WEIGHTED KIRCHHOFF PROBLEM OF N-SCHRODINGER TYPE
INVOLVING LOGARITHMIC WEIGHT UNDER DOUBLE
EXPONENTIAL NONLINEAR GROWTH

SAMI BARAKET, ANIS BEN GHORBAL, RACHED JAIDANE, and FOUED MTIRI

Communicated by Lucian Beznea

We consider the existence of solutions of the following weighted problem:

Liogu = f(z,u) inB
u > 0 in B
u = 0 on 0B,

where
Ligyui=g( /B (o@)Vul" +¢(@)|ul™) de)[~div (o) TN V) +(@)a ],

B is the unit ball of RN, N > 2, o(x) = (log(‘—;‘))N*1 the singular logarithm
weight with the limiting exponent N — 1 in the Trudinger—Moser embedding,
&(x) is a positive continuous function. The Kirchoff function g is positive and
continuous on (0,+00). The nonlinearities are critical or subcritical growth in
view of Trudinger—Moser inequalities of double exponential type. We prove the
existence of positive solution by using Mountain Pass Theorem. In the critical
case, the function of Euler—-Lagrange does not fulfil the requirements of Palais—
Smale conditions at all levels. We dodge this problem by using adapted test
functions to identify this level of compactness.

AMS 2020 Subject Classification: 35J20, 35J30, 35K57, 35J60.

Key words: Moser—Trudinger’s inequality, nonlinearity of double exponential
growth, mountain pass method, compactness level.

1. INTRODUCTION

In this paper we study the following weighted problem

Lggou = f(r,u) inB
(1) u > 0 in B
u = 0 on 0B,

where

Ligg):= g(/B (a(x)|Vu|N+§(x)|u|N)dx) [—div(o(z)|VulN 2 Vu)+£(z)uN 1],

REV. ROUMAINE MATH. PURES APPL. 70 (2025), 3-4, 167-197
doi: 10.59277/RRMPA.2025.167.197


http://dx.doi.org/10.59277/RRMPA.2025.167.197

168 S. Baraket, A. Ben Ghorbal, R. Jaidane, and F. Mtiri 2

B is the unit ball of RN, N > 2, f(z;t) is continuous in B x R and behaves

N
like exp{e®" '} as t — o0, for some a > 0 and £ : B — R is a positive
continuous function satisfying some conditions. The weight o(z) is given by

(2) (@) = (1og( 5 ,))Nl.

The Kirchhoff function g is a continuous positive on (0, +00), satisfying
some mild conditions.
In 1883, Kirchhoff studied the following parabolic problem

3 0*u Po 2 0*u
) o= (Gt ‘*’ *) gt

The parameters in equation have the following meanings: L is the length of
the string, h is the area of cross-section, F is the Young modulus of the material,
o is the mass density and F, is the initial tension. These kinds of problems
have physical motivations. Indeed, the Kirchhoff operator g(( [ |[Vu/|?dz))Au
also appears in the nonlinear vibration equation namely

8t2 -9([5 |Vu|?dz)div(Vu) f(z,u) in B x (0,7),

u > 0 in B x (0,T),
(4) u = 0 on 0B,
u(z,0) = wo(xr) in B,
%7; (,0) = wi(z) in B,

which have focused the attention of several researchers, mainly as a result of
the work of Lions [27]. We mention that non-local problems also arise in other
areas, e.g., biological systems where the function w describes a process that
depends on the average of itself (for example, population density) see, e.g.,
[3, 4] and their references.

In the non-weighted case, i.e., when o(z) =1, £(x) = 0 and when N = 2,
problem can be seen as a stationary version of the evolution problem .
For instance, in if we set o(x) = 1, N = 2 and ¢(¢t) = 1, then we find
the classical Schrodinger equation —Au + &(x)u = f(x,u). Also, if we take
o(x) =1, N =2,&(z) =0 and g(t) = a+ bt, with @,b > 0, we find Kirchhoff’s
classical equation which has been extensively studied. We refer to the work
of Chipot [I7, [I§], Corréa et al. [24] and their references. We point out that
recently, in the case ¢g(t) = 1, and £ = 0 or £ # 0, Baraket et al. [6], Deng, Hu
and Tang, and Calanchi et al. [19) [14] have proved the existence of a nontrivial
solution for the following boundary value problem

{—div(w(m)qu(x)lN_QVu(x))+§(:c)lulN_2u = f(x,u) in B,
u = 0 on 0B,
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where B is the unit ball in R, N > 2, the radial positive weight w(z) is of
logarithmic type, the function f(z,u) is continuous in B x R and has critical
double exponential growth. In order to motivate our study, we begin by giving
a brief survey on Trudinger—Moser inequalities. Since 1970, when Moser gave
the famous result on the Trudinger—Moser inequality, many applications have
taken place such as in the theory of conformal deformation on collectors, the
study of the prescribed Gauss curvature and the mean field equations. After
that, a logarithmic Trudinger—Moser inequality was used in a crucial way in
[26] to study the Liouville equation of the form

{—Au = A< inQ,

Jae*

5
(5) u = 0 on 0f2,

where Q is an open domain of RY, N > 2 and \ a positive parameter.

The equation has a long history and has been derived in the study
of multiple condensate solution in the Chern—Simons—Higgs theory [29, 30]
and also, it appeared in the study of Euler Flow [9, [I0l 16 23]. Later, the
Trudinger—Moser inequality was improved to a weighted inequalities [Il, 1T,
12, [15]. The influence of the weight in the Sobolev norm was studied as the
compact embedding in [25]. When the weight is of logarithmic type, Calanchi
and Ruf [13] extend the Trudinger-Moser inequality and give some applica-
tions when N = 2 and for prescribed nonlinearities. After that, Calanchi et
al. [14] consider a more general nonlinearities and prove the existence of ra-
dial solutions. We should also refer to the interesting work of Figueiredo and
Severo [22] where they studied the following problem

—m( [y |Vul*dz)Au = f(z,u) inQ,
u > 0 in €,
u = 0 on 01},

where  is a smooth bounded domain in R?, the nonlinearity f behaves like
exp(at?) as t — +oo, for some a > 0. Also, m : (0,4+00) — (0,+0o0) is a
continuous function satisfying some conditions. The authors proved that this
problem has a positive ground state solution. The existence result was proved
by combining minimax techniques and Trudinger—Moser inequality. It should
be noted that recently, the following nonhomogeneous Kirchhoff-Schrédinger
equation

_M</R2 IVul® + V(‘$|)u2dx> (—Lu+€(|z|)u) = Q(z)g(u) + eh(z),

and
u(z) -0 as |z| — +oo,
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has been studied in [2], where ¢ is a positive parameter and M : RT — RT,
V,Q : (0.4 00) = R, are continuous functions satisfying some mild conditions.
The nonlinearity § : R — R is continuous and behaves like exp(at?) as t — 400,
for some o > 0. The authors proved the existence of at least two weak solutions
for this equation by combining the Mountain Pass Theorem and Ekeland’s
Variational Principle.

Finally, we note that recently, Xiu, Zhao and Chen [31], studied the
following singular nonlocal elliptic problem:

—M(/RN |x]_“p|Vu|p>div(|$]_“p|Vu|p_2Vu) = h(@)|ul""%u + H (2)ul*" %y,

and
u(z) = 0 as |z| — +oo,

where x € RN, M (t) = b+at, a,b > 0,a < %, h(z) and H(x) are nonnegative
function. They proved that this problem has infinitely many solutions by
variational methods and the genus theorem.

Inspired by the works cited above, we investigate our problem in adapted
weighted Sobolev space setting. We use Trudinger—Moser inequality to study
and prove the existence of solutions to ().

In literature, more attention has been accorded to the subspace of radial
functions

Wosaa (B, ) = ctfu € cggad(m;/ o) Vul¥ do < oo},
Q
endowed with the norm

1
IVully = (/Qa@:)yvu\N dr)™

So, we are motivated by the following double exponential inequality proved in
[12], which is an improvement of the Trudinger—-Moser inequality in a weighted
Sobolev space.

THEOREM 1.1 ([12]). Let o given by (3)), then

N
(6) / exp{e‘“‘Nﬁ1 }dx < 400, Vue Woljrad(B,o)
B
and
Sr e AT A
(7) sup / exp{ﬁe“’fv\ll1 W e < 400 & B<N,
uEWolyrad(B,o) B
l[ullv,o<1

where wy_1 is the area of the unit sphere SN=1 in RN
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The major difficulty in this problem lies in the concurrence between the
growths of g and f. To avoid this difficulty, many authors usually assume that
g is increasing or bounded (see [3] 4, 22]).

Let us now state our results.

We impose the following conditions for the Kirchoff function g. So, we
define the function

G(t) = /0 o(s)ds,

where the function ¢ is continuous on R™ and verifies:

(G1) There exists go > 0 such that g(t) > go for all t > 0 and
G(t+s)>G(t)+G(s) Vs, t>0;

(G2) @ is nonincreasing for ¢ > 0.

The assumption (Gs) implies that @ < ¢g(1) for all ¢ > 1. Then, one has
g(t) < g(1)t for t > 1. As a consequence of (G3), a simple calculation shows
that ) )

NG(t) - ﬁg(t)t is nondecreasing for ¢ > 0.
Consequently, one has

1 1
— - — > > 0.
(8) G = 39t =0, ¥ =0

A typical example of a function ¢ fulfilling the conditions (G1), (G2) and (G3)
is given by
g(t) = go + at, go,a > 0.

Another example is given by g(t) = 1+ In(1 + ¢).
For this paper, we hypothesize that the nonlinearity f(z,t) verifies the
following assumptions:

(A1) The nonlinearity f : B x R — R is positive, continuous, radial in z,
and f(x,t) =0 for t <0.

(Ag) There exist typ > 0 and My > 0 such that for all ¢ > ¢y and for all
r € B we have
0 < F(z,t) < Mof(z,t),
where

F(m,t):/o f(z,s)ds.

(A3) For each x € B, tfg(,fffz is increasing for ¢ > 0.
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. x,t)t . . .
(Ag) limyyoo W > 7o uniformly in z, with
Ng(Gx=1)

Yo > (m,N)

aévfleN(Nf 1 +e_€N*]1V )

and (N + DN — 1)!

+1)(N —1)!

c(m,N)zm(G(N)+ = +1),
where

2 N-1 N —1)(N —2 N-1)(N-2)---3
s 24 N1 (NSDW =) (VD=2

N N2 N3 NN-2

The condition (Ag) implies that for any ¢ > 0, there exists a real t. > 0 such
that

9) F(z,t) <etf(x,t), Y|t| >t., uniformlyin x € B.
Also, we have that the condition (As) leads to
t
(10) hmf(””@’ ) 0 forall 0<f<2N—1.
t—0 ¢t

The asymptotic condition (A4) would be crucial to identify the minimax level
of the energy associated to the problem .
An example of such nonlinearity, is given by f(t) = F’(t), with
£2N+2

F(t) =

®) 2N +2
where 7 > 2N and N’ is the conjugate of N. A simple calculation shows that
f verifies the conditions (A1), (42), (43) and (Ay).

The potential £ is continuous on B and verifies

+1t7 exp(NeO‘OtN ),

1 x) > & > 0in B for some & > 0. So the function * belongs to
£
L~1(B).
In view of @ and , we say that f has subcritical growth at +oo if
s—+00 exp{NeOéS }
and f has critical growth at +o0 if there exists some ag > 0 such that
f(, s)|

s——+o0 eXp{NeasN/}

|f ()]

s—>+00 exp{NeasN/ }

=0, forall a>0

=0, Ya>aqy and
(12)
=+o0, Ya<ag.



7 Weighted Kirchhoff problem of N-Schrédinger type 173

To study the solvability of the problem , consider the space

W = {u € Wiy | [ €@lul¥do < +oc},

endowed with the norm

lul| = </B U(:I:)\Vu]Nd;C+/Bé*(x)’u‘Ndxyir

We say that w is a solution to the problem , if w is a weak solution in the
following sense.

Definition 1.2. A function u is called a solution to (1)) if u € 20 and

g(HunHN) {/ (U(a:)]Vu\NfQVuVLp—i—ﬁ]u\N*Qu(p)daﬁ} :/ f(z,w)edz, ¥ @ € 20.
B B

It is clear that finding weak solutions of the problem is equivalent to
finding nonzero critical points of the following functional on 20:

(13) £(w) = 5G(lul™) - [ Flauda

where F(x,u) fo f(x,t)dt.

In order to ﬁnd critical points of the functional £ associated with ,
one generally applies the mountain pass given by Ambrosetti and Rabinowitz,
see [0].

We start by the first result. In the subcritical double exponential growth,
we have the following result.

THEOREM 1.3. Let f(x,t) be a function that has a subcritical growth at
+oo and satisfies (A1), (A2) and (As). In addition, suppose that (G1) and
(G2) hold, then problem has a nontrivial radial solution.

In the context of the critical double exponential growth, the study of
the problem becomes more difficult than in the subcritical case. Our
Euler-Lagrange function is losing compactness at a certain level. To over-
come this lack of compactness, we choose test functions, which are extremal
for the Trudinger—-Moser inequality . Our result is as follows:

THEOREM 1.4. Assume that f(z,t) has a critical growth at +00 and sat-
isfies the conditions (A1), (A2), (As) and (A4). If, in addition, (G1) and (G2)

are satisfied, then the problem has a nontrivial solution.

To the best of our knowledge, the present paper’s results have not been
covered yet in the literature.

This paper is organized as follows. In Section[2] we present some necessary
preliminary knowledge about functional space. In Section [3, we give some
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useful lemmas for the compactness analysis. In Section [4] we prove that the
energy & satisfies the two geometric properties. Section[fis devoted to estimate
the minimax level of the energy. Finally, we conclude with the proofs of the
main results in Section [] Through this paper, the constant C' may change
from one line to another and we sometimes index the constants in order to
show how they change.

2. WEIGHTED LEBESGUE AND SOBOLEV SPACES SETTING

Let Q ¢ RN, N > 2, be a bounded domain in R and let o € L'(Q) be
a nonnegative function. Following Drabek et al., and Kufner in [20} 25], the
weighted Lebesgue space LP(£2, o) is defined as follows:

LP(Q,0) = {u : Q — R measurable; /

o(x)|ulP dx < oo},
Q

for any real number 1 < p < oo. This is a normed vector space equipped with

the norm
1

e = o@lup dz)”

and for o(x) = 1, we find the standard Lebesgue space LP(2) and its norm

ol = ( [ )"

In [20], the corresponding weighted Sobolev space was defined as
WP (Q,0) = {u e LP(Q); Vue LP(Q,0)}
and equipped with the norm defined on W1?(Q) by

1
(14) lullwrr.e) = (lullh + [Vullb )7
LP(Q2,0) and WLP(§, o) are separable, reflexive Banach spaces provided that
-1
o(x)7T € LL ().

Furthemore, if o(z) € L{ (€2), then C§() is a subset of WP(Q2, o) and

loc
we can introduce the space Wg’p(Q, o) as the closure of C§°(Q2) in WHP(Q, o).

The space WO1 P(Q,0) is equipped with the following norm:

1
(15) ||u||W01’p(U7Q) = (/Q U($)|Vu|p dl’) p’

which is equivalent to the one given by (14).
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Also, we use the space VVO1 N(Q,0), which is the closure of Ce () in
WLN(Q, o), equipped with the norm

g0 = ([ o@IVul” do)

Let s the real such that
(16) s€(1,+00) and o * € LY(Q).

z|~

The last condition gives important embedding of the space WhV(€, o) into
usual Lebesgues spaces without weight. More precisely, following [20] we have

(17) WL (Q,0) — LY(Q) with compact injection
and
WN(Q, o) — LNT(Q) with compact injection for 0 <n < N(s— 1),

provided
o * € L'(Q) with s € (1,400).
Let the subspace

W&rad(B,U) = cl{u IS Cgiad(Q);/ a(:z)\Vu|N dxr < oo},
Q

o) = <1°g<| |>)N1'
Then the space

W = {uEWOrad |/§ |u\Ndx<+oo}

with

is a Banach and reflexive space provided (&) is satisfied. 20 is endowed with

the norm
_ N N %
full = ([ ot@vul¥ao+ [ s@lul¥iz)”,

which is equivalent to the following norm

1
.00 = ([ o@IVul o)

3. PRELIMINARIES FOR THE COMPACTNESS ANALYSIS

In this section, we present a number of technical lemmas for our future
use. We begin by the radial lemma.

LEMMA 3.1 ([6]). Assume that £ is continuous and verifies (£1).
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(i) Let u be a radially symmetric C} function on the unit ball B [L1].
Then, we have

1 1 e
[u(@)] < ——1og" (1log (5 ) ) Il
wN ||

N-1
where wy_1 s the area of the unit sphere Sy_1 in RN,

(ii) There ezists a positive constant C' such that for all u € 20,

/stmsmmW
B

and then the norms
1

I and w00 = ([ o9 do)™
’ Q
are equivalents.

(iii) The following embedding is continuous

W — LIY(B) forall qg>1.

(iv) 20 is compactly embedded in LI(B) for all ¢ > 1.
Next, we give an important lemma.

LemMA 3.2 ([21]). Let Q@ C RN be a bounded domain and f : Q@ x R a
continuous function. Let {un}, be a sequence in L'(Q) converging to u in
LY(Q). Assume that f(x,u,) and f(x,u) are also in L*(Q). If

[ 18 wn)unlao < .
Q
where C' is a positive constant, then

f(z,up) = (z,u) in LYQ).

In an attempt to prove a compactness condition for the energy £, we need
a Lions type result [28] about an improved Trudinger—-Moser inequality when
we deal with weakly convergent sequences and double exponential case.

LEMMA 3.3 ([6]). Let {ug}r be a sequence in Q3. Suppose that ||ug| =1,
Up, — u weakly in W, up(r) = u(zr) and Vuy(x) — Vu(x) almost everywhere
in B. Then L

Nl N
sup exp(Neprfl Uk )dw < +00,
k
for all 1 < p <P, where &
—1 .
p._ )= [uM)™=1if fJull <1,
oo if Jull = 1.

Proof. For the proof, see [6]. O
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4. THE MOUNTAIN PASS GEOMETRY OF THE ENERGY

Since the nonlinearity f is critical or subcritical at +oo, there exist posi-
tive constants a, C' > 0, and there exists to > 1 such that

(18) f(z,1)] < Cexp(e® ™), V|t > to.
So the functional £ given by is well defined and of class C.

In order to prove the existence of nontrivial solution to the problem ,
we prove the existence of nonzero critical point of the functional £ by using
the result introduced by Ambrosetti and Rabinowitz in [5] (Mountain Pass
Theorem).

Definition 4.1. Let (uy,) be a sequence in a Banach space E, J € C'(E,R)
and let ¢ € R. We say that the sequence (u,) is a Palais—Smale sequence at
level ¢ (or (PS). sequence) for the functional J if

J(up) —c in R, as n — +o0

and

J'(up) =0 in E', as n— +oo.
We say that the functional J satisfies the Palais-Smale condition (PS). at the
level ¢ if every (PS). sequence (uy,) is relatively compact in E.

THEOREM 4.2 ([5]). Let E be a Banach space and J : E — R a C!
functional satisfying J(0) = 0. Suppose that

(i) There exist p,3 > 0 such that for all w € dB(0, p), J(u) > B;
(ii) There exists x1 € E such that ||z1] > p and J(x1) < 0;

(iii) J satisfies the Palais-Smale condition (PS), that is any Palais—Smale
sequence (uy) in E is relatively compact.

Then, J has a critical point u and the critical value ¢ = J(u) verifies

— inf J(~(t
¢i= Inf max J (7(0)

where I' :== {y € C([0,1], E) such that v(0) =0 and y(1) = x1} and ¢ > S.

Before starting the proof of the geometric properties for the functional &,
it follows from the continuous embedding 20 < L94(B) for all ¢ > 1, that there
exists a constant C' > 0 such that |lu||n/q < cf|ul], for all u € 20.

In the next lemmas, we prove that the functional £ has the mountain
pass geometry of Theorem
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LEMMA 4.3. Suppose that f has critical growth at +o0o. In addition, if
(A1), (A3) and (G1) hold, then, there exist p, 3 > 0 such that J(u) > 8 for all
u € W with ||u|| = p.

Proof. Tt follows from that there exists dg > 0 such that
(19) F(x,t) < €lt|™, for |t| < do.

From (A3) and , for all ¢ > N, there exists a positive constant C' > 0
such that

(20) F(z,t) < Ct|%exp(e® ™), ¥ [t| > 61
Using , and the continuity of F', we get for all ¢ > N
(21) F(z,t) < elt|N + Clt|7exp(e® "),  forall teR.

Since

& = 5G(Iul™) = [ Plaua
we get from (G1) and (21)

E(u) > @HUHN - 5/ JulN dx — C'/ |u|? exp(e” utt ) dz.
N B B
From the Hoélder inequality, we obtain
, 1
£u) > Lul - 5/ N da — c(/ exp(Ne® M )dz) ™ ul 4,
B
From the Theorem [T.1] if we choose u € 20 such that

1

(22) allull ¥ < Wy,
we get
/ exp(Ne“ |“‘N,)d:1: = / exp(Nea el (”u\l)N )dm < +00.
B B

On the other hand, |lul/n7q < Ci||ul], so

g g
E(u) = Ll = eCullull™ = Clull? = [[ull¥ (52 = eCr = Clull*~ )

N
1
for all u € 20 satisfying (22)). Since N < ¢, we can choose p = [|u] < “X=* and
for fixed € such that £ — 601 > 0, there exists
g =pV (N—EC& C’pq_N)>0 with E(u) > > 0. O

By the following lemma, we prove the second geometric property for the
functional £.
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LEMMA 4.4. Suppose that (A1), (A2), and (G2) hold. Then there exists
e €0 with E(e) < 0 and |le]| > p.

Proof. From the condition (G3), for all t > 1, we have that

(23) G(t) < 9(21)t2.

It follows from the condition (As), for all ¢ >t
flz,1) ot (z,t) > Tl[ (z,1)
z,t) = = F(x F(z,t)-
) t Y — 0 )

So .
F(z,t) > C eM, Yt>tg.
In particular, for p > 2N there exists C; and Cy such that

(24) F(l‘,t)201|t|p—02, VteR, x € B.

Next, one arbitrarily picks @ € 20 such that ||a|| = 1. Thus, from and
forallt>1

— g(l) 2N D D _ WN-1
J(tu) < 2Nt -4 Hu|| t N Cs.
Therefore,

lim J(tu) = —oc.

t——+o0

We take e = tu, for some £ > 0 large enough. So, Lemma [4.4] follows. [

5. THE MINIMAX ESTIMATE OF THE ENERGY

According to Lemmas [4.3] and [£.4] let

dy = inf E(y(t 0
RO ) >

and
A= {fy € C’([O, 1],%) such that (0) =0 and E( ) < O}

We are going to estimate the minimax value of the functional £. The idea is to
construct a sequence of functions (v,) € 20 and estimate max{&(tv,) : t > 0}.
For this goal, let us consider the following Moser function

ooz (157)

wp(T) = — logN(1+n)
WN_1 log N (1 +n) o< |z <e™

ife™ <|z| <1,

) Then v, € 20 and ||v,|| = 1.
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5.1. Helpful lemmas

We need two technical lemmas that help us reach our aims and objectives.

LEMMA 5.1 ([6]). Assume &(x) is continuous and (&1) is satisfied. Then
there holds

(i)
(S(N) + WD 41 4 0,(1))
log(1 + n)
where m = max, 5 &(z), 0,(1) = 0 as n — +oo and
2 N-1 N-1)(N -2 N-1)(N-2)---3
LNoL (ND(N-9) (N D(N-2)3

N m
[wn[I™ <1+ + on(1),

N N2 N3 NN—2
(ii) .
E(m7N7n) S W S D(€07N7n)7
Wn,
where
m(S(N) + D g 46,1
E(m,N,n)=1— (S) NZ ) + 0n(1)
(N —1)log(l+mn)
and
S(N) + NV 4 4o, (1
D(é-O)N)n):]-_gO( ( ) NT ( )) +On(1)
(N —1)log(1l+n)
Proof. For the proof, see [6]. O
Now, we have the following estimation:
1
N-1, N’
lim exp{ Ne“~n-1 " Ly
nTree Jemnglal<i { }
n 1logN/(1+t)
= nEmeN_l/o exp{Nelogm(l-‘rn)HwnHNl — Nt}dt
> wy-1el.

5.2. The minimax value of the energy &

Finally, we give the desired estimate.

LEMMA 5.2. Assume that (G1), (G2) and (As) holds, then

1 WN—1
dy < —G( N )
N o 1
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Proof. We have v,, > 0 and ||v,|| = 1. So, from Lemma{.4} £(tv,) — —o0
as t — +00. As a consequence,

d, < max & (tvy)-
t>0

We argue by contradiction and suppose that for all n > 1,

max & (tvy,) > lG(M\F1 )

>0 - N aév—l

Since £ possesses the mountain pass geometry, for any n > 1, there exists
t, > 0 such that

_ 1 rwNn-—1
I{lgg{é’(tvn) = E(tpon) > NG( o )

Using the fact that F(z,t) > 0 for all (z,t) € B x R, we get
GN) > G(WN”).

N—-1
o
On one hand, the condition (Gi) implies that G : [0,4+00) — [0,+00) is an
increasing bijection. So
(25) N > ON-L

N-1°
Qy

On the other hand,

d

_ Ny\;N—-1 _
%J(w”)‘tztn =gt )t,  — /Bf(x,tnvn)vndx =0,

that is
(26) gtV = / F(s tvn) b vnda.
B

Now, we claim that the sequence (t,,) is bounded in (0, +00). Indeed, it follows
from (A4) that for all € > 0, there exists ¢, > 0 such that

(27) flz,t)t > (y0 —¢) exp(NeaOtN ) V|t| >t., uniformly in x € B.
By Lemmal5.1] if [z| < e~ we have

AN 11 : lo)g;(lJ:n)
ek m(S(N)+ DW= g4, 1
W 1 e - —— LES
1 m(S(N) + WHDN-1! | 4
(28) = —log(1+n) — (&) N ) + 0n(1)
wy_ (N = Dwy
1 ¢E(m, N
= jlog(l + n) — (m—L + On(l),

WN1 (N = Dwyy
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where v 1
+ - 1!
elm, N) = m(S(N) + = +1).
We have
(29)
gt > (v — a)/ exp{Neaot,iV oy Ydo
0<|z|<e—™
aotl’ (—— log(1+n)—-—=N— 40, (1))
Wi L (N-1w DT
> (0 — 5)/ exp{Ne N-1 N_1 }dm
0<|z|<e—™
TR e
—1 —
=wn-1(70 —¢€) exp{Ne “N-1 (N=Dwy 7} _ Nn}.

Using the condition (Gz), we obtain
i tﬁl log(1+n)
(30) g = At (g0 — &) exp(Nev ~ Nn).
From , we obtain for n large enough

aoth” ( - log(1+n)——N)15(1))

1> M]\if_l (v0—¢) exp(Ne “NC1 (V=D —log(g(l)tiN))
Therefore, (t,) is bounded in R. Also, we have
WN-1
tN > .
n = a(j]v,1
Now, suppose that
. WN-1
lim ¢ :

For n large enough, ¢ > z%j and in this case, the right-hand side of the

0
inequality gives the unboundedness of the sequence (¢,). Since (¢,) is
bounded, we get

. WN-1
1 lim t) = :
(31) P tn aé\f—l

We claim that leads to a contradiction with (A4). For this purpose, the
following sets should be used

A, ={z € Blt,v, > t.} and C, = B\ A,,

where t. is given in . We have

g(tg)tﬁ[ = / f(x7 tnvn)tnvndw = f(l‘, tnvn)tnvndx + / f(%, tnvn)tnvn
B

-A'n, n
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> (v0—¢) / exp{Ne® "% Ydz + [ f(w, tyvn)tavada
Ay Cn

=00 =¢) / exp{Neaotﬁy o tdz — (v — ) / exp{NeaotnN v tdx
B

n

—l—/ f(z, thop ) tponde.
Cn

Since v, — 0 a.e in B, x¢, — 1 a.e in B, therefore, using the dominated
convergence theorem, we get

WN-1\ WN-1
e )
n%lrfoog(tn )tn 9 Olévil Oéévil

> _ 3 aotﬁ’/vﬁjl o . WN-1 N.
> (0 =) lim [ exp(Nemt i jdo — (30— ) A

By using the fact that

WN— 1
N
Qo

tN >

we get
1

’ ! N-T
/exp{Neaotfy vnl tdx 2/ exp{NerN o }da
B 0<|z|<e—m

1
N-1 /
+/ exp{Newal vn’ }dac.
e k<|z|<1
On one hand, we have by (29 .
N 1
/ exp{NewN Lo }da:
0<|z|<e—™

> / eXp{Nelog(lJrn),@(m N) +on(1 )) }dx
<|z|<em

. WN—-1 (’:(m, N) —Nn
=~ exp{N—i—Nn N1 —I—On(l)}e

WN— ¢(m, N WN— _
=e— ! exp{N - ](\71) +0n(1)} — TleN
On other side, we have by the definition of v, and previous estimates,

log™’ (log(1%7))
1 l\z\
/ exp{NewN h }dx—/ eXp{N@uwnuN’logN—l(1+n>}dx
—n<]z|<1 e "<|z|<1

> wy_re

g(m,N)
N-1

Hence
N ¢(m,N)

WN— WN— (& _
lim g(t, )N:g< %,i) %71 > (VO_E)WN—lﬁ(N—l—I-e N—1 )
o

n—-+o0o 0‘0
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Since € > 0 is arbitrary, we have
Ng(*¥=1)

0

ad TLeN(N —14e  ~-1)

This contradicts (A4). The lemma is proved. [

6. PROOF OF MAIN RESULTS

First, we begin by some crucial lemmas. We consider the Nehari manifold
associated to the functional £, namely,

N={uew: & uu=0,u#0},

and the number ¢ = in/fv E(u). We have the following lemmas.
ue

LEMMA 6.1. Assume that the condition (As) holds, then for each x € B,
tf(x,t) —2NF(x,t) is increasing for t > 0.
In particular, tf(z,t) —2NF(x,t) > 0 for all (z,t) € B x [0, +00).

Proof. Assume that 0 < t < s. For each = € B, we have

tf(z,t) —2NF(z,t) = ‘:;(jﬁ ?t” 2NF(z,s) + 2N /Sf(:z,y)du
t

< ;(N tl) t*N —oNF(z,s) + igﬁ’_sl) (52 — 2
=sf(z,s) —2NF(x,s). O

LEMMA 6.2. If (G2) and (As) are satisfied, then d. < c.

Proof. Let w € N, u > 0 and consider the function v : (0,+00) — R
defined by ¥ (t) = E(tu). 1 is differentiable and we have

W'(8) = &' (tw)a = gt ||al| ™M)V |V — / F(x, ta)adz, for allt > 0.

Since % € N, we have &'(#)a = 0 and therefore g(||a||V)||a|Y = [, f(z,a)udz.
Hence,

N [al v [

+t2N1/B(f($’ﬂ) _ f@ ) )EQNd:U.

w?N-T  (tg)2N-T

W(t) = t2N1||u”2N<g(tN||ﬂ”N)” g(llﬂHN)>
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We have that ¢/(1) = 0. We have also by the conditions (G2) and (As) that
P'(t)>0forall0<t<1,¢'(t) <0 forall ¢t > 1. It follows that

E(u) = max E(tu).

We define the function A : [0,1] — & such that A(t) = ttu, with £(ta) < 0. We
have A € A, and hence
dy < E(A)) < E(tu) = E(u).
< max E(A(1)) < max€(tu) = £(a)
Since u € N is arbitrary then d, < c.
The main difficulty in the approach to the critical problem of growth
is the loss of compactness. Precisely, the overall conditions of Palais—Smale
are not verified for a certain level of energy. In the following proposition, we

identify the first level of non-compactness below which the (PS)y condition
holds. [

PROPOSITION 6.3. Let £ be the energy associated to the problem de-
fined by (13). Assume that the conditions (G1), (G2), (A1), (A2), (A3) and
(A4) are satisfied, then

(1) In the subcritical case, the functional € satisfies the Palais—Smale con-
dition (PS)q at all level d € R.

(ii) In the critical case, the functional £ satisfies the Palais—Smale condi-
tion (PS)4 only for level d such that d < +G(“X=).
)

Proof. We start with the second item. Consider a (P.S), sequence in 20,
for some d € R, that is

1
62 )= yGllual™) ~ [ Flude 5 d s o
B
and

1 an)el Jolunl™)] | (@) Tun¥ 2V + (@l unl o]
(33) v

- [t w)pde] < el

for all p € I, where €, — 0, when n — +o0.
By , for all € > 0 there exists a constant C' > 0

1
—G(JJun||V) < C’—l—/ F(z,up)dx.
N B

From @, for all € > 0, there exists . > 0 such that
F(z,t) <etf(z,t), forall |t/ >t and uniformly in x € B.
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It follows that,

FelmIM <+ [

[un|<te

F(z,up)dx + e/ [z, up)upde.
B

From , we get

1 1
a9 lun )|V < SG(llunll™) < Cr+ eenllun] + eg(llun] ™) un]™,

for some constant C7 > 0. Using ({8)) and the condition (G1), for all € such that
O<e< ﬁ, we get

1
90 (557 =€) lunll™ < €1 + ecalfunll

We deduce that the sequence (u,) is bounded in 2. As a consequence, there
exists u € 2 such that, up to subsequence, u, — u weakly in 20, v, — u
strongly in L4(B), for all ¢ > 1.

Furthermore, we have from and , that

0< [ S unun<C.
B
and
0 </ F(z,uy,) <C.
B
Since by Lemma [3.2] we have
(34) f(z,u) = f(z,u) in L'(B) as n — +oo,

then, it follows from (As) and the generalized Lebesgue dominated convergence
theorem that

(35) F(x,u,) = F(z,u) in L*(B) as n — +oo.
So,
(36) nEIEOOG(HuHN):N(d—i—/BF(x,u)d:n).

Next, we are going to make some claims.
Claim 1. Vuy(x) — Vu(z) a.e. x € B. Indeed, for any n > 0, let

An:{xGB,]un—u\zn}.

For all t € R, for all positive ¢ > 0, we have ct < Nef + % It follows that for

= [ un — ul NN 1
=l () el

i — u 5

N-1
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we get
5 |un — UH2N/
t — ™' < N R (Y
N
N1 T/ |lun—ul
< N A EEEDY oy (v,

where C (V) is a constant depending only on N and the upper bound of ||u,,]|.
So, if we denote by L(A,) the Lebesgue measure of the set A,, we obtain

|un —u|

1
£(An):/ e|un—u\Ne—\Un—u|Nd$ < e—nN/ eXp(Ne 1{7\7 1(m) +01(N))dl‘
-An ‘ATI

1
N-TI( |lun—ul \N'

Se_"N/ecl(N)/ exp(Newal(H“n—uH) )dw
B

<e " C3(N) =0 as n— +oo,

where C3(N) is a positive constant depending only on N and the upper bound
of [Juyl|. It follows that

’ 1
(37) / |Vu,—Vuldr < Ce_énN(/ |Vun—Vu|2cT(x)dx) 5 0asn— +o0.
B

n

We define for n > 0, the truncation function used in [7]

s if |s| <,
Tn(s) = s .
nyg i sl =

We take ¢ = T;)(up —u) € W in (33) and since Vo = x4, V(un —u), we obtain

\g(uun”N)/B o () (V| N 2V, — [Vl N2V (Y, — Va)dae

n

+/ 9llun )& (@) (| N 2t — Y ~200) (ug, — )
’/ ||un||N Vu|N2Vu.(Vu, — Vu)
+9( ||un||N) &) (|ulY"?u) (un — u)dz|

/ [ (@, un)Ty(up — w)de + ep|jun, — ul|
< g(\lun\N)\/ VN2V (Vin — Vu + () ([ulV ~%u) (un—u) ) da|
B

+ / f(@,un) Ty (un — w)dr + epljun — ull.
B
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Since u, — u weakly, then
9(llunll™) / (0/(@) [Vul =2V (T, — V) + (@) (N 2u) (1, — u))da — 0.
B

Moreover, using and the Lebesgue dominated convergence theorem, we
get
/ f(x,un)Ty(up —u)de — 0 as n — +oo.
Using the well—knofvn inequality,
38) (o e~V Pyr—y) 222 Nz —yNV 2y eRY, N2>2

(-,-) is the inner product in RY and the fact that 0 < go < g(|lun|/"), one has
/ (o(2)|Vun — VuN + &(2)Jun, — u|N)dz — 0.
B\A,
Since &(x) > 0, then
/ o(z)|Vu, — VulNdz — 0.
B\A,

Therefore,

/ |Vu, — Vu|dz
B\A,

(39) 1
< (/ a(:v)|VunfVu|Nd:U>NLﬁ(B\An) — 0 as n — +o0.
B\A,

From and , we deduce that

/ |Vu, — Vulde — 0 as n — 4o0.
B

Therefore, Vu,(x) = Vu(z) a.e. x € B and Claim 1 is proved.

Claim 2. g(|lu|™)|ul|¥ > [, f(z,u)udz. This inequality holds in the
case ||ul]] = 0. So we suppose that ||ul| # 0 and we argue by contradiction.
Suppose that

gl ™)l < / F(2s w)uds.

Hence, &' (u)u < 0. The function v : t — (t) = E'(tu)u is positive for ¢ small
enough. Indeed, from @ and the critical (respectively, subcritical) growth
of the nonlinearity f, for every € > 0, for every ¢ > N, there exist positive
constants C' and ¢ such that

@, O] < et + Clt|7exp(e” ), V. (t,z) €R x B.
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Then using the condition (G1), the last inequality and the Holder inequality,
we obtain

B(t) = gt [V ul Y - / f(, tuudz
B

> gotN ||V —etN_l/ uN dx
B

AN, L £
-C /exp Nee vy qp ) N /uqudx N
(e piz) " ( f uds)
In view of the integral

/ N’ /
N 2 Y

/GXP(NGC tN/“N,)de/exp(Nec fluf N
B B

)dx <,

1
N
provided ¢ < :VJ’VH;IH' Using the radial Lemma we get [July,, < C'[lull.
Then,
Y(t) = got™ " HlullY — Cret™ T Hlul|Y — Colul?
= [lu ¥tV [(go — Cre) — Cott= V=D a4 ],

We chose € > 0, such that gg — C1e > 0 and since ¢ > N, for small ¢, we get
Yt = P(t) = E'(tu)u > 0. So there exists n € (0,1) such that ¥(nu) =
0. Therefore, nu € N. Using , the semicontinuity of norm and Fatou’s
Lemma, we get

1
d < d. < c<Emu) = Enu) — 5= (nu)iu

_ 1 Ny 1 N N
= 5 GUnull™) = S gl ™) [nu]
1
+ — (f(x, nu)nu — 2N F(x, nu))dw
IN Jj
1 Ny 1 N N
< 5 GUll™) = gl ™) lull
1
+ﬁ B(f(x,u)u—2NF(x,u))dx
ool f 1 Ny L N N
< timinf | 5 G(funl™) = 53500
1
+ IN B(f(x, Up )Up — 2N F(, Un))dx}
1
< . o ! —
< dim [£(un) = 558 (unun] = d

which is absurd and the claim is well established.



190 S. Baraket, A. Ben Ghorbal, R. Jaidane, and F. Mtiri 24

On the other hand, by Claim 2, and Lemma we obtain

1 1
Gllul™) = ol ™ + 555 | [f(auyu = 2N F (e, )

Now, using the semicontinuity of the norm and we get,

L N
E(u) < Nhin“}.gG(”“nH ) — F(az u)dx = d.

So from (40), d > 0. We also have u > 0. Indeed since (uy,) is bounded, up to
a subsequence |lun|| = p > 0. In addition, &' (u,) — 0 leads to

g(pN)[ / a(x)|vaN*2vu.w+§(x)|uyN*2ugpdx} - / F(a,u)pdz, Vo € 0.
B B

By taking ¢ = u~, with w® = max(£w,0), we obtain |Ju~||¥ = 0 and so
u=ut>0.

We finish the proof by considering three cases.

Case 1. d = 0. In this case,

0<€&(u)< léglg.lgé'(un) =0.

So,
E(u)=0
and then 1 1
. S N _ _ N
Jim 5 Gl™) = [ Pz = G,
Consequently,
[[un]| = [lu]]-

Therefore, by Brezis-Lieb’s Lemma [8] u,, — u in 20.
Case 2. d > 0 and u = 0. This case is impossible. Indeed, suppose that
u = 0. Then, fB F(x,up)dx — 0 and consequently, we get

1 N 1 WN-1
(41) G luwl|V) = d < NG(aéV_1>.

By , we have

o)l = [ @ wn)unde] < e
First, we claim that there exists ¢ > 1 such that
(42) | < c.

So )
ol ¥ < Con+ ([ 156 ua)?) e [ fual?)”
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where ¢’ is the conjugate of ¢. Since (u,) converge to u = 0 in LY (B)

| ) comverss
i g(fun V) un | = 0.

From the condition (G7), we obtain

. N _
iV = 0.

So, u, — 0 in Q. Therefore, £(u,) — 0 which is in contradiction with d > 0.
For the proof of the claim , since f has critical growth, for every ¢ > 0 and
g > 1 there exists t. > 0 and C > 0 such that for all |¢t| > ¢, we have

F(2,1)]7 < C exp(Neoe D™,

Consequently,
[1s@upde = [ punpde s [ |fwa)ds
B {Jun|<te {lun|>te}
<wN_p max ]f(a:,t)\q—&—C/ eXp(Nea(’(eH)'“"'N’)dm
BX[—te,te B
Since

there exists n € (0, 1) such that

‘ =

2z
_

(G (Nd) ¥ = (1—29)°
o
From , . 1 L
[un||™ = (GTH(Nd)) VT,
so there exist n, € N such that
1

aollun||V < (1 =n)wyi,

for all n > n,. Therefore,

N’ , Wl NN 1
)l < 1+ ) (LD) ez,
Jual

|un|
[[an |
We choose € > 0 small enough to get

(I+e)(l—m) <1,

hence, the second integral is uniformly bounded in view of .
Case 3. d > 0, u > 0. In this case, we claim that £(u) = d. Now, using
the semicontinuity of the norm and we get,

ao(l + e)(

1. N B
&) < lmint Gllual )~ [ Flaude =
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We argue by contradiction and we suppose that

(43) E(u) < d.
Then
(44) |V < pN.
In addition,
(45) L™ =L tim Gfun|N) = (d+/ Fl(z u)dm)
N N n—=+00 mn B 9 )
which means that
o = G1<(N(d+/ F(m,u)dx))
B
Set
Up = Un and v = E.
[[n | p

We have ||vn| =1, v, = v in 20, v # 0 and [|v|| < 1. So, by Lemma [3.3] we
get
A ,
sup/ exp(Ne” Wy fonl )dz < oo,
n JB
for

L<p< (1o~
From , and the following equality
Nd — N&(u) = G(p") = G(||ul™),

we get

G(p") < N+ G(lull™) < G(“x=p) + Gl ™).

Now, using the condition (G1) one has

N -1 WN-1 N WN-1 N
(46) oV <@ (G (Sm) +Clul™)) < Tl

N-1
0 0

Since N N
— Jull™yv=

N’ p N-1
= (i
L= {of¥
we deduce from (46) that

WN-1
—1 1

N P
4 N’ ) Nfl'
(47) pro< (1— ||v||N)

On one hand, we have this estimate [ |f(z,uy)|?dz < C. Indeed, for
€ > 0, we get
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/ ) = / @y un)lida + / @y u)Pde
B {|un‘§te {Iu"|>t€}

<wy_1  max |f(x,t)]q—|—0/exp(Nea0(1+6)un|N)dx
Bx[—te,te] B

<c. +C/ exp(Neeo+9llun ol y g < &
B

1
if we have ag(1+€)|u, ||V < pwi 1, with 1 <p < (1— ||UHN) . From ,
there exists § € (0, 3) such that

N N _1_
N’ [ R =
P =gy (2 Yy
1[0V
Since limy, 1o ||unHN' = pN', then, for n large enough

) 1 N1
colt-+ll¥ < 1+ 01 =) i (=)

We choose € > 0 small enough such that (1 + ¢)(1 — ) < 1 which means

1 =
N/ N-1
ao(L+ €)[lun || < wyZ i(w)

and so, the sequence (f(x,uy)) is bounded in L9, ¢ > 1. Using the Holder
inequality, we deduce that

[ st =] < ([ 15 wisar)* ([ o —t’)a

<C / \un—u]q %dx—>0 as n — +00
where % + % = 1. Since &' (up)(un — u) = 0,(1), it follows that
g(||un]|N)/B(J($)|Vun|N_2Vun.(Vun—Vu)+§(3:)un|N_2un(un—u)d:L") — 0.
On the other side,
9(llunl™) [B(U(x)lvunlN2Vun-(Vun = V) + &(@) Jun N Pup (un — u)dz)
=9(!unHN)HunHN—g(HunHN)/B(U(IE)\Vun\N_2Vun-VU+E(9€)Un!N_Qunu)dx-

Passing to the limit in the last equality, using the result of Claim 1 and

, we get
g(e™M)p™ = g(p™)|lu| ™ = 0.
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Therefore, ||ul| = p and ||u,|| — [Juf. This is in contradiction with (44). It
follows that G(p") = G(||lu/|"V) and consequently, £(u) = d. Therefore, again
by Brezis-Lieb’s Lemma u,, — u» in 2J. Also,

g([lull™) / (o(2)|Vul N 2VuVp+£(2) [ul N 2up)de = / fz,u)pdz, Yo € 2.
B B

So u is a solution of the problem .
(i) In the subcritical case, the Palais-Smale condition is satisfied for all
level d € R. Indeed, up to subsequences, we can assume that

lunl| <M in20
Up — U weakly in 20
Up —> U strongly inL4(B) Vg >1
up(z) = u(x) almost everywhere in B.

Since f is subcritical at +o0o, there exists a constant Cjy > 0 such that

1

way - N
N—-1 . N—1

fz,s) < Cuy exp{eM% b, V(z,s) € B x (0,+00).

Ll

Using the Holder inequality

| /B £ ()t — w)der| < /B (@) 1t — )|z

< (/B ]f(x,un)\zdxf(/B |y, — u]2dac)é
wzﬁ ,ﬁ\%l 1

< C(/ exp{QeMN—l }dx>§Hun — UH2
B

N 3
< C(/ exp{2eMNT lun | V=1 }dx) [
B
< Cllup, —ull2 =0 as n — +oo.

It is easy to check, J(u) = d. As a consequence, ||u,| — ||u| and £(u) = d.
Also, u is a solution of . This completes the proof of the Proposition O

Proof of Theorem[1.3] Since f(x,t) satisfies the condition for all
ag > 0, then by Proposition the functional & satisfies the (PS) condi-
tion (at each possible level d). So, by Lemma and Lemma we deduce
that the functional £ has a nonzero critical point u in 25. O
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Proof of Theorem[I.4] In the critical case, again using Proposition [6.3]
Lemma and Lemma the energy & satisfies the (PS)4 condition for all
1 _
d < —G(WN 1).

N—1
N A\

Therefore, £ has a nonzero critical point v in 2J. [
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