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In this paper, we shall present a review of some basic results concerning the
twisted Weyl quantization [12] with some modi�ed proofs that allow a special
focus on the dependence on the behaviour of the magnetic �eld. The main new
result of this paper is contained in Theorem 2.11 and states that the symbol of

the evolution group of the self-adjoint operator de�ned by a real elliptic symbol

of strictly positive order in a smooth bounded magnetic �eld leaves invariant the

space of Schwartz test functions and its dual.
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1. INTRODUCTION

When dealing with theoretical models for physical systems in magnetic

�elds one faces the well-known problem that some important physical obser-
vables are described in terms of the vector potential generating the magnetic
�eld, although its choice is highly non-unique! In fact, the basic idea in pro-
posing a theoretical framework for the description of the interaction between
a physical system de�ned by a given Hamiltonian and a magnetic �eld is the
so-called minimal coupling hypothesis. It states that the coupling is described
by replacing the canonical momenta of the physical system by some magnetic

momenta de�ned in terms of a vector potential generating the magnetic �eld.
Some theoretical arguments allow then to prove that the description of the dy-
namics of the system is not modi�ed by changing the vector potential and thus
any choice is acceptable in principle. This aspect rises the interesting question
of formulating a general abstract mathematical procedure to deal in an elegant
and e�cient way with this minimal coupling hypothesis. For classical systems,
an interesting proposal is presented in [5], considering the magnetic �eld as a
perturbation of the canonical symplectic form on the cotangent bundle of the
con�guration space. For quantum systems, we have proposed in some previ-
ous papers ([11�14], see also the monograph [3]) a related procedure based on
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the replacement of the usual Weyl system with a twisted Weyl system de�ned in
terms of a cocycle associated to the �ux of the magnetic �elds through triangles
(a similar construction appears also in [15] but for some di�erent purposes).
In [8�10] we have developed the magnetic pseudodi�erential calculus associated
to this twisted Weyl system, proving that it behaves very much like the usual
one.

In this paper, we concentrate on the magnetic symbolic calculus for opera-
tors describing observables of quantum system in a bounded smooth magnetic
�eld. A large part of the paper is devoted to a review of some previous results
concerning some properties important in the study of quantum observables:
composition of symbols, L2-boundedness, inferior semi-boundedness for ellip-
tic symbols, existence of self-adjoint extensions. Although these results have
been presented in our previous papers, we concentrate now on a smaller class
of H�ormander type symbols (see De�nition 1.1), that is of interest for the study
of quantum systems and o�er a better perspective on their proofs. Moreover,
we take bene�t of this simpli�cation of the proofs and obtain an explicit cont-
rol on the seminorms of the magnetic �eld that control the di�erent estimates,
having in view possible extensions towards problems with unbounded magnetic
�elds. In the last subsection we present a new result, Theorem 2.11, concerning
the evolution group of a quantum Hamiltonian in magnetic �elds. This result
extends our previous one (Lemma 7.7 in [9]) from H�ormander type elliptic sym-
bols of order at most 1 to those of any order p > 0. This is important because
one can cover the case of Schr�odinger Hamiltonians with magnetic �elds, having
order 2.

In the �rst subsection of the introduction, we �x the framework of our
analysis and some notations. The following two subsections present a brief
reminder of the main facts about the magnetic quantization and the magnetic

Moyal algebra introduced in [11]. The second section contains the main body
of the paper analysing the properties of a large class of physical observables
de�ned in terms of the magnetic pseudodi�erential calculus.

1.1. Notations

We consider only systems having an a�ne con�guration space X ∼= Rd for
some d ∈ N with d ≥ 2. We shall denote by

∧k
X the space of smooth k-forms

on X. The magnetic �eld is then described by a closed 2-form B ∈
∧2

X, thus
satisfying dB = 0 (see lecture 13 in [3]). Due to the topological triviality of the
con�guration space X we can �nd a 1-form A ∈

∧
X, called a vector potential,

such that B = dA. Clearly the choice of A ∈
∧
X is highly non-unique,

di�erent choices being related by gauge transformations A 7→ A′ = A + df for
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some f ∈ C2(X;R). A usual choice of the vector potential is the transversal

gauge:

(1.1) Aj(x) = −
d∑

k=1

∫ 1

0
ds Bjk(sx)sxk,

verifying x ·A(x) = 0.

A Hamiltonian system is described by a smooth, lower bounded function

h : Ξ → R, where Ξ := X ×X∗ is the phase space of the system, with X∗

the dual of X (as a �nite dimensional real vector space), with the duality map
〈·, ·〉 : X∗ ×X → R (see [13] and the references therein).

We shall use the notation [t] ∈ Z for the integer part of t ∈ R, de�ned as
[t] := max

{
k ∈ Z | k ≤ t

}
.

For any Euclidean space V ∼= RN we denote by S (V) the Fr�echet space of
Schwartz test functions and by S ′(V) its dual, the space of tempered distribu-
tions on V. We shall denote by C∞(V) the space of smooth functions on V and
by C∞pol(V), resp. by C∞pol,u(V) and resp. by BC∞(V) its subspaces of smooth
functions that are polynomially bounded together with all their derivatives,
resp. those with uniform polynomial growth on all the derivatives, resp. those
smooth and bounded together with all their derivatives. We use the notation
< v >:=

√
1 + |v|2 for any v ∈ V.

When working in a Hilbert space L2(V) over a Euclidean space V ∼= RN
with the Lebesgue measure, we shall denote by F (Q) the operator of multipli-
cation with the measurable function F : V → C, i.e.

(1.2)
(
F (Q)f

)
(v) := F (v)f(v), ∀v ∈ V, ∀f ∈ L2(V).

Moreover, we shall denote by B
(
H
)
and U

(
H
)
the algebra of bounded linear

operators, respectively, the group of unitary linear operators on the Hilbert
space H.

For k-forms on X, with k ∈ N, we shall consider the spaces Lkpol(X) and

Lkbc(X) de�ned as the spaces of k-forms with components of class C∞pol(X),

resp. BC∞(X). Clearly L0
pol(X) = C∞pol(X) and L0

bc(X) = BC∞(X).

On Lkbc(X) we shall use the following two families of semi-norms, indexed
by m ∈ N:

µm(F ) := max
(j1,...,jk)∈{1,...,d}k

(
max
|α|=m

sup
x∈X

∣∣(∂αFj1,...,jk)(x)
∣∣ ),(1.3)

ρm(F ) := max
n≤m

µn(F ).(1.4)

We shall call weight a positive function, verifying the properties of a semi-
norm but being allowed to take also the value +∞. On Lkpol(X) we consider
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weight functions indexed by (p,m) ∈ R× N:

(1.5) νpm(F ) : = max
(j1,...,jk)∈{1,...,d}k

(
sup
x∈X

< x >−p max
|α|=m

∣∣(∂αFj1,...,jk)(x)
∣∣ ).

An important role will be played by a speci�c imaginary exponential of
the magnetic �ux through some triangles (see (1.30)) and the following family
of weights:

∀B ∈ L2
bc(X), wm(B) :=(1.6)

:= max
{
µ0(B), max

1≤l≤m
max

p∈Pl(m)

l∏
s=1

(
µps(B) + µps−1(B)

)}
,

where Pl(m) :=
{
p = (p1, . . . , pl) | pj ≥ 1 ∀j ∈ {1, . . . , d}, p1 + · · ·+pl = m

}
.

For the points of Ξ = X ×X∗ we shall use notations of the form X =
(x, ξ), Y = (y, η), Z = (z, ζ). On Ξ we have a canonical symplectic form:

(1.7) σ(Y,Z) := 〈η, z〉 − 〈ζ, y〉.

For the space C∞pol(Ξ) we shall use a family of weight functions of the form

(1.5), but with four indices (p1, p2,m1,m2) ∈ R2 × N2:

νp1,p2m1,m2
(F ) := sup

(x,ξ)∈Ξ
< x >−p1< ξ >−p2 max

|a|=m1

max
|α|=m2

∣∣(∂ax∂αξ F )(x, ξ)∣∣,(1.8)

νpm1,m2
(F ) ≡ ν0,p

m1,m2
(F ).

De�nition 1.1. For any p ∈ R we denote by:

Sp(Ξ) :=

(1.9)

:=

{
F ∈ C∞pol(Ξ) | sup

(x,ξ)∈Ξ
< ξ >−p+|β|

∣∣(∂αx ∂βξ F )(x, ξ)∣∣ <∞, ∀α, β ∈ Nd
}
,

with the topology de�ned by the semi-norms {νp−m2
m1,m2} with (m1,m2) ∈ N2. We

also set S∞(Ξ) :=
⋃
p∈R

Sp(Ξ), S−∞(Ξ) :=
⋂
p∈R

Sp(Ξ) and S−(Ξ) :=
⋂
p<0

Sp(Ξ).

Let us point out that (1.9) is the class Sp1,0(Ξ) with the notations from

[7, 8]. Noticing that νpm1,m2(F ) ≤ νp−m2
m1,m2(F ) for any F ∈ Sp(Ξ) and any

(m1,m2) ∈ N2, we shall also use the following semi-norms on Sp(Ξ):

(1.10) ρpm1;m0,m2
(F ) := max

n1≤m1

max
m0≤n2≤m0+m2

νpn1,n2
(F ), ∀(m0,m1,m2) ∈ N3.

Remark 1.2. We shall often consider the spaces C∞pol(X) and C∞pol(X
∗) as

subspaces of C∞pol(Ξ) containing functions constant in the directions in X∗ or
resp. of X.
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De�nition 1.3. We say that a symbol F ∈ Sp(Ξ) is elliptic if there exist
two constants (R,C) ∈ R+ × R+ such that

|F (x, ξ)| ≥ C < ξ >p, ∀(x, ξ) ∈X × {ξ ∈X∗ | |ξ| ≥ R}.

For any s ∈ R, we shall use the notation ps(x, ξ) :=< ξ >s, de�ning an
elliptic symbol of order s ∈ R and qs(x, ξ) :=< x >s (that for s > 0 is not a
H�ormander type symbol).

We shall use the following Fourier transforms (∀(x, ξ) ∈X ×X∗):(
Fφ
)
(ξ) := (2π)−d/2

∫
X

e−i〈ξ,x〉φ(x) dx, ∀φ ∈ S (X)(1.11) (
F−φ

)
(ξ) := (2π)−d/2

∫
X

ei〈ξ,x〉φ(x) dx, ∀φ ∈ S (X)(1.12) (
F∗ψ

)
(x) := (2π)−d/2

∫
X∗

e−i〈ξ,x〉ψ(ξ) dξ, ∀φ ∈ S (X∗)(1.13) (
F̃F

)
(x, ξ) := (2π)−d

∫
Ξ
ei〈ξ,y〉−i〈η,x〉F (y, η) dy dη, ∀F ∈ S (Ξ).(1.14)

1.2. The magnetic quantization

Given a magnetic �eld B ∈
∧2

X and an associated vector potential
A ∈

∧
X, let us consider the following invariant integrals, whose signi�cance

in constructing a gauge covariant functional calculus has been noticed in [2,15]:

(1.15) ΛA(x, y) := e
−i

∫
[x,y]A, ΩB(x, y, z) := e−i

∫
<x,y,z>B,

where [x, y] is the oriented line segment from x ∈X to y ∈X and < x, y, z >
is the oriented triangle in X having the vertices {x, y, z} ⊂X.

De�nition 1.4. Given a magnetic �eld B ∈
∧2

X and an associated vec-
tor potential A ∈

∧
X, we call the Magnetic Weyl system on Ξ = X ×X∗

associated to A ∈
∧

X the application

WA : Ξ→U
(
L2(X)

)
,(

WA(z, ζ)f
)
(x) := ΛA(x, x+ z)e−(i/2)〈ζ,z〉e−i〈ζ,x〉f(x+ z),(1.16)

∀f ∈ L2(X), ∀x ∈X.

We shall sometimes use the notation UA(x) = WA(−x, 0). We refer to [11]
for the connection of these operators with the minimal coupling hypothesis.

De�nition 1.5. Given a magnetic �eld B ∈
∧2

X and an associated vector
potential A ∈

∧
X, we de�ne the magnetic Weyl quantization as the application
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OpA : S (Ξ)→ B
(
L2(X)

)
de�ned as a bounded sesquilinear form, in the sense

that for any pair (u, v) ∈ L2(X) we have the equality: by〈
u , OpA(F )v

〉
L2(X)

:= (2π)−d
∫

Ξ

(
F̃F

)
(x, ξ)〈u , WA(x, ξ)v〉L2(X) dx dξ.

Remark 1.6. For A = 0 the above formula gives precisely the usual Weyl
quantization, denoted by Op ≡ Op0.

Inserting the de�nition (1.16) in the above formula (in De�nition (1.5))
one obtains the more familiar formula(

OpA(F )φ
)
(x) =(1.17)

= (2π)−d/2
∫
X

dyΛA(x, y)

∫
X∗

dξ ei〈ξ,x−y〉F
(
(x+ y)/2, ξ

)
φ(y)

for any F ∈ S (Ξ) and any φ ∈ S (X).

Proposition 1.7 (Proposition 3.4 in [11]). Given two gauge equivalent

vector potentials A′ = A + df , the corresponding magnetic quantizations are

unitarily equivalent; more precisely we have

(1.18) OpA
′
(F ) = eif(Q)OpA(F )e−if(Q), ∀F ∈ S (Ξ).

Proposition 1.8 (A Diamagnetic Inequality for symbols). Suppose given
a magnetic �eld B ∈ L2

pol(X). Then, for any distribution F ∈ S ′(X∗) such

that F∗F is a non-negative measure we have:

(1.19)
∣∣OpA(F )φ

∣∣ ≤ Op(F )|φ|, ∀φ ∈ S (X),

with Op(F ) the usual Weyl quantization of F introduced in Remark 1.6.

Proof. Here we are evidently using Remark 1.2 and consider F as element
of C∞pol(Ξ). Thus, ∀(φ, ψ) ∈ S (X)2[

OpA(F )φ
]
(ψ) = (2π)−d/2

∫
X

µF (dx)
〈
ψ,UA(−x)φ

〉
L2(X)

=

(1.20) = (2π)−d/2
∫
X

(
< x >−N µF (dx)

)
< x >N

〈
ψ,UA(−x)φ

〉
L2(X)

,

where for N ∈ N large enough the measure µF,N (dx) :=< x >−N µF (dx) is a
�nite positive measure with total mass MF,N <∞. We have that

(1.21)
〈
ψ,UA(−x)φ

〉
L2(X)

=

∫
X

dz ΛA(z, z + x)ψ(z)φ(z + x)

and we deduce that, for any N ∈ N, there exists some CN > 0 and some
(n1, n2) ∈ N× N such that∣∣∣〈ψ,UA(−x)φ

〉
L2(X)

∣∣∣ ≤ CN
< x >N

(
sup
z∈X

< z >n1 |ψ(z)|
)(

sup
z∈X

< z >n2 |φ(z)|
)
.
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Using the results in [17], we conclude that OpA(F )φ is a tempered complex
measure on X. Thus its absolute value is a well de�ned positive tempered
measure and we can write

(1.22)
∣∣OpA(F )φ

∣∣ ≤ (2π)−d/2
∫
X

µF (dx)
∣∣UA(−x)φ

∣∣ = Op(F )|φ|. �

From (1.17) we obtain the integral kernel of the operator OpA(F ) as

(1.23) KAF (x, y) = (2π)−d/2ΛA(x, y)
(
(1l⊗F∗)F

)(
(x+ y)/2, y − x

)
.

Remark 1.9. The map Υ : X × X → X × X de�ned by Υ(x, y) :=(
(x+ y)/2, y − x

)
is a linear bijection with Jacobian 1 and its inverse has the

explicit formula Υ−1(u, v) =
(
u− v/2, u+ v/2

)
. Using it one can write for any

F ∈ S (Ξ)

KAF = (2π)−d/2ΛA ·
[(

Υ ◦
(
1l⊗F∗

))
F
]
.

For two vectorial topological spaces V1 and V2 we denote by L
(
V1; V2

)
the space of linear continuous maps from V1 to V2 with the topology of uniform
convergence on bounded subsets. The following two statements are proved
in [11].

Proposition 1.10. If the vector potential A is in L1
pol(X), then the ap-

plication OpA de�nes a linear and topological isomorphism

(1.24) OpA : S (Ξ)
∼→ L

(
S ′(X); S (X)

)
.

Using the Kernel Theorem of L. Schwartz ( [18]) and Remark 1.9, we can
extend the magnetic quantization to the space of tempered distributions.

Proposition 1.11. If the vector potential A ∈ L1
pol(X), then the applica-

tion OpA de�nes a linear and topological isomorphism

(1.25) OpA : S ′(Ξ)
∼→ L

(
S (X); S ′(X)

)
Using Proposition 1.10, we notice, that given a magnetic �eld B∈L2

pol(X),

formula (1.1) allows us to �x an associated vector potential A ∈ L1
pol(X),

and thus, for any pair of test functions (φ, ψ) ∈ S (Ξ) × S (Ξ), the product
OpA(φ)OpA(ψ) belongs to L

(
S ′(X); S (X)

)
and there exists a unique test

function ρB(φ, ψ) ∈ S (Ξ) such that

(1.26) OpA(φ)OpA(ψ) = OpA
(
ρB(φ, ψ)

)
.

De�nition 1.12. For any magnetic �eld B ∈ L2
pol(X), we de�ne the follo-

wing composition map:

(1.27) S (Ξ)×S (Ξ) 3 (φ, ψ) 7→ φ]Bψ := ρB(φ, ψ) ∈ S (Ξ),

with ρB(φ, ψ) satisfying (1.26). We call this composition de�ned above the

magnetic Moyal product.
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Clearly ρB(φ, ψ) ∈ S (Ξ) depends linearly and continuously on both vari-
ables (φ, ψ) ∈ S (Ξ)×S (Ξ) (due also to Proposition 1.10). A straightforward
computation allows us to prove that

(1.28)
(
φ]Bψ

)
(X) = π−2d

∫
Ξ×Ξ

dY dZ e−2iσ(Y,Z)ω∼Bx (y, z)φ(X−Y )ψ(X−Z) =

(1.29) = π−2d

∫
Ξ×Ξ

dY dZ e−2iσ(X−Y,X−Z)ωB(x, y, z)φ(Y )ψ(Z),

where

(1.30) ω∼Bx (y, z) := exp

{
−i
∫
Tx(y,z)

B

}
, ωB(x, y, z) := exp

{
−i
∫
T(x,y,z)

B

}
,

with Tx(y, z) the oriented triangle in X with vertices x−y−z, x+y−z, x−y+z
and T(x, y, z) the oriented triangle inX with vertices y+z−x, z+x−y, x+y−z.
In the �rst Appendix to this paper, we prove a number of needed estimates on
the function ω∼B ∈ C∞pol

(
X;C∞pol(X ×X)

)
.

In [11] (Lemma 4.14 and Corollary 4.15) the following statement is proved.

Proposition 1.13. Given a magnetic �eld B ∈ L2
pol(X) we have:

(1.31) ∀(φ, ψ) ∈ S (Ξ)2 :

∫
Ξ
dX

(
φ]Bψ

)
(X) =

∫
Ξ
dX φ(X)ψ(X);

(1.32) ∀(φ, ψ, χ) ∈ S (Ξ)3 :∫
Ξ
dX

(
φ]Bψ

)
(X)χ(X) =

∫
Ξ
dX φ(X)

(
ψ]Bχ

)
(X) =

∫
Ξ
dX ψ(X)

(
χ]Bφ

)
(X)).

The above result allows us to extend the magnetic Moyal product by
duality and de�ne two continuous bilinear maps

(1.33) ]B : S ′(Ξ)×S (Ξ)→ S ′(Ξ); ]B : S (Ξ)×S ′(Ξ)→ S ′(Ξ).

1.3. The magnetic Moyal algebra

We shall brie�y recall some de�nitions and results from [11]. Let us de�ne
(1.34)

MB(Ξ) :=
{
F ∈ S ′(Ξ) | F]Bφ ∈ S (Ξ), φ]BF ∈ S (Ξ), ∀φ ∈ S (Ξ)

}
.

Remark 1.14 (Proposition 4.20 in [11]). MB(Ξ) is a unital *-algebra (with
the *-involution given by the complex conjugation) containing S (Ξ) as a two-
sided ∗-ideal.
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De�nition 1.15. We call MB(Ξ) the magnetic Moyal algebra associated to
the magnetic �eld B ∈ L2

pol(X).

Using Proposition 1.13 we can extend ]B : MB(Ξ) ×MB(Ξ) → MB(Ξ)
by duality to the following applications:

(1.35) ]B : MB(Ξ)×S ′(Ξ)→ S ′(Ξ), ]B : S ′(Ξ)×MB(Ξ)→ S ′(Ξ).

Proposition 1.16. If the vector potential A ∈ L1
pol(X), then the applica-

tion OpA de�nes a linear and topological isomorphism

(1.36) OpA : MB(Ξ)
∼→ L

(
S (X); S (X)

)⋂
L
(
S ′(X); S ′(X)

)
.

De�nition 1.17. Given a vector potential A ∈ L1
pol(X), we de�ne the al-

gebra of bounded magnetic symbols associated to the magnetic �eld B = dA
as

(1.37) CB(Ξ) :=
{
F ∈ S ′(Ξ) | OpA(F )

[
L2(X)

]
⊂ L2(X)

}
.

By the Uniform Boundedness Principle ( [16]) F ∈ CB(Ξ) if and only if
OpA(F ) ∈ B

(
L2(X)

)
and using Proposition 1.7 we see that this condition only

depends on the magnetic �eld B = dA.

Proposition 1.18 (Lemma 2.1 in [8]). Given a magnetic �eld B ∈
L2
pol(X) we have that Sp(Ξ) ⊂MB(Ξ), ∀p ∈ R.

Remark 1.19. We may transport on CB(Ξ) the operator norm from
B
(
L2(X)

)
and denote it by ‖F‖B := ‖OpA(F )‖B(L2(X)). This norm only

depends on B, due to Proposition 1.7. Then CB(Ξ) becomes a C∗-algebra
isomorphic with B

(
L2(X)

)
.

2. OBSERVABLES IN BOUNDED SMOOTH MAGNETIC

FIELDS

In the estimates that follow, we shall often use operators of the form
< ∇ >s (Fourier transforms of symbols of type ps) and we shall frequently prefer
to work with di�erential operators, so that we shall, when possible, consider
orders of the form s = 2N with N ∈ N even if this will give slightly weaker
results. We shall use the notation d̃ := 2[d/2] + 2 and for any p ∈ R+ we set
p̃ := 2[(d+ p)/2] + 2.

2.1. Composition of H�ormander type symbols

In Proposition 2.6 in [8], we have proven a result concerning the compo-
sition of H�ormander type symbols that is very similar to the known result for
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Weyl calculus. We present in the following Theorem a new proof of a simpli�ed
version (which is enough for the applications to quantum mechanics that we
have in view), emphasizing the dependence of the estimates on the behaviour
of the magnetic �eld. In fact, this Theorem is a direct consequence of the
Proposition 3.2 that we prove in the second Appendix to this paper.

Theorem 2.1. Given a magnetic �eld B ∈ L2
bc(X), ∀(p1, p2) ∈ R2 the

restriction of the Moyal product to Sp1(Ξ) × Sp2(Ξ) de�nes a continuous bi-

linear application Sp1(Ξ)× Sp2(Ξ) 3 (F,G) 7→ F]BG ∈ Sp1+p2(Ξ). More preci-

sely, for any pair (q1, q2) ∈ N×N there exists a constant C := C(d, p1, p2, q1, q2)
> 0 such that

νp1+p2−q2
q1,q2

(
F]BG

)
≤

≤ C wq1+p̃1+p̃2(B)
∑

0≤k≤q2

ρp1−kq1+p̃2;k,m2
(F ) ρp2−q2+k

q1+p̃1;q2−k,m1
(G),

where m1 = 2[p̃2 + (q1 + p̃1)/2] + 2 and m2 = 2[p̃1 + (q1 + p̃2)/2] + 2.

We formulate separately a consequence of the above result that will be
used several times in this paper.

Proposition 2.2. Given a magnetic �eld B ∈ L2
bc(X), for any (p1, p2) ∈

R2 and (F,G) ∈ Sp1(Ξ) × Sp2(Ξ), we have F]BG − FG ∈ Sp1+p2−1(Ξ). Mo-

reover, for any (q1, q2) ∈ N × N, there exists a constant C > 0, depending on

d, p1, p2, q1, q2, such that

νp1+p2−1−q2
q1,q2

(
F]BG− FG

)
≤ Cwq1+p̃1+p̃2(B)w2+q1+p̃1+p̃2(B)×

×
∑

0≤k≤q2

[(
ρp1−kq1+p̃2;k,m2

(∇xF ) + ρp1−k−1
q1+p̃2;k,m2

(∇ξF )
)
×

×
(
ρp2−q2+k−1
q1+p̃1;q2−k,m1

(∇ξG) + ρp2−q2+k
q1+p̃1;q2−k,m1

(∇xG)
)]

where m1 = 2[p̃2 + (q1 + p̃1)/2] + 2 and m2 = 2[p̃1 + (q1 + p̃2)/2] + 2.

Proof. We go back to formula (1.28) and notice that(
F]BG

)
(X)− F (X)G(X) =

= π−2d

∫
Ξ×Ξ
dY dZ e−2iσ(Y,Z)ω∼Bx (y, z)F (X − Y )G(X − Z)− F (X)G(X),

(
F]BG

)
(X)− F (X)G(X) = π−2d

∫
Ξ×Ξ
dY dZ e−2iσ(Y,Z)ω∼Bx (y, z)×

×
[∫ 1

0
ds
(
(Y · ∇)F

)
(X − sY )

] [∫ 1

0
dt
(
(Z · ∇)G

)
(X − tZ)

]
and using the usual integration by parts method one transforms the factors
linear in Y and Z in derivations obtaining in the end a sum of products of
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derivatives of order 1 and 2 of the symbols F and G and of derivatives of order
at most two of the factor ω∼B. �

2.2. A criterion for L2-boundedness

From the Schur-Holmgren criterion for boundedness of integral operators
on L2 (see for example Theorem 5.2 in [6]), we easily conclude that

(2.1)
∥∥OpA(F )

∥∥
B(L2(X))

≤ sup
x∈X

∥∥KAF (x, ·)
∥∥
L1(X)

.

Using then Remark 1.9 above together with Proposition 1.3.6 in [1] and Lemma
A.4 in [14], we obtain the following statement.

Proposition 2.3. Suppose that B ∈ L2
bc(X). Then S−(Ξ) ⊂ CB(Ξ), i.e.

OpA(F ) is a bounded operator on L2(X) for any F ∈ S−(Ξ,X) and

(2.2) ‖F‖B ≡
∥∥OpA(F )

∥∥
B(L2(X))

≤ ν−s
0,d̃

(F )

for s > 0 such that F ∈ S−s(Ξ).

2.3. Inferior semi boundedness

Proposition 2.4. Suppose given B ∈ L2
bc(X) and a real symbol F in

Sp(Ξ), with p ≥ 0, elliptic if p > 0, and verifying F ≥ aF > 0 for some aF ∈
R+. Then there exist G ∈ Sp/2(Ξ) and X ∈ S0(Ξ) such that F = G]BG + X
and

∥∥OpA(X)
∥∥
B(L2(X))

≤ Wp(B)Np(F ) where

• Wp(B) is a polynomial of maximum degree 2[p] + 2 in the weights

{wm(B)}m≤M for some M = M(d, p) ∈ N, having positive coe�cients

depending only on d and p,

• Np(F ) a polynomial of maximum degree 2[p] + 2 in the seminorms

νP1
M1,M2

(F ) with P1, M1 and M2 depending only on d and p, and with

positive coe�cients depending only on d, p and (aF )−j < ∞, with 0 ≤
j ≤ 2[p] + 2.

Proof. We can de�ne G0 :=
√
F ∈ Sp/2(Ξ) and use Proposition 2.2 to get:

(2.3) XB
1 (F ) := F −G0]

BG0 = G2
0 −G0]

BG0 ∈ Sp−1(Ξ),

with νp−1−q2
q1,q2

(
XB

1 (F )
)
satisfying an estimate of the form obtained in Proposi-

tion 2.2 with p1 = p2 = p/2:

νp−1−q2
q1,q2

(
XB

1 (F )
)
≤(2.4)

≤ Cwq1+2n(B)w2+q1+2n(B)ν
p/2
q1+n,q2+m(∇x

√
F )ν

p/2−1
q1+n,q2+m(∇ξ

√
F ).
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But G0 =
√
F ≥ √aF > 0 so that we can de�ne

(2.5) G1 := (1/2)G−1
0 XB

1 (F ) ∈ Sp/2−1(Ξ)

and notice that

F −
(
G0 +G1

)
]B
(
G0 +G1

)
= F −G0]

BG0 −G1]
BG1 −

(
G0]

BG1 +G1]
BG0

)
= −G1]

BG1 −
(
G0]

BG1 +G1]
BG0 − 2G0G1

)
=: XB

2 (F ) ∈ Sp−2(Ξ)

with νp−2−q2
q1,q2

(
XB

2 (F )
)
satisfying an estimate obtained from Proposition 2.2 and

Theorem 2.1.

νp−2−q2
q1,q2

(
XB

2 (F )
)
≤ Cwq1+2n(B)ν

p/2
q1+n,q2+m(∇xG1)ν

p/2−1
q1+n,q2+m(∇ξG1)(2.6)

+ Cwq1+2n(B)w2+q1+2n(B)ν
p/2
q1+n,q2+m(∇xG0)ν

p/2−1
q1+n,q2+m(∇ξG1)

+ wq1+2n(B)w2+q1+2n(B)ν
p/2−1
q1+n,q2+m(∇ξG0)ν

p/2
q1+n,q2+m(∇xG1).

Let us set np := [p] + 1 ∈ N and de�ne recursively for 1 ≤ k ≤ np

(2.7)

 XB
k := F −

( k−1∑
j=0

Gj

)
]B
( k−1∑
j=0

Gj

)
∈ Sp−np(Ξ) ⊂ S0(Ξ),

Gk := (1/2)G−1
0 XB

k ∈ S(p/2)−np(Ξ).

Using the above results we obtain

(2.8) ν
p−np−q2
q1,q2

(
XB
np

)
≤ Wp(B) Np(F ),

where Wp(B) is a polynomial of maximum degree 2np, with positive coe�cients
depending only on d, p, q1 and q2 in the weights ẘM (B) with q1 + 2p̃ ≤ M ≤
2 + q1 + p̃np and Np(F ) is a polynomial of maximum degree 2np, with positive
coe�cients depending only on d, p, q1, q2 and (aF )−j < ∞ (with 0 ≤ j ≤ np)
in the semi-norms νP1

M1,M2
(F ) with 0 ≤ P1 ≤ p, q1 + p̃ ≤ M1 ≤ q1 + p̃np and

q2 +m ≤M2 ≤ q2 +mnp. �

Remark 2.5. The above Proposition implies that, for any φ ∈ S (X), we
have the estimate

(2.9)
〈
φ,OpA(F )φ

〉
L2(X)

≥ −
∥∥∥OpA(XB

np)
∥∥∥
B(L2(X))

‖φ‖2L2(X),

and one concludes that

(2.10) OpA(F ) +
(
Wp(B) ·Np(F ) + aF

)
1l ≥ aF 1l > 0.

2.4. A Calderon-Vaillancourt type Theorem

In this subsection, we give another proof for Theorem 3.1 in [8] for symbols
in our class S0(Ξ), following the idea of [7] for the case of the Weyl calculus.
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Theorem 2.6. For any magnetic �eld B ∈ L2
bc(X) we have S0(Ξ) ⊂

CB(Ξ). More precisely, for any F ∈ S0(Ξ) let

(2.11) MB(F ) :=
√
ν0

0,0(F )2 + C(d)W0(B) N0(F ) + ν−1

0,d̃
(F]BF − F 2).

Then:

‖F‖B ≡
∥∥OpA(F )

∥∥
B(L2(X))

< MB(F ).(2.12)

Proof. From the de�nition of the class S0(Ξ) in De�nition 1.1 we conclude
that given any F ∈ S0(Ξ) there exists MF = ν0

0,0(F ) > 0 such that |F (X)| ≤
MF for any X ∈ Ξ. Then F̃ := (MF + δ)2 − FF is a strictly positive symbol
of class S0(Ξ) for any δ > 0. For any φ ∈ S (X) we can compute∥∥OpA(F )φ

∥∥2

L2(X)
=
〈
OpA(F )φ,OpA(F )φ

〉
L2(X)

=
〈
φ,OpA(F]BF )φ

〉
L2(X)

=

=
〈
φ,OpA(F]BF − |F |2)φ

〉
L2(X)

+(MF +δ)2‖φ‖2L2(X)−
〈
φ , OpA(F̃ )φ

〉
L2(X)

.

We can apply Proposition 2.4 above (with p = 0) and deduce that there exists
some symbol GBF ∈ S0(Ξ) and some symbol XB

F ∈ S−1(Ξ) such that

F̃ = GBF ]
BGBF + XB

F ,
∥∥XB

F

∥∥
B
≤ C(d)W0(B) N0(F ).

Then Proposition 2.2 implies |F |2 − F]BF ∈ S−1(Ξ) and the given estimates
on its seminorms.

Thus for any φ ∈ S (X) one has

∥∥OpA(F )φ
∥∥2

L2(X)
= (MF + δ)2‖φ‖2L2(X)−

(2.13)

−
∥∥OpA(GBF )φ

∥∥2

L2(X)
−
〈
φ , OpA

(
XB
F + (F]BF − |F |2)

)
φ
〉
L2(X)

≤

≤
(
(MF +δ)2+C(d)W0(B) N0(F )+ν−1

0,d̃
(F]BF − |F |2)

)
‖φ‖2L2(X), ∀δ > 0. �

2.5. Self-adjointness

It is well known that the physical observables of a quantum system with
con�guration space X are described by self-adjoint operators acting in the
Hilbert space L2(X). We remark that any real symbol in CB(Ξ) de�nes a

bounded physical observable.

In order to study unbounded physical observables, we have to pay attention
to the domain of de�nition of magnetic quantized operators. A procedure to
prove self-adjointness in L2(X) for an operator of the form OpA(F ) for some



210 Viorel Iftimie, Marius M�antoiu and Radu Purice 14

real symbol F ∈ MB(Ξ) is to construct a resolvent for it. More precisely, to
prove existence of two symbols

(2.14) rB±(F ) ∈ CB(Ξ)
⋂

MB(Ξ)

such that

(2.15) (F ∓ i)]BrB±(F ) = 1 rB±(F )]B(F ∓ i) = 1.

De�nition 2.7. Given a vector potential A ∈ L1
pol(X), for any s ∈ R+ we

de�ne the magnetic Sobolev space of order s as

(2.16) H s
A (X) :=

{
f ∈ L2(X), OpA(ps)f ∈ L2(X)

}
endowed with the scalar product

(2.17) 〈f, g〉H s
A

:= 〈f, g〉L2(X) + 〈OpA(ps)f,OpA(ps)g〉L2(X).

Remark 2.8.

• By Proposition 3.5 in [8], H s
A (X) is a Hilbert space.

• Moreover for unbounded vector potentials, and thus for magnetic �elds
that do not vanish at in�nity, these magnetic Sobolev spaces are di�erent
from the usual Sobolev spaces, their elements having also some decay
properties as functions on X.

For the rest of this section, we shall suppose that B ∈ L2
bc(X) and make

use of the notation and results in the �rst Appendix A.1. The following Theo-
rem contains the main results in Theorem 5.1 in [8] and Proposition 6.31 in [9].
We present here a new proof of these results developing the ideas in the proof
of Theorem 1.8 in [14].

Theorem 2.9. Given a magnetic �eld B ∈ L2
bc(X) and a vector potential

A ∈ L1
pol(X), for any real, lower semi bounded elliptic symbol F ∈ Sp(Ξ) with

p > 0 we have that:

1. there exist some symbols rB±(F ) ∈ S ′(Ξ) such that (F ∓ i)]BrB±(F ) = 1
and rB±(F )]B(F ∓ i) = 1;

2. rB±(F ) ∈ S−p(Ξ);

3. OpA(F ) is self-adjoint in L2(X) with domain H p
A (X) and essentially

self-adjoint on S (X).

Proof. By the hypothesis of the Theorem (see also De�nition 1.3) there
exist two constants R > 0 and C > 0 such that for |ξ| ≥ R we have the
bound C < ξ >p≤ F (x, ξ). Then let us �x some a > 0 large enough such that
F + a > 0, set Fa := F + a and compute(
Fa]

BF−1
a

)
(X)− 1 = π−2d

∫
Ξ×Ξ
dY dZ e−2iσ(Y,Z)ω∼Bx (y, z)

F (X − Y ) + a

F (X − Z) + a
− 1 =
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= π−2d

∫
Ξ×Ξ

dY dZ e−2iσ(Y,Z)ω∼Bx (y, z)×

×
∫ 1

0
dτ

(Z − Y ) ·
(
∇F

)
(X − Z + τ(Z − Y ))

F (X − Z) + a
.

(2.18)

Integrating by parts the term containing the factor

(2.19) (zj − yj)e−2i(〈η,z〉−〈ζ,y〉) = −(1/2i)
(
∂ηj + ∂ζj

)
e−2i(〈η,z〉−〈ζ,y〉),

we obtain an oscillating integral of the following function:

(2.20)
(
∂ηj + ∂ζj

)(∂xjF )(X − Z + τ(Z − Y ))

F (X − Z) + a
.

We have to take into account that ∂ζjF
−1
a =

(
∂ξjF

)
F−2
a , ∂xjF ∈ Sp(Ξ), ∂ξjF ∈

Sp−1(Ξ), ∂ξj∂xjF ∈ Sp−1(Ξ), (F + a)−1 ∈ S−p(Ξ) and (F + a)−2 ∈ S−2p(Ξ)
and use the result in Proposition 3.2 to obtain the following upper bound for
the seminorm ν−mn,m of the oscillating integral:

C(d, p, n,m)wn+n1+n2(B)
∑

0≤k≤m

(
ρp−1−k
n+n2+1;k+1,m2

(F ) ρ
−(p−1−k+m)
n+n1;m−k,m1

(F−1
a )+

(2.21) +ρp−kn+n2;k,m2
(F ) ρ

−(p−k+m)
n+n1;m−k+1,m1

(F−1
a )
)
,

where n1 = 2[(d+ p)/2] + 2, n2 = 2[(d− p)/2] + 2, m1 = 2[(n+n1)/2 +n2] + 2
and m2 = 2[(n+ n2)/2 + n1] + 2.

Let us study now the term containing the factor

(2.22) (ζj − ηj)e−2i(〈η,z〉−〈ζ,y〉) = (1/2i)
(
∂yj + ∂zj

)
e−2i(〈η,z〉−〈ζ,y〉)

and leading to an oscillating integral of the function

(2.23)
(
∂yj + ∂zj

)(
ω∼Bx (y, z)

(
∂ξjF

)
(X − Z + τ(Z − Y ))

F (X − Z) + a

)
.

As in the previous analysis we obtain the following estimates on the seminorms
ν−mn,m of the oscillating integral:

C(d, p, n,m)wn+n1+n2(B)
∑

0≤k≤m

(
ρp−1−k
n+n2+1;k+1,m2

(F ) ρ
−(p−1−k+m)
n+n1;m−k,m1

(F−1
a )+

+ρp−k−1
n+n2;k,m2

(∇ξF ) ρ
−(p−1−k+m)
n+n1+1;m−k,m1

(F−1
a ) +

(2.24) + ρ1(B)ρp−k−1
n+n2+1;k+1,m2

(F ) ρ
−(p−1−k+m)
n+n1+1;m−k,m1

(F−1
a )
)
,

where n1 = 2[(d+ p)/2] + 2, n2 = 2[(d− p)/2] + 2, m1 = 2[(n+n1)/2 +n2] + 2
and m2 = 2[(n+ n2)/2 + n1] + 2.
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First we notice that

ρ−(p−1+r)
n;r,m (F−1

a ) = max
|γ|=r

ρ
−(p−1+r)
n;0,m

(
∂γξ F

−1
a

)
,

ρ
−(p−1+|γ|)
n;0,m

(
∂γξ F

−1
a

)
= max
|γ1|≤n

max
|γ2|≤m

sup
(x,ξ)∈Ξ

< ξ >p−1+|γ| ∣∣(∂γ1x ∂γ2+γ
ξ F−1

a

)
(x, ξ)

∣∣.
Let us denote by:

(2.25) F
(α1,...,αl)

(β1,...,βk)
(X) :=

l∏
s=1

1

αs!

k∏
t=1

1

βt!

∣∣∣(∂αsx ∂β
t

ξ F
)
(X)

∣∣∣ ,
(2.26) F̃

(α1,...,αl)

(β1,...,βk)
(a;X) :=

l∏
s=1

1

αs!

k∏
t=1

1

βt!

∣∣∣(∂αsx ∂β
t

ξ F
)
(X)

∣∣∣
Fa

,

so that using Fa�a di Bruno's formula [4] we can write

(2.27) < ξ >p−1+|γ| ∣∣(∂γ1x ∂γ2+γ
ξ F−1

a

)
(x, ξ)

∣∣ ≤ < ξ >p−1+|γ| (γ1!)((γ2 + γ)!)×

×
∑

1≤l≤n

(−1)l

l!

∑
1≤k≤m

(−1)k

k!

∣∣F (X) + a
∣∣−(l+k+1)

∑
α1 + · · · + αl = γ1

β1 + · · · + βk = γ2 + γ

F
(α1,...,αl)

(β1,...,βk)
(X) ≤

≤ (γ1!)((γ2 + γ)!)
< ξ >p−1

Fa

∑
1 ≤ l ≤ n
1 ≤ k ≤ m

(−1)l+k

l!k!
< ξ >|γ|

∑
α1 + · · · + αl = γ1

β1 + · · · + βk = γ2 + γ

F̃
(α1,...,αl)

(β1,...,βk)
(a;X) ≤

(2.28) ≤ C(F, n,m, r) sup
ξ∈X∗

< ξ >p−1

< ξ >p +a
.

Using the monotonicity and the concavity of the logarithm function one can
prove that ∀(a, b, q) ∈ R+ × R+ × (0, 1):

(2.29) a+ b ≥
(
q−1a

)q(
(1− q)−1b

)(1−q)
.

Taking b =< ξ >p we obtain that

(2.30)
< ξ >p−1

< ξ >p +a
=

b1−1/p

a+ b
≤ q

(
1− q
q

)1−q < ξ >pq−1

aq

and thus, choosing some q ∈ (0, p−1) ∩ (0, 1) we obtain that for any r ∈ N we
have the estimate

(2.31) ρ−(p−1+r)
n;r,m (F−1

a ) ≤ C(F, n,m, p, q) a−q.

Using also (2.21), (2.24) and Proposition 2.2, and denoting by

(2.32) xBF (a) := Fa]
BF−1

a − 1 ∈ S−1(Ξ),
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we obtain for any q ∈ (0, p−1) ∩ (0, 1) that

(2.33) ν−1−m
n,m

(
xBF (a)

)
≤ C(F, n,m, p, q) a−q µ1(B)wn+n1+n2(B).

From Proposition 2.3 we know that:

(2.34) ‖F‖B ≤ ν−1

0,d̃
(F ), ∀F ∈ S−1(Ξ).

Thus, for q = min{1, p−1} and n1 = 2[(d+ p)/2] + 2, n2 = 2[(d− p)/2] + 2 we
have ∥∥xBF (a)

∥∥
B
≤ ν−1

0,d̃

(
Fa]

BF−1
a − 1

)
≤ C(d, F ) a−q µ1(B)wn1+n2(B).

In conclusion, if we choose

(2.35) a >
[
2C(d, F )µ1(B)wn1+n2(B)

]1/q
we have

∥∥xBF (a)
∥∥
B
≤ 1/2. Moreover, we notice that

(2.36) Fa]
B
[
F−1
a ]B

(
1− xBF (a)

)]
= 1 + xBF (a)− xBF (a)−

(
xBF (a)]BxBF (a)

)
=

= 1−
(
xBF (a)]BxBF (a)

)
.

From these we may conclude that the following limit exists in CB(Ξ) in the
topology of the norm ‖ · ‖B

(2.37) zBF (a) := 1 + lim
N↗∞

N∑
n=1

[
− xBF (a)

]]Bn
and the symbol rBF (a) := F−1

a ]BzBF (a) satis�es the equality

(2.38)
(
F + a

)
]BrBF (a) = 1.

Starting then with the product F−1
a ]BFa and repeating exactly the above ar-

guments we obtain a left inverse for F + a for the magnetic Moyal product,
and due to the well known abstract argument they have to be equal. We con-
clude that OpA(F ) is a symmetric operator having the real number −a in its
resolvent set; as this set is open, we can �nd in its resolvent set points with
strictly positive and strictly negative imaginary parts so that we conclude that
it is self-adjoint. Moreover, we know that zBF (a) ∈ CB(Ξ) can be analytically
continued to an analytic map

(2.39) {z ∈ C | =m z 6= 0}
⋃
{x ∈ R | x + a < ε} 3 z 7→ rBF (z) ∈ CB(Ξ)

for some ε > 0 small enough and this map veri�es the resolvent equation:

(2.40) rBF (z1)− rBF (z2) =
(
z2 − z1

)
rBF (z1)]BrBF (z2) =

(
z2 − z1

)
rBF (z2)]BrBF (z1)

and also the de�ning relations for the inverse:

(2.41)
(
F + z

)
]BrBF (z) = rBF (z)]B

(
F + z

)
= 1.
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Moreover, we notice that

(2.42) pp]
BrBF (z) = pp]

BrBF (a) +
(
a− z

)
pp]

BrBF (a)]BrBF (z) =

(2.43) = pp]
B(F+a)−1]zBF (a)+

(
a−z

)
pp]

B(F+a)−1]BzBF (a)]BrBF (z) ∈ CB(Ξ),

because pp]
B(F + a)−1 ∈ S0(Ξ) ⊂ CB(Ξ), zBF (a) ∈ CB(Ξ), rBF (z) ∈ CB(Ξ)

and we use the Theorem 2.1 for the composition of symbols and the fact that
CB(Ξ) is a ∗-algebra for the magnetic Moyal product. We conclude by using
Proposition 6.29 in [9] that in fact rBF (z) ∈ S−p(Ξ) for any z in the resolvent
set of OpA(F ). From (2.41) we easily deduce that <ange rBF (z) = H p

A (X).
Applying OpA

(
rBF (i)

)
to S (X) and taking into account that rBF (i) ∈ S−p(Ξ) ⊂

MB(Ξ), that ‖OpA
(
rBF (i)

)
‖B(L2(X)) ≤ 1 and that S (X) is dense in L2(X), we

obtain the essential self-adjointness of OpA(F ) on S (X). �

2.6. The evolution group

Suppose we are given a magnetic �eld B ∈ L2
bc(X) and a real, lower

semi bounded elliptic symbol h ∈ Sp(Ξ) for some p > 0. For some vector
potential A ∈ L1

pol(X) associated to B, we consider the self-adjoint operator

OpA(h) : H p
A (X) → L2(X) (as the one studied in the previous subsection)

that we shall denote by QA(h). Then, by Stone's Theorem, we can consider its
associated one-parameter strongly continuous unitary group

(2.44) R 3 t 7→WA
h (t) ∈ U

(
L2(X)

)
.

It is de�ned as the unique solution of the Cauchy problem

(2.45)

{
i∂tW

A
h (t) = QA(h)WA

h (t), ∀t ∈ R
WA
h (0) = 1l

and given explicitly by the following formula (using the functional calculus with
self-adjoint operators):

(2.46) WA
h (t) = exp

(
− itQA(h)

)
.

Remark 2.10. For any t ∈ R, the unitary operator WA
h (t) leaves invariant

the domain H p
A (X) and by functional calculus with self-adjoint operators:

(2.47) WA
h (t)QA(h)f = QA(h)WA

h (t)f, ∀f ∈H p
A (X).

Let us consider its distribution symbol de�ned by Proposition 1.11:

(2.48) WA
h (t) =: OpA

(
wBh (t)

)
.

A priori we know that wBh (t) ∈ CB(Ξ) for any t ∈ R and that it de�nes by mag-
netic quantization an invertible operator with the inverse having the following
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symbol (usually we denote by F−B the inverse of F ∈ S ′(Ξ) for the magnetic
Moyal product ]B, when this inverse exists):

(2.49)
[
wBh (t)

]−
B

= wBh (−t) = wBh (t) ∈ CB(Ξ).

We also know that the function R 3 t 7→ wBh (t) ∈ CB(Ξ) is a solution of the
Cauchy problem

(2.50)

{
i∂tw

B
h (t) = h]BwBh (t), ∀t ∈ R

wBh (0) = 1

considered in the weak distribution topology.
Let qj(x, ξ) := xj and pj(x, ξ) := ξj , for 1 ≤ j ≤ d. We notice that all the

distributions q1, . . . , qd and p1, . . . , pd are elements of MB(Ξ) (see [11]) and the
distributions p1, . . . , pd are also in S1(Ξ). Let us also denote by Qj := OpA(qj)
and ΠA

j := OpA(pj). Notice that the topology of S (X) may be de�ned by the
following family of seminorms, indexed by (p, q) ∈ N× N:

(2.51) S (X) 3 φ 7→ n2
p,q(φ) := max

|α|≤p
max
|β|≤q

∥∥∥Qα[ΠA
]β
φ
∥∥∥
L2(X)

∈ R+.

Given some distribution F ∈ S ′(Ξ), we set

(2.52) adBqj (F ) := qj]
BF − F]Bqj , adBpj (F ) := pj]

BF − F]Bpj .

Theorem 2.11. Suppose we are given a magnetic �eld B ∈ L2
bc(X) and

a real elliptic symbol h ∈ Sp(Ξ) for some p > 0. For some vector poten-

tial A ∈ L1
pol(X) associated to B, let us consider the self-adjoint operator

QA(h) : H p
A (X)→ L2(X) and its associated unitary group

{
WA
h (t)

}
t∈R. Then

WA
h (t)S (X) ⊂ S (X) for any t ∈ R.

Proof. From Remark 2.10 and the de�nition of QA(h), we conclude that
WA
h (t)S (X) ⊂ H p

A (X). In order to prove the Theorem, it is clearly enough
to prove that (using usual multi-index notation and the symbols and operators
introduced above)

(2.53) Qα
(
ΠA
)β
WA
h (t)φ ∈ L2(X), ∀φ ∈ S (X), ∀(α, β) ∈ N2d.

In dealing with these computations, we shall use some notation.
For 1 ≤ j ≤ d and for any k ∈ N, we denote by p]kj the magnetic Moyal

product of k factors pj , and similarly, p]γ := (p]γ11 )]B . . . ]B(p]γdd ) with multi-
index notation. We also use similar notations for the symbols {q1, . . . , qd}.

For any multi-index α ∈ Nd we denote by {α} the ordered set with α1

entries equal to 1, followed by α2 entries equal to 2 and so on up to the last αd
entries equal to d. Reciprocally, for any subset m ⊂ {γ} for some given γ ∈ Nd
we denote by γm ∈ Nd its associated multi-index.
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For any γ ∈ Nd we shall denote by [adBq ]γ(F ) the multiple commutator

(2.54) [adBq ]γ(F ) := adBqi1
◦ . . . ◦ adBqi|γ|(F ),

where {i1, . . . , i|γ|} = {γ}, and similarly for [adBp ]γ .
We shall use several times the following commutation formula

(2.55)
(
F1]

B . . . ]BFN
)
]BG−G]B

(
F1]

B . . . ]BFN
)

=

=
∑

1≤k≤N

∑
{j1,...,jk}⊂{1,...,N}

[Fj1 ,
[
Fj2 . . . [Fjk , G]B . . .

]
B

]
B
]BFl1]

B . . . ]BFlN−k

where [F,G]B := F]BG−G]BF and for any subset {j1, . . . , jk} ⊂ {1, . . . , N} we
denote by {l1, . . . , lN−k} = {1, . . . , N}\{j1, . . . , jk} all the sets being considered
ordered by the natural order induced by N.

For any pair (α, β) ∈ N2d we have that

(2.56) Qα
(
ΠA
)β

= OpA
(
q]α]Bp]β

)
∈ L

(
S (X); S (X)

)
,

so that for any test function φ ∈ S (X) the following tempered distribution is
well de�ned:[

Qα
(
ΠA
)β
WA
h (t)φ

]
(ψ) =

[
WA
h (t)φ

]((
ΠA
)β
Qαψ)

=

〈(
ΠA
)β
Qαψ , WA

h (t)φ

〉
L2(X)

∈ C, ∀ψ ∈ S (X).

We shall prove that it de�nes in fact a continuous functional of ψ ∈ S (X) for
the topology induced by H p

A (X). The idea is to compute the commutator[
Qα
(
ΠA
)β
, WA

h (t)
]

= OpA
((
q]α]Bp]β

)
]BwBh (t)− wBh (t)]B

(
q]α]Bp]β

))
by computing its distribution kernel and having in mind the composition laws
(1.35) and the fact that the symbol q]α]Bp]β is in the magnetic Moyal algebra
MB(Ξ). In order to deal with the commutators with WA

h (t) we notice that
given some operator XA := OpA(FX) for some FX ∈MB(Ξ) we can write[

XA , WA
h (t)

]
φ =

(
XAWA

h (t)−WA
h (t)XA

)
φ

=

∫ t

0
ds
[
∂s
(
WA
h (t− s)XAWA

h (s)
) ]
φ

= −i
∫ t

0
dsWA

h (t− s)
[
XA , QA(h)

]
WA
h (s)φ.

We are interested for the moment to study the case XA = OpA
(
q]α]Bp]β

))
and

the commutator

(2.57)
[
XA , QA(h)

]
= OpA

(
(q]α]Bp]β)]Bh− h]B(q]α]Bp]β)

)
.

We are going to proceed by induction on N := |α + β| ∈ N, starting with the
following induction hypothesis:
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HN : Suppose that for any (α, β) ∈ N2d with |α| + |β| ≤ N we know that

Qα
(
ΠA
)β
WA
h (t)φ ∈H p

A (X), for any φ ∈ S (X) and for any t ∈ R.

First of all let us notice that the above statement is clearly true for N = 0
due to the fact that S (X) ⊂ H p

A (X) and the unitary group WA
h (t) leaves

invariant the domain of its generator QA(h) : H p
A (X)→ L2(X).

Suppose now that we increase N in the Hypothesis HN above by 1 either
by increasing some αj or some βk by 1 and let us consider some pair
(α′, β′) ∈ N2d with |α′| + |β′| = N + 1. Using formula (2.55) we can compute
the following commutator in the magnetic Moyal algebra (we use the notation

RB
− :=

(
Q(h) + 1

)−1
):

[
OpA

(
q]α
′
]Bp]β

′))
, QA(h)

]
=

(2.58)

=
∑

m⊂{α′}

′ ∑
n⊂{β′}

′
OpA

(
[adBq ]γm

(
[adBp ]γn(h)

))
Qγm{

(
ΠA
)γ

n{ =

=
∑

m⊂{α′}

′ ∑
n⊂{β′}

′
OpA

(
[adBq ]γm

(
[adBp ]γn(h)

))
RB
−
(
Q(h) + i

)
Qγm{

(
ΠA
)γ

n{

where m{ = {α} \m and n{ = {β} \ n and we denote by
∑′

m⊂{α}
the sum over all

subsets di�erent from the void set, so that |γm{ |+ |γn{ | ≤ N .
Finally, for any φ ∈ S (X) we have obtained the following equality of

tempered distributions on X:

(2.59) Qα
′(

ΠA
)β′
WA
h (t)φ = WA

h (t)Qα
′(

ΠA
)β′
φ −

−i
∑

′

m⊂{α}

∑
′

n⊂{β}

∫ t

0
dsWA

h (t− s)OpA
(
DB
γmγn(h)

)(
Q(h) + i

)
Qγm{

(
ΠA
)γ

n{WA
h (s)φ.

We notice that

(2.60) DB
γmγn(h) := [adBq ]γm

(
[adBp ]γn(h)

)
]BrB( h)− ∈ S0(Ξ) ⊂ CB(Ξ)

due to the fact that by Proposition 2.2:

(2.61) [adBp ]γn(h) ∈ Sp(Ξ), ∀n ⊂ {β}, ∅ 6= n 6= {β},

[adBq ]γm
(
[adBp ]γn(h)

)
∈ Sp−|γn|(Ξ), ∀n ⊂ {β}, ∀m ⊂ {α}.

Thus
∥∥OpA

(
DB
γmγn(h)

)∥∥
B(L2(X))

≤ Cα,β(h) <∞. Moreover, we notice that

(2.62) Qα
′(

ΠA
)β′
φ ∈ S (X) ⊂H p

A (X) =⇒ WA
h (t)Qα

′(
ΠA
)β′
φ ∈H p

A (X),
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(2.63) HN =⇒
(
Q(h) + i

)
Qγm{

(
ΠA
)γ

n{WA
h (s)φ ∈ L2(X), ∀s ∈ [0, t],

for any subsets m ⊂ {α′} and n ⊂ {β′} di�erent from the empty set.

Finally, we conclude that

(2.64) Qα
′(

ΠA
)β′
WA
h (t)φ ∈ L2(X).

We consider now the following equality of tempered distributions:

QA(h)Qα
′(

ΠA
)β′
WA
h (t)φ =(2.65)

= Qα
′(

ΠA
)β′

QA(h)WA
h (t)φ +

[
QA(h) , Qα

′(
ΠA
)β′]

WA
h (t)φ =

= Qα
′(

ΠA
)β′
WA
h (t)QA(h)φ +

[
QA(h) , Qα

′(
ΠA
)β′]

WA
h (t)φ

and using the above result and once again formula (2.58) we conclude that it
de�nes in fact an element in L2(X). This proves that H(N+1) is also true and
�nishes the proof of the Theorem. �

3. APPENDICES

A.1. Estimates on the derivatives of ω∼B

We shall consider the multi-indices {σj}1≤j≤d with (σj)k := δjk. We shall

use the notation ω∼Bx (y, z) := e−iF
B
x (y,z) with the explicit expression:

(3.1) FBx (y, z) = 4
∑
j 6=k

yjzk

∫ 1

0
ds

∫ s

0
dtBjk

(
x+ (2s− 1)y + (2t− 1)z

)
.

We shall use the shorthand notation:

(3.2) ry,z(s, t) := (2s− 1)y + (2t− 1)z, ∀(s, t) ∈ [0, 1]× [0, 1].

Then we have the following formulas:

(
∂αxF

B
x

)
(y, z) = 4

∑
j 6=k

yjzk

∫ 1

0
ds

∫ s

0
dt
(
∂αBjk

)(
x+ ry,z(s, t)

)
=

∫
Tx(y,z)
∂αB,

(3.3)

(
∂αy F

B
x

)
(y, z) = 4

∑
j 6=k

yjzk

∫ 1

0
ds

∫ s

0
dt
(
∂αBjk

)(
x+ ry,z(s, t)

)
(2s− 1)|α|+

(3.4)

+
∑
j:αj≥1

∑
k 6=j

zk

∫ 1

0
ds

∫ s

0
dt
(
∂α−σ

j
Bjk

)(
x+ ry,z(s, t)

)
(2s− 1)|α|−1
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(
∂αz F

B
x

)
(y, z) = 4

∑
j 6=k

yjzk

∫ 1

0
ds

∫ s

0
dt
(
∂αBjk

)(
x+ ry,z(s, t)

)
(2t− 1)|α|+

(3.5)

+
∑

k:αk≥1

∑
j 6=k

yj

∫ 1

0
ds

∫ s

0
dt
(
∂α−σ

k
Bjk

)(
x+ ry,z(s, t)

)
(2t− 1)|α|−1.

Let us use the Fa�a di Bruno's formula ( [4]) for the case of the exponential
of a given function −iFB, with the notations (for any m ∈ N \ {0} and any
α ∈ Nd \ {(0, . . . 0)})

Pl(m) :=
{
p = (p1, . . . , pl) | pj ≥ 1∀j ∈ {1, . . . , d}, p1 + · · ·+ pl = m

}
,

(3.6)

Pl(α) :=
{
γ = (γ1, . . . , γl) | |γj | ≥ 1 ∀j ∈ {1, . . . , d}, γ1 + · · ·+ γl = α

}
,

(3.7)

in order to write

∂αxω∼
B
x (y, z) = α!ω∼Bx (y, z)

∑
1≤l≤|α|

1

l!

∑
γ∈Pl(α)

l∏
s=1

1

γs!

(
∂γ

s

x F
B
x

)
(y, z)

= α!ω∼Bx (y, z)
∑

1≤l≤|α|

1

l!

∑
γ∈Pl(α)

l∏
s=1

1

γs!

(∫
Tx(y,z)

∂γ
s
B

)
.

It follows then∣∣∂αxω∼Bx (y, z)
∣∣ ≤ C(d, |α|) max

1≤l≤|α|
max

p∈Pl(|α|)

l∏
s=1

(
|y ∧ z|psρps(B)

)
≤ C(d, |α|)|y ∧ z||α| max

1≤l≤|α|
max

p∈Pl(|α|)

l∏
s=1

µps(B).(3.8)

∂αy ω∼
B
x (y, z) = α!ω∼Bx (y, z)

∑
1≤l≤|α|

1

l!

∑
γ∈Pl(α)

l∏
s=1

1

γs!

(
∂γ

s

y F
B
)
(x, y, z)

= α!ω∼Bx (y, z)
∑

1≤l≤|α|

1

l!

∑
γ∈Pl(α)

l∏
s=1

1

γs!
×

×

∫
Tx(y,z)

∂γ
s
B +

∑
j:αj≥1

S
|γs|,1
Tx(y,z)

[(
∂γ

s−σjB
)
xz
]
j

(3.9)

∣∣∂αy ω∼Bx (y, z)
∣∣ ≤ C(d, |α|) < y >|α|< z >|α| w|α|(B).(3.10)

Evidently we obtain a similar estimate for ∂αz ω∼
B
x (y, z).
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A.2. Estimating an oscillating integral

For (N,M,n1, n2,m1,m2) ∈ N6 and for any Θ ∈ C∞pol
(
X ×X ×X

)
we

de�ne:

W
N,n1,n2

M,m1,m2
(Θ) :=

(3.11)

= sup
(x,y,z)∈X×X×X

< x >−N< y >−n1< z >−n2 max
|a|≤M

max
|b|≤m1

max
|c|≤m2

∣∣∣∂ax∂by∂czΘ(x, y, z)
∣∣∣

that can take also the value +∞.

Remark 3.1. Given Θ ∈ C∞pol
(
X ×X ×X

)
and (M,m1,m2) ∈ N3 there

exist (N, q1, q2) ∈ N3 such that WN,q1,q2
M,m1,m2

(Θ) <∞.

Proposition 3.2. Suppose given a magnetic �eld of class L2
bc(X) and

(F,G) ∈ Sp1(Ξ) × Sp2(Ξ) and let us denote by p̃1 := 2[(d + p1)/2] + 2, p̃2 :=
2[(d+ p2)/2] + 2. Suppose also given a function Θ ∈ C∞pol

(
X×X×X

)
and let

us consider the tempered distribution de�ned by the oscillating integral

MB
Θ [F,G](X) :=

∫
Ξ×Ξ
dY dZe−2iσ(Y,Z)ω∼Bx (y, z)Θ(x, y, z)F (X − Y )G(X − Z).

Then, for any (α, β) ∈ N2d there exist (N, q1, q2) ∈ N3 such that:

W
N,q1,q2
|α|,p̃2,p̃1(Θ) <∞,

< x >−N< ξ >−(p1+p2)+|β|
∣∣∣(∂αx ∂βξMB

Θ [F,G]
)
(X)

∣∣∣ ≤ C(d, p1, p2, α, β)×

×w|α|+p̃1+p̃2(B)WN,q1,q2
|α|,p̃2,p̃1(Θ)

∑
0≤k≤|β|

ρp1−k|α|+p̃2;k,m2
(F ) ρ

p2−|β|+k
|α|+p̃1;|β|−k,m1

(G),

where m1 := 2[p̃2 + (n+ p̃1 + q1)/2] + 2 and m2 := 2[p̃1 + (n+ p̃2 + q2)] + 2.

Proof. Fixing some (x, ξ) ∈ Ξ, the oscillating integrals of the form

< ξ >−(p1+p2)+|β| (∂αx ∂βξMB
Θ [F,G]

)
(X)

can be written by the Leibniz rule as �nite linear combinations of a number
(depending only on |α| ∈ N and |β| ∈ N) of terms of the form

< ξ >−(p1+p2)+|β|
∫

Ξ×Ξ
dY dZ e−2iσ(Y,Z)

[(
∂α0
x ω∼Bx

)
(y, z)

]
[∂a0x Θ(x, y, z)] ×

×
[(
∂α1
x ∂β1ξ F

)
(X − Y )

] [(
∂α2
x ∂β2ξ G

)
(X − Z)

](3.12)

with α0 + a0 + α1 + α2 = α and β1 + β2 = β.
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Let us begin with a rough estimate of the 'momentum integrals' with
respect to (η, ζ) ∈

[
X∗
]2

and notice that:

(3.13) < ξ >−(p1+p2)+|β|
[(
∂α1
x ∂β1ξ F

)
(X − Y )

] [(
∂α2
x ∂β2ξ G

)
(X − Z)

]
≤

(3.14) ≤ Cνp1−|β|1|α1||β1| (F ) ν
p2−|β2|
|α2||β2| (G) ≤ Cνp1|α||β|(F ) νp2|α||β|(G),

Then, in order to control these integrals, some extra factors of convergence
< η >−d−ε< ζ >−d−ε have to be introduced. We are then obliged to get rid of
these growing factors, integrating by parts using the identities

< η >n1 e−2i<〈η,z〉 =< (i/2)∇z >n1 e−2i〈η,z〉,(3.15)

< ζ >n2 e2i〈ζ,y〉 =< (1/2i)∇y >n2 e2i〈ζ,y〉.(3.16)

We choose n1 = p̃1 and n2 = p̃2 (in order to work with polynomials in the
di�erential operators we have to take even exponents). Thus the oscillating

integral < ξ >−(p1+p2)+|β| (∂αx ∂βξMB
Θ [F,G]

)
(X) becomes a linear combination

of a number (depending only on {p1, p2, |α|, |β|, d}) of terms of the form

< ξ >−M
∫

Ξ×Ξ
dY dZ e−2iσ(Y,Z)

[(
∂α0
x ∂µ0y ∂ν0z ω∼

B
x

)
(y, z)

] [
∂a0x ∂

b0
y ∂

c0
z Θ(x, y, z)

]
×

× < η >−n1

[(
∂α1
x ∂µ1y ∂β1ξ F

)
(X − Y )

]
< ζ >−n2

[(
∂α2
x ∂ν1z ∂

β2
ξ G

)
(X − Z)

]
,

whereM = p1 +p2 + |β|, a0 +α0 +α1 +α2 = α, β1 +β2 = β, |b0 +µ0 +µ1| = p̃2

and |c0 + ν0 + ν1| = p̃1. A maximum number of N0 := |α|+ p̃1 + p̃2 derivatives
of the factor ω∼Bx will appear. Considering the factor ∂a0x ∂

b0
y ∂

c0
z Θ(x, y, z) in the

oscillating integral above we notice that |a0| ≤ |α|, |b0| ≤ p̃2 and |c0| ≤ p̃1.
Using the above Remark 3.1 for our function Θ ∈ C∞pol

(
X ×X ×X

)
we can

choose (N, q1, q2) ∈ N3 such that WN,q1,q2
|α|,p̃2,p̃1(Θ) <∞.

In order to obtain integrability in the variables (y, z) ∈ X2, we shall
insert the factors < y >−m1< z >−m2 with m1 = 2[(N0 + p̃2 + q1)/2] + 2
and m2 = 2[(N0 + p̃1 + q2)/2] + 2 and apply once again integration by parts
to transform the compensating factors in derivations with respect to (η, ζ) ∈
(X∗)2. Finally, we obtain a linear combination of a number (depending on
{p1, p2, |α|, |β|, d}) of terms of the form:

< ξ >−M
∫

Ξ
< y >−m1< η >−p̃1 dY

∫
Ξ
< z >−m2< ζ >−p̃2 dZ×(3.17)

× e−2iσ(Y,Z)
[(
∂α0
x ∂µ0y ∂ν0z ω∼

B
x

)
(y, z)

] [
∂a0x ∂

b0
y ∂

c0
z Θ(x, y, z)

]
×

×
[(
∂α1
x ∂µ1y ∂β1ξ ∂

θ1
η F

)
(X − Y )

] [(
∂α2
x ∂ν1z ∂

β2
ξ ∂

θ2
ζ G

)
(X − Z)

]
.
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Due to the above remarks we can estimate each integral of the form (3.17) by

< x >N w|α|+p̃1+p̃2(B)WN,q1,q2
|α|,p̃2,p̃1(Θ)

∑
0≤k≤|β|

ρp1−k|α|+p̃2;k,m2
(F ) ρ

p2−|β|+k
|α|+p̃1;|β|−k,m1

(G)

and �nish the proof of the Proposition. �
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