
HomR(Rp/pRp,HomR(N, M)) = HomR(R/p,HomR(N, HomR(Rp,M)) #£0

and p € cosupppHomp(N, M), as desired. [

The following corollary is a dual version of [I3] Exercise 9.23] or [3|
Chap. II, p. 106, Corollary].

COROLLARY 2.6. Let a be a proper ideal of R and M an artinian R-
module. If M is a cogenerator, then

Rad (0 :g Hompg(R/a, M)) = Rad(a + (0 :g M)).

Proof. As M is a cogenerator, cosupppM = CosupppM = V(AnngM).
By [15, Theorem 3.4], one has CosupprHompg(R/a, M) C V(a) N V(AnngM).
On the other hand, it follows by Corollary 2.5 that

cosupprHomp(R/a, M) = V(a) N cosupprM = V(a) N V(AnngM).
Therefore,

V(AnnRHomR(R/a, M)) = CosupppHomp(R/a, M)
= cosupppHompg(R/a, M) = V(a+ Annp M),

as claimed. [

3. COSUPPORT OF ARTINIAN MODULES

In this section, we give some characterizations of cosupport of artinian
R-modules, which are similar to those of classical support.

It is well known that p € SupppM if and only if there is a cyclic sub-
module N of M with AnngN C p. The next lemma is a dual version of [14]
Fact 3.3] and the above fact for “big” cosupport, which is proved by Nam when
R is a local ring (see [1I, Theorem 3.8]).
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PropoSITION 3.1. Let M be a linearly compact R-module. One has
CosupprM = {p € SpecR|Hompg(R,, M) # 0}
= {p € SpecR|’ M +# 0}
= {p € SpecR|3 a cocyclic quotient L of M such that AnngL Cp}.
Proof. The first equality follows by [4, Theorem 2.4(ii)]. Hence [15], Corol-

lary 2.16] implies that Cosuppr M C {p € SpecR|PM # 0}. On the other hand,
let PM # 0 for p € SpecR. Then there is an exact sequence

0—-N—->M—A—0,

where A is artinian with AnngA C p, and so p € CosupprA by [15, Corol-
lary 2.5]. Since A is a linearly compact R-module with the discrete topology,
N is an open submodule of M, and hence N is closed in M. It means that N
is a linearly compact submodule of M. Hence [4, Corollary 2.5] implies that
the sequence

0 — Hompg(Ry, N) = Hompg(Ry, M) — Hompg(Rp, A) = 0

is exact. As Homp(Ry, A) # 0, we have Homp (R, M) # 0 and p € CosupprpM,
the second equality holds. The third equality is proved by using the remark
after [15, Theorem 3.8]. [

If M = 0 or M has a secondary representation, then we say that M is
representable. It was shown by Macdonald [9] and Sharp [12] that artinian
modules and injective modules are representable.

COROLLARY 3.2. (1) Let N be a finitely generated R-module and
M a representable R-module. One has an inequality

Cosuppr(N ®r M) = Suppp N N Cosuppp M.

(2) Let M be a linearly compact R-module. One has
CosuppgpHompg(R,, M) = {q € CosupppM|q C p}.
Proof. (1) Let p € Cosuppr(N®@gM). It follows from [10, Lemma 5.1]
that Hompg(Ry, M) ®g Np = Hompg(Ry,, N ®r M) # 0. Hence
Cosuppr(N ®@r M) C Suppp N N Cosuppp M.
On the other hand, let p € Suppyp N N Cosuppr M. Then there is
q € Attr(N ®r M) = Suppr N N Attp M

such that q C p. Thus, Hompg(Ry, Homg(Ry, N ®r M)) = Homp(Rq, N ®@r
M) # 0 by [15, Theorems 1.21 and 1.14], and so Hompg(Ry, N ®r M) # 0, as
desired.
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(2) This is an immediate consequence of Proposition O

The following result is a dual version of [I4], Fact 3.3] for “small” cosup-
port.

THEOREM 3.3. Let M be a semi-discrete linearly compact R-module. One
has

cosuppr M = {p € SpecR|PExth(R/p, M) # 0 for some i}
= {p € SpecR|Ext’(R/p,P M) # 0 for some i}.
Proof. First assume that M is artinian. There is an injective resolution
M — E*® with
E*=0— E(R/mm)@- : -@E(R/mom) — E(R/mn)@~ . -@E(R/mlm) — e,

where each m;; € MaxR. Hence [§] and [4, Corollary 2.5] yield the next
isomorphisms

Ext’ (r(p), M) = H'(Hompg(x(p), E*))
~ H'(Hompg(Ry, Hompg(R/p, E*)))
=~ Homp Ry, H (Hompg(R/p, E*)))
= Hompg (Ry, ExtR(R/p, M)).
Consequently, we have the following equivalences:
p € cosuppp M <= p € CosuppzExth(R/p, M) for some i
<= PExthL(R/p, M) # 0 for some 1,

where the first one is determined by the above isomorphism, and the second
one by Proposition As

PExtl(R/p, M) = Hompg(Tor[ (R/p, @ Dn(M)), E(R/p)) = Exti(R/p," M),

it implies that PExt(R/p, M) # 0 for some i if and only if Extly(R/p,? M) # 0
for some 1.

Next, assume that M is a semi-discrete linearly compact R-module. Then
[17, Theorem] yields a short exact sequence 0 - N — M — A — 0, where A
is artinian and N is finitely generated. Let N — EY and A — E% be minimal
injective resolutions of N and A, respectively. Then M — E} @ EY is an
injective resolution of M. For any p € SpecR, we have

Ext} (k(p), M) = H' (Hompg(k(p), EX ® EY))
~ H'(Hompg(Ry, Homp(R/p, EY)))
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@ Homp (Ry, H' (Homp(R/p, EY))).
If p € cosuppr N then p is a maximal ideal, and so
H' (Homp(R,, Homg(R/p, EY))) = Homp (R,, H (Hompg(R/p, EY))).

Therefore, we have the isomorphism Ext’ (k(p), M) = Hompg (R, Exty(R/p, M)).
If p & cosuppp XV, then H (Hompg(Ry, Hompg(R/p, E%,))) = 0 and hence

Ext (r(p), M) = Hompg (R, Exty(R/p, M)).
Consequently, we get that p € cosupprM if and only if
p € CosuppzExth:(R/p, M)

for some i if and only if PExt%(R/p, M) # 0 for some i by Proposition as
claimed. [

Remark 3.4. The equality in Theorem is not true, in general, when-
ever M is not semi-discrete linearly compact. Let (R, m) be a local domain
with dimR > 0 and M = [],., R/m". By [14, Propositions 4.9 and 4.10], one
has cosuppy M = {m}. But "Ext%(R/0, M) # 0.
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