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Any analytic self-map f of the open unit disk D has a distinguished (so-called
Denjoy–Wolff) fixed point ζ0 ∈ D at which |f ′(ζ0)| ≤ 1. Any other fixed point
ζ of f (if exists) is unimodular and f ′(ζ) > 1. C. Cowen and Ch. Pom-
merenke (1982) established sharp estimates for the series

∑
1

f ′(ζ)−1
(over all

“non-distinguished” fixed points) in terms of f(ζ0) and f ′(ζ0) for the elliptic
(|ζ0| < 1) and hyperbolic (|ζ0| = 1 and f ′(ζ0) < 1) cases. The parabolic case
(|ζ0| = 1 and f ′(ζ0) < 1) was settled by the authors and M. Elin. In this paper,
we propose a somewhat different approach that allows to cover all three cases in
a unified way. The same approach also applies to a greater class of holomorphic
pseudo-contractions and a closely related class of infinitesimal generators, for
which similar inequalities for derivatives at fixed points come up with no extra
efforts.
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1. INTRODUCTION

We start with the class S of functions f analytic on the open unit disk
D and such that ∥f∥∞ := supz∈D |f(z)| ≤ 1. This class (the closed unit ball of
the Hardy space H∞) is commonly known as the Schur class; by the maximum
modulus principle, any f ∈ S is either an analytic self-map of D or a unimodular
constant. Adopting the notation

(1.1) f(t) := lim
r→1−

f(rt) and f ′(t) := lim
r→1−

f ′(rt) (|t| = 1)

for radial boundary limits (whenever they exist), we say that ζ ∈ D is a fixed
point of f if f(ζ) = ζ. By the Julia–Carathéodory theorem, the boundary
limit f ′(ζ) ≥ 0 exists (finite of infinite) at any boundary fixed point of f ∈ S.
Furthermore, f ′(ζ) > 0, unless f is a unimodular constant. Throughout the
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paper, we deal with radial boundary limits, although they can be equivalently
replaced by the nontangential ones. By “id” we mean the function f(z) = z.

By the Schwarz–Pick theorem, f ∈ S\{id} has at most one interior fixed
point z0 ∈ D and then necessarily, |f ′(z0)| ≤ 1. In this case, f is called an
elliptic self-map of D. If f has no fixed point in D, then it has a unique
boundary fixed point t0 ∈ T = ∂D with f ′(t0) ≤ 1, by the Denjoy–Wolff
theorem [9, 19]. In this case, f is called hyperbolic if f ′(t0) < 1 or parabolic if
f ′(t0) = 1.

Thus, any function f ∈ S\{id} has a unique fixed point ζ0 in D such that
|f ′(ζ0)| ≤ 1 (the Denjoy–Wolff point of f). Besides, it may have other fixed
points ζ ∈ T with f ′(ζ) > 1. Although the set of these other fixed points can
be uncountable (by the Rudin–Carleson interpolation theorem [17, 6], given
any closed subset E of Lebesgue measure zero on the the unit circle T, there
is a disk-algebra function f such that f(z) = z for all z ∈ T and |f(z)| < 1 for
all z ∈ T\E; see also [8, Example 2.2]), there are at most countably many of
them with finite boundary derivative, and hence we may consider the positive
series

(1.2)
∑
ζ∈Kf

1

f ′(ζ)− 1
, Kf :=

{
ζ ∈ T : f(ζ) = ζ and 1 < f ′(ζ) < ∞

}
.

This series converges if f is elliptic or hyperbolic. Sharp upper bounds for (1.2)
in terms of f ′(ζ0) (the derivative of f at the Denjoy–Wolff point of f) were
established by Cowen and Pommerenke in [8].

Theorem 1.1 ([8]). Let ζ0 be the Denjoy–Wolff point of a function f ∈ S
with f ′(ζ0) ̸= 1 and let ζ1, . . . , ζn ∈ T be other fixed points of f . Then

(1.3)

n∑
i=1

1

f ′(ζi)− 1
≤

{
1−|f ′(ζ0)|2
|1−f ′(ζ0)|2 if ζ0 ∈ D,
f ′(ζ0)

1−f ′(ζ0)
if ζ0 ∈ T.

Moreover, equality holds if and only if f is a finite Blaschke product: of degree
n+ 1 if ζ0 ∈ D or of degree n if ζ0 ∈ T.

The elliptic case f ′(ζ0) = 1 was handled in [2]: it was shown that
under the assumption that the boundary derivative f ′′(ζ0) ̸= 0 exists and
ℜ(ζ0f ′′(ζ0)) = 0, then f ′′′(ζ0) exists (finitely or infinitely), and the series in

equation (1.3) is dominated by 2f ′′′(ζ0)
3f ′′(ζ0)2

− 1 with equality if and only if f is

a finite Blaschke product of degree n + 1. In this paper, we recapture these
results in a more unified way, which admits an almost immediate extension
to the class of holomorphic pseudo-contractions and a closely related class of
infinitesimal generators. We explain why the sufficient conditions imposed on
f in the elliptic case are essentially necessary and we consider the case where
n = ∞ in some detail.
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2. BACKGROUND: THE JULIA–CARATHÉODORY THEOREM

A closely related (via Cayley’s transform) to the Schur class S is the
Carathéodory class C of functions analytic and with positive real part in D.
Any function p ∈ C admits the Riesz–Herglotz representation [16, 13]

(2.1) p(z) = iℑ
(
p(0)

)
+

∫
T

ζ + z

ζ − z
dµ(ζ) = −p(0) +

∫
T

2ζdµ(ζ)

ζ − z

with a positive Borel measure µ on T, which in turn is recovered from p by the
Stieltjes inversion formula. In particular,

(2.2) 2µ
(
{t0}

)
= lim

r→1
(1− r)p(rt0) for any t0 ∈ T.

We recall the classical Julia–Carathéodory theorem which establishes connec-
tions between the boundary behavior of p, p′ and of the quantity

(2.3) ∆p(z) =
p(z) + p(z)

2(1− |z|2)
=

∫
T

dµ(ζ)

|ζ − z|2
.

Theorem 2.1. For p ∈ C of the form (2.1) and t0 ∈ T, the following are
equivalent:

(1) ∆ = lim inf
z→t0

∆p(z) < ∞ (z → t0 unrestrictedly in D).

(2) ∆p(t0) := lim
r→1

∆p(rt0) < ∞.

(3)

∫
T

dµ(ζ)

|ζ − t0|2
< ∞.(2.4)

(4) The limits p(t0), p
′(t0) exist and ℜ(p(t0)) = 0.(2.5)

Moreover, if these conditions hold, then

(2.6) ∆ = ∆p(t0) =

∫
T

dµ(ζ)

|ζ − t0|2
= − t0p

′(t0)

2
.

Finally, if p′(t0) = 0 then p is an imaginary constant.

Proof. The implication (1) ⇒ (3) follows by Fatou’s lemma:∫
T

dµ(ζ)

|ζ − t0|2
≤ lim inf

z→t0

∫
T

dµ(ζ)

|ζ − z|2
= lim inf

z→t0
∆p(z) < ∞.

The implication (3) ⇒ (2) follows by Lebesgue’s dominated convergence theo-
rem:

lim
r→1

∆p(rt0) = lim
r→1

∫
T

dµ(ζ)

|ζ − rt0|2
=

∫
T

dµ(ζ)

|ζ − t0|2
= ∆p(t0),

which applies since |ζ−t0| ≤ 2|ζ−rt0|. Since the implication (2) ⇒ (1) is trivial,
we already have the equivalence of (1), (2), (3) and the equality ∆ = ∆p(t0).
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To verify (3) ⇒ (4), let us assume that condition (2.4) is in force. Then

p(t0) := lim
r→1

p(rt0) = −p(0) + lim
r→1

∫
T

2ζdµ(ζ)

ζ − rt0
= −p(0) +

∫
T

2ζdµ(ζ)

ζ − t0
,(2.7)

p′(t0) := lim
r→1

p′(rt0) = lim
r→1

∫
T

2ζdµ(ζ)

(ζ − rt0)2
=

∫
T

2ζdµ(ζ)

(ζ − t0)2
,(2.8)

where the leftmost equalities hold due to (2.1), while the rightmost are justi-
fied by Lebesgue’s dominated convergence theorem. Since ℜ( ζ

ζ−t0
) = 1, it is

immediate from (2.7) that ℜp(t0) = 0. In addition, we see from (2.8) that

(2.9) t0p
′(t0) =

∫
T

2ζt0dµ(ζ)

(ζ − t0)2
= −

∫
T

2dµ(ζ)

|ζ − t0|2
= −2∆p(t0) < 0.

Assuming (4), we use the boundary asymptotic expansion

p(rt0) = p(t0) + (rt0 − t0)p
′(t0) + o(1− r)

to compute the similar one for ∆p(rt0):

∆p(rt0) =
ℜ(p(t0)− (1− r)ℜ(t0p′(t0)) + o(1− r)

1− r2
= − t0p

′(t0)

1 + r
+ o(1),

which implies (1). Finally, it follows from (2.9) that p′(t0) = 0 implies dµ = 0
and hence p(z) ≡ iℑ(p(0)), by (2.1).

Via the Cayley transform accompanied by straightforward manipulations,
Theorem 2.1 translates to its original Schur-class version [14, 5].

Theorem 2.2. For s ∈ S and t0 ∈ T, the following are equivalent:

(1) d = lim inf
z→t0

ds(z) < ∞, where ds(z) :=
1− |s(z)|2

1− |z|2
.(2.10)

(2) ds(t0) := lim
r→1

ds(rt0) < ∞.

(3) The limits s(t0), s
′(t0) exist and |s(t0)| = 1.(2.11)

Moreover, if these conditions hold, then

(2.12) d = ds(t0) = t0s
′(t0)s(t0) = |s′(t0)|.

Finally, if s′(t0) = 0, then s is a unimodular constant.

3. FIXED POINTS OF SCHUR-CLASS FUNCTIONS

Our presentation relies on a linear fractional representation of f ∈ S
with a given Denjoy–Wolff point ζ0 ∈ D, that is, on a single-point Schur-class
interpolation result. The interior and the boundary cases were considered
separately by Schur [18] and Julia [14]; curiously, in the fixed-point case, both
cases are settled by the same formula.
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Theorem 3.1. A point ζ0 ∈ D is the Denjoy–Wolff point of a function
f ∈ S\{id} if and only if f admits a representation

(3.1) f(z) = z − (z − ζ0)(1− zζ0)

p(z) + (1+|ζ0|2
2 − zζ0)

for some p ∈ C.

If |ζ0| = 1, then (3.1) simplifies to

(3.2) f(z) = z +
(z − ζ0)

2

ζ0p(z)− (z − ζ0)
, p ∈ C.

Furthermore, f of the form (3.2) is hyperbolic (i.e., f ′(ζ0) < 1) if

(3.3) p(ζ0) = 0 and |p′(ζ0)| < ∞,

and is parabolic (f ′(ζ0) = 1) otherwise.

Proof. It is verified by straightforward computations that f of the form
(3.1) belongs to S and satisfies f(ζ0) = ζ0. The “only if” part is verified
separately for the interior and the boundary cases as follows.

If |ζ0| < 1 and f(ζ0) = ζ0, then the function

(3.4) E(z) = f(z)− ζ0

1− f(z)ζ0
· 1− zζ0
z − ζ0

belongs to the Schur class S, by the Schwarz–Pick lemma. Therefore, the
Cayley transform of E ,

p(z) =
1− |ζ0|2

2
· 1 + E(z)
1− E(z)

=
(z − ζ0)(1− zζ0)

z − f(z)
− 1 + |ζ0|2

2
+ zζ0

belongs to the Carathéodory class C. Solving the latter equation for f gives
equation (3.1). Note that by (3.4), f ′(ζ0) = E(ζ0) and hence, |f ′(ζ0)| ≤ 1 (with
equality if and only if f is an automorphism of D). Furthermore, f ′(ζ0) ̸= 1,
unless f(z) = id(z) ≡ z.

If |ζ0| = 1 and f(ζ0) = ζ0, we write (3.2) (or equivalently, (3.1)) as

(3.5)
ζ0 + f(z)

ζ0 − f(z)
− ζ0 + z

ζ0 − z
=

2

p(z)
.

By (3.4), the Herglotz measure of the Carathéodory-class function ζ0+f(z)
ζ0−f(z) has

an atom 1
f ′(ζ0)

at ζ0, and therefore, the function on the left side of (3.5) still

belongs to C if and only if f ′(ζ0) ≤ 1 and its Herglotz measure has an atom at
ζ0 if and only if f ′(ζ0) < 1. Passing to the reciprocals in (3.5) shows that p(z)
belongs to C if and only if f ′(ζ0) ≤ 1 and that p(z) satisfies conditions (3.3) if
and only if f ′(ζ0) < 1.
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Remark 3.2. Let f be of the form (3.1) and let µ be the Herglotz measure
of p. Then for any ζ ∈ T\{ζ0},

(3.6) f(ζ) = ζ if and only if p(ζ) = ∞.

Furthermore, for each fixed point ζ ∈ T\{ζ0} of f ,

(3.7) f ′(ζ)− 1 =
|ζ − ζ0|2

2µ({ζ})
.

The equivalence (3.6) is clear from (3.1). Combining (3.1) and (3.4) we have

f ′(ζ) = lim
r→1

f(rζ)− f(ζ)

rζ − ζ
= lim

r→1

rζ − (rζ − ζ0)(1− rζζ0)

p(rζ) + (1+|ζ0|2
2 − rζζ0)

− ζ

(r − 1)ζ

= 1 + lim
r→1

(rζ − ζ0)(1− rζζ0)

ζ(1− r)p(rζ) + (1− r)ζ(1+|ζ0|2
2 − rζζ0)

= 1 +
(ζ − ζ0)(1− ζζ0)

ζlimr→1(1− r)p(rζ)
=

|ζ − ζ0|2|
2µ({ζ})

.

In fact, the equivalence (3.6) holds true for any point ζ ∈ D\{ζ0}, but the
interior case |ζ| < 1 is irrelevant unless p ≡ ∞ (i.e., f = id). Excluding this
exceptional case, we see that f of the form (3.2) indeed has no interior fixed
points and that ζ0 is a unique interior fixed point for f of the form (3.1).
Furthermore, if p ̸≡ ∞, then f ′(ζ) > 1 for every fixed point of f other than ζ0.

Remark 3.3. By (3.7), the finite measure µ has atom at any point from
the set Kf defined in (1.2), and besides, µ may have atom at ζ0. Therefore,
the set Kf is at most countable.

3.1. Cowen–Pommerenke inequalities

We now get to inequalities (3.8).

Theorem 3.4. Let f ̸= id be a Schur-class function with the Denjoy–
Wolff point ζ0 ∈ D and the set Kf (1.2) of all other regular boundary fixed
points.

1. If |ζ0| < 1, then

(3.8)
∑
ζ∈Kf

1

f ′(ζ)− 1
≤ 1− |f ′(ζ0)|2

|1− f ′(ζ0)|2
.
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2. If |ζ0| = 1 and f ′(ζ0) < 1, then

(3.9)
∑
ζ∈Kf

1

f ′(ζ)− 1
≤ f ′(ζ0)

1− f ′(ζ0)
.

3. If |ζ0| = f ′(ζ0) = 1, ℜ(ζ0f ′′(ζ0)) = 0 and f ′′(ζ0) ̸= 0, then

(3.10)
∑
ζ∈Kf

1

f ′(ζ)− 1
≤ 2f ′′′(ζ0)

3f ′′(ζ0)2
− 1.

4. If |ζ0| = f ′(ζ0) = 1, f ′′(ζ0) = 0, and ℜ(ζ30f (4)(ζ0)) = 2|f ′′′(ζ0)| < ∞,
then

(3.11)
∑
ζ∈Kf

1

f ′(ζ)− 1
≤ 3f (5)(ζ0)

10f ′′′(ζ0)2
− 3f (4)(ζ0)

2

8f ′′′(ζ0)3
− 1.

Furthermore, equality holds in each case if and only if the Herglotz measure of
the parameter p ∈ C in the representation formula (3.1) of f is discrete.

Proof. By Theorem 3.1, f can be represented in the form (3.1). Let µ
be the Herglotz measure of the parameter p ∈ C in the representation for-
mula (3.1). If µ({ζ0}) = 0, then due to (3.7), we have

(3.12)
∑
ζ∈Kf

1

f ′(ζ)− 1
=

∑
ζ∈Kf

2µ({ζ})
|ζ − ζ0|2

=

∫
T

2dµd(ζ)

|ζ − ζ0|2
≤

∫
T

2dµ(ζ)

|ζ − ζ0|2
,

where µd is the discrete part of the measure µ. Thus, (3.12) holds with equality
if and only if µ is discrete. Writing the rightmost integral in (3.12) in terms of
f (j)(ζ0) settles parts (1)–(3). Details are given below.

Elliptic case. If |ζ0| < 1, then we see from (3.1) that

(3.13) f ′(ζ0) = 1− 1− |ζ0|2

p(ζ0) +
1−|ζ0|2

2

, that is, p(ζ0) =
1− |ζ0|2

2
· 1 + f ′(ζ0)

1− f ′(ζ0)
.

Therefore, ∫
T

2dµ(ζ)

|ζ − ζ0|2
= ∆p(z0) =

p(ζ0) + p(ζ0)

1− |ζ0|2
=

1− |f ′(ζ0)|2

|1− f ′(ζ0)|2
,

by (2.3) and (3.13). Combining the latter equality with (3.12) implies (3.8).
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Hyperbolic case. If |ζ0| = 1 and f ′(ζ0) < 1, then p(ζ0) = 0, by (3.3).
In particular, µ({ζ0}) = 0, and relations (3.12) hold. We see from (3.2) that

f ′(ζ0) = 1 +
1

ζ0p′(ζ0)− 1
, that is, ζ0p

′(ζ0) =
f ′(ζ0)

f ′(ζ0)− 1
< 0.

Thus, the conditions in part (4) of Theorem 2.1 are met and hence,

(3.14)

∫
T

2dµ(ζ)

|ζ − ζ0|2
= lim

r→1

p(rζ0) + p(rζ0)

1− r2
= −ζ0p

′(ζ0) =
f ′(ζ0)

1− f ′(ζ0)
,

by (2.6). Combining the latter with (3.12) leads us to (3.9).

Parabolic case. If |ζ0| = 1, f ′(ζ0) = 1, and µ({ζ0}) = 0, we still have
relations (3.12), which produce a meaningful estimate (in terms of ζ0) for the
series on the left side only if the integral on the right side converges. By
Theorem 2.1, this is the case if and only if the boundary limits p(ζ0) and p′(ζ0)
exist, and ℜ(p(ζ0)) = 0. Note that since f is parabolic, p(ζ0) ̸= 0, by (3.3).
The existence of the latter limits is equivalent to the existence of f ′′(ζ0) and
f ′′′(ζ0). Solving (3.2) for p and taking the radial limits gives

(3.15) p(ζ0) =
2

ζ0f ′′(ζ0)
, ζ0p

′(ζ0) = 1− 2f ′′′(ζ0)

3f ′′(ζ0)2
.

In particular, the requested condition ℜ(p(ζ0)) = 0 translates to

ℜ
(
ζ0f

′′(ζ0)
)
= 0.

If this condition is met, then (3.14) modifies to∫
T

2dµ(ζ)

|ζ − ζ0|2
= lim

r→1

p(rζ0) + p(rζ0)

1− r2
= −ζ0p

′(ζ0) =
2f ′′′(ζ0)

3f ′′(ζ0)2
− 1,

on account of (3.15). Combining the latter with (3.12) leads us to (3.10).

Special parabolic case. If f ′(ζ0) = 1 and f ′′(ζ0) = 0, then it follows
from (3.2) and (2.2) that

f ′′′(ζ0) = lim
r→1

6

ζ20 (r − 1)p(rζ0)− ζ20 (r − 1)2
= − 3

ζ20µ({ζ0})
.

Also, if f ′′′(ζ0) = 0, then necessarily f = id. Hence, in the current case, the
measure µ has atom at ζ0,

µ
(
{ζ0}

)
= − 3

ζ20f
′′′(ζ0)

=
3

|f ′′′(ζ0)|
.

If we let µ̃ = µ− µ({ζ0})δζ0 = µ+ 3
ζ20f

′′′(ζ0)
δζ0 and

(3.16) p̃(z) := p(z) +
3

ζ20f
′′′(ζ0)

· ζ0 + z

ζ0 − z
= iγ +

∫
T

ζ + z

ζ − z
dµ̃(ζ),
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then the formula (3.2) can be written in terms of p̃ as

(3.17) f(z) = z +
(z − ζ0)

2

ζ0p̃(z) + ζ0 − z − 3
ζ0f ′′′(ζ0)

· ζ0+z
ζ0−z

,

while relations (3.12) modify to

(3.18)
∑
ζ∈Kf

1

f ′(ζ)− 1
=

∑
ζ∈Kf

2µ({ζ})
|ζ − ζ0|2

≤
∫
T

2dµ̃(ζ)

|ζ − ζ0|2
= lim

r→1

p̃(rζ0) + p̃(rζ0)

1− r2
.

Similarly to the previous case, the inequality (3.18) leads to an estimate of
the series on the left side only if the limit on the right side is finite. By
Theorem 2.1, this is the case if and only if the boundary limits p̃(ζ0), p̃

′(ζ0)
exist and ℜ(p̃(ζ0)) = 0. The existence of the latter limits is equivalent to the
existence of f (4)(ζ0), f

(5)(ζ0). Solving (3.17) for p̃ and taking the radial limits
gives

p̃(ζ0) = − 3f (4)(ζ0)

2ζ0f ′′′(ζ0)2
− 3

ζ20f
′′′(ζ0)

= −3ζ30f
(4)(ζ0)

2|f ′′′(ζ0)|2
+

3

|f ′′′(ζ0)|
,(3.19)

ζ0p̃
′(ζ0) = − 3f (5)(ζ0)

10f ′′′(ζ0)2
+

3f (4)(ζ0)
2

8f ′′′(ζ0)3
+ 1.(3.20)

Due to (3.19), the condition ℜ(p̃(ζ0)) = 0 translates to

ℜ
(
ζ30f

(4)(ζ0)
)
= 2|f ′′′(ζ0)|.

If this condition is satisfied, then

lim
r→1

p̃(rζ0) + p̃(rζ0)

1− r2
= −ζ0p̃

′(ζ0),

by Theorem 2.1, which being combined with (3.20), leads us to (3.11).
The last statement of the theorem is obvious, as (3.12) and (3.18) hold

with equality if and only if the measure µ is discrete.

Example 3.5. The inner function

f(z) = ze
z+1
z−1

has the Denjoy–Wolff point ζ0 = 0 and regular boundary fixed points

(3.21) Kf =
{
ξn =

2πin+ 1

2πin− 1
: n ∈ Z

}
, f ′(ξn) =

4π2n2 + 3

2
, f ′(0) =

1

e

We have∑
ζ∈Kf

1

f ′(ζ)− 1
=

∞∑
n=−∞

2

4π2n2 + 1
= coth(1/2) =

e+ 1

e− 1
=

1− |f ′(0)|2

|1− f ′(0)|2
,
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which directly verifies that (3.8) holds for this function with equality. The
same conclusion follows by Theorem 3.4, since f can be represented in the
form (3.1) with ζ0 = 0,

p(z) =
1

2
· 1 + e

z+1
z−1

1− e
z+1
z−1

=

∫
T

ζ + z

ζ − z
dµ(ζ),

and since, furthermore, µ is the discrete measure supported by Kf with atoms

µ
(
{ξn}

)
=

1

4πn2 + 1
for n ∈ Z.

Example 3.6. For any ζ0 ∈ T, the (inner) function

(3.22) f(z) = z +
(z − ζ0)

2

ζ0p(z)− (z − ζ0)
, where p(z) =

1

2
· 1 + e

z+1
z−1

1− e
z+1
z−1

,

has the Denjoy–Wolff point ζ0 and regular boundary fixed points ξn = 2πin+1
2πin−1

as in (3.21). We next spell out several specific choices of ζ0.

(a) If ζ0 =
πi+1
πi−1 , then

f ′(ζ0) =
π2 + 1

π2 + 5
, f ′(ξn) = 1 +

π2(2n− 1)2

π2 + 1
for n ∈ Z.

Since f ′(ζ0) < 1, the point ζ0 is hyperbolic. Furthermore,∑
ζ∈Kf

1

f ′(ζ)− 1
=

π2 + 1

π2

∞∑
n=−∞

1

(2n− 1)2
=

π2 + 1

π2
· π

2

4
=

π2 + 1

4
=

f ′(ζ0)

1− f ′(ζ0)
,

which confirms that (3.9) holds for f with equality.

(b) If ζ0 =
πi+2
πi−2 , then

f ′(ζ0) = 1, f ′′(ζ0) = −4i
πi− 2

πi+ 2
, f ′′′(ζ0) = −3

2
(π2 + 20) ·

(πi− 2

πi+ 2

)2
.

Therefore, ζ0 is parabolic, ℜ(ζ0f ′′(ζ0)) = 0, and

2f ′′′(ζ0)

3f ′′(ζ0)2
− 1 =

π2 + 4

16
.

On the other hand,

f ′(ξn) = 1 +
2π2(4n− 1)2

π2 + 4
for n ∈ Z.

Then we have∑
ζ∈Kf

1

f ′(ζ)− 1
=

π2 + 4

2π2

∞∑
n=−∞

1

(4n− 1)2
=

π2 + 4

2π2

∞∑
n=1

1

(2n− 1)2
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=
π2 + 4

2π2
· π

2

8
=

π2 + 4

16
=

2f ′′′(ζ0)

3f ′′(ζ0)2
− 1,

which confirms that (3.10) holds for f with equality.

(c) If ζ0 = 1 (the only limit point of Kf ), then f ′(1) = 1, f ′′(1) = 4,
f ′′′(1) = 24. Hence, ζ0 = 1 is parabolic. Furthermore, f ′(ξn) = 3 for all n ∈ Z.
Hence, the series on the left side of (3.11) diverges, while the expression on the
right side equals zero. Therefore, inequality (3.10) does not hold in this case.

Example 3.7. The function

f(z) =
5z + 1

6 + z − z2

belongs to the Schur class and has two boundary fixed points: ζ0 = 1 (the
parabolic Denjoy–Wolff point) and ζ1 = −1. Simple calculations reveal

f ′(−1) =
3

2
, f ′(1) = 1, f ′′(1) =

2

3
, f ′′′(1) =

4

3
.

Therefore, 1
f ′(−1)−1 = 2, 2f ′′′(1)

3f ′′(1)2 − 1 = 1 and the inequality (3.10) does not

hold.

Note that the extra condition ℜ(ζ0f ′′(ζ0)) = 0 from part (3) in Theo-
rem 3.4 is satisfied in Example 3.6 (b) and is not met in Example 3.6 (c) and
Example 3.7.

The following result was established in [8] for the elliptic and hyperbolic
cases and in [2] for the parabolic case.

Proposition 3.8. Let us assume that f ∈ S has finitely many regular
fixed points: Kf = {ζ1, . . . , ζn}. Then (3.8)–(3.11) hold with equality if and
only if f is a finite Blaschke product: of degree n in the hyperbolic case, of
degree n+ 1 in the elliptic or parabolic case (3.10), and of degree n+ 2 in the
special parabolic case (3.11).

Proof. We take f in the form (3.1) and write it as

(3.23) f(z) =
zp(z)− z 1+|ζ0|2

2 + ζ0

p(z) + 1+|ζ0|2
2 − zζ0

.

By (3.12), equality holds in (3.8)–(3.10) if and only if the Herglotz measure µ
of p ∈ C is supported by Kf , i.e., if and only if p is a rational function

(3.24) p(z) =
n∑

i=1

µ
(
{ζi}

)
· ζi − z

ζi + z



210 V. Bolotnikov and D. Shoikhet 12

of degree n and with real part vanishing on T\Kf , in which case, f of the form
(3.1) is unimodular on T and therefore, f is a finite Blaschke product. Upon
substituting (3.24) into (3.1), we can write f as the ratio of two polynomials
of degree n+1. Zero cancellation cannot occur at the poles ζ1, . . . , ζn of p. To
examine other points, we solve the system

(3.25) zp(z)− z
1 + |ζ0|2

2
+ ζ0 = 0, p(z) +

1 + |ζ0|2

2
− zζ0 = 0

and conclude that the numerator and the denominator in (3.23) vanish simul-
taneously if and only if either

(1) z = ζ0 and p(ζ0) = −1− |ζ0|2

2
or (2) z =

1

ζ0
and p

( 1

ζ0

)
=

1− |ζ0|2

2
.

Since ℜ(p(z)) is nonnegative for |z| < 1 and nonpositive for |z| > 1, the latter
is possible if and only if |ζ0| = 1 and p(ζ0) = 0, that is, in the hyperbolic case.
Note that ζ0 is a multiple common zero in (3.25) if and only if p′(ζ0) = ζ0. But
in this case, ζ0p

′(ζ0) = |ζ0|2 = 1 > 0 which cannot happen, by (2.6). Therefore,
in the hyperbolic case there is one zero cancellation in (3.23) and therefore,
deg f = n. Zero cancellations do not occur in the elliptic and parabolic cases
and therefore, in these cases, deg f = n+ 1.

If (3.11) holds with equality, then µ is supported by Kf ∪{ζ0}. Therefore,
p is of the form

p(z) =

n∑
i=0

µ
(
{ζi}

)
· ζi − z

ζi + z

and since the zero cancellation does not occur in (3.23), f is a Blaschke product
of degree n+ 2. This completes the proof of the “only if” part. The “if part”
is verified directly.

We are not aware of an intrinsic characterization of f ∈ S for which one of
the relations (3.8)–(3.11) holds with equality. Such f is necessarily inner since
the Herglotz measure µ of the parameter p ∈ C is discrete and hence, p has
imaginary boundary values almost everywhere on T. On the other hand, if µ is
a continuous singular measure, then still ℜ(p(ζ)) = 0 a.e. on T, and hence, f
of the form (3.1) is an inner function for which equalities in (3.8)–(3.11) cannot
occur, by the last statement in Theorem 3.4.

Remark 3.9. Let f ̸= id be a Schur-class function with the Denjoy–Wolff
point ζ0 ̸= 0 and the set Kf (1.2) of all other regular boundary fixed points.
Then

(3.26)
∑
ζ∈Kf

|ζ − ζ0|2

f ′(ζ)− 1
≤ 2ℜ

( ζ0
f(0)

)
− 1− |ζ0|2.
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Proof. Since ζ0 ̸= 0, we have f(0) ̸= 0. As in the proof of Theorem 3.4,
we take f in the form (3.1). Then

(3.27) f(0) =
ζ0

p(0) + 1+|ζ0|2
2

, that is, p(0) =
ζ0

f(0)
− 1 + |ζ0|2

2
.

Let µ be the Herglotz measure of p. By (3.7) and similarly to (3.12),∑
ζ∈Kf

|ζ − ζ0|2

f ′(ζ)− 1
=

∑
ζ∈Kf

2µ
(
{ζ}

)
≤ 2

∫
T
dµ(ζ) = p(0) + p(0),

which together with (3.27) implies (3.26).

Inequality (3.26) was established in [8] for the boundary case |ζ0| = 1.

4. FIXED POINTS OF HOLOMORPHIC
PSEUDO-CONTRACTIONS

The Schwarz–Pick lemma tells us that any Schur-class function is a con-
traction with respect to the hyperbolic metric on D. Holomorphic pseudo-
contractions were introduced in [10] (see also [11, Section 3.8]) as a specializa-
tion of the general pseudo-contraction (introduced in the Banach-space context
by Browder in [4]; see also [15]) to the hyperbolic metric on D. Alternatively,
the class PC of holomorphic pseudo-contractions can be introduced in terms
of Schur-class functions as follows.

Let us observe that given f ∈ S, for each t ∈ [0, 1) and any point w ∈ D,
the boundary (radial) limits of the function

G(z) = tf(z) + (1− t)w

are less than one in modulus. Therefore, F has no boundary fixed points and
its Denjoy–Wolff point z := Jt(w) belongs to D. Note that for each t ∈ [0, 1) the
function Jt belongs to S as a function of w and that the curve Jt(w) converges
to the Denjoy–Wolff point of f (as t → 1) for each fixed w ∈ D. Dropping the
assumption that f is bounded in D, we arrive to the alternative definition of a
holomorphic pseudo-contraction.

Definition 4.1. A function f analytic on D is called pseudo-contractive if
for each t ∈ [0, 1) and each w ∈ D, the equation

(4.1) z = tf(z) + (1− t)w

has a unique solution z = Jt(w) ∈ D which is analytic in w.
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Similarly to the Schur-class case, given an f ∈ PC, the curve Jt(w) con-
verges to the same fixed point ζ0 ∈ D of f for each w ∈ D (see [1, Theorem 3.3])
which suggests to call ζ0 the Denjoy–Wolff point of f . Another result from [1]
is parallel to Theorem 3.1, although the proof is quite different.

Theorem 4.2. A point ζ0 ∈ D is the Denjoy–Wolff point of a function
f ∈ PC\{id} if and only if f admits a representation

(4.2) f(z) = z − (z − ζ0)(1− zζ0)

p(z)
for some p ∈ C.

Immediate consequences of the representation formula (4.2) are listed
below.

• If |ζ0| < 1, then f ′(ζ0) = 1− 1−|ζ0|2
p(ζ0)

and hence, ℜ(f ′(ζ0)) < 1.

• If |ζ0| = 1, then f ′(ζ0) = 1 unless p satisfies conditions (3.3) in which
case,

f ′(ζ0) = 1 +
1

ζ0p′(ζ0)
= 1− 1

|p′(ζ0)|
< 1.

As in the Schur-class case, f ′(ζ0) is a real number, but now it does not have
to be positive.

• A point ζ ∈ D is a fixed point of f ∈ PC of the form (4.2) if and only
if p(ζ) = ∞. Therefore, f has no fixed points in D other than ζ0.

• If ζ ∈ T\{ζ0} is a fixed point of f ∈ PC of the form (4.2) and µ is the
Herglotz measure of p, then the boundary derivative f ′(ζ) exists and

(4.3) f ′(ζ)− 1 =
|ζ − ζ0|2

2µ({ζ})
(the proof is the same as in the Schur-class case, see Remark 3.2). Hence, the
Denjoy–Wolff point of f ∈ PC can be defined as a unique fixed point ζ0 of f
such that f ′(ζ0) ̸> 1.

Due to (4.3), relations (3.12) hold for any f ∈ PC which leads to inequal-
ities for the series (1.2) in the present setting with the sharp upper bound

lim
r→1

p(rζ0) + p(rζ0)

1− r2|ζ0|2
.

The only difference with the Schur-class case is that in the course of evaluating
the latter limit in terms of the original f , we use the formula (4.2) rather than
equation (3.1). As a result, each right-hand side expression in (3.8)–(3.11) gets
the extra term

lim
r→1

2ℜ(1+|ζ0|2
2 − r|ζ0|2)

1− r2|ζ0|2
= 1 + lim

r→1

|ζ0|2(1− r)2

1− r2|ζ0|2
= 1.
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We arrive at the following result established in [1].

Theorem 4.3. Let f ̸= id be a Schur-class function with the Denjoy–
Wolff point ζ0 ∈ D and the set Kf (1.2) of all other regular boundary fixed
points.

1. If |ζ0| < 1, then∑
ζ∈Kf

1

f ′(ζ)− 1
≤ 1− |f ′(ζ0)|2

|1− f ′(ζ0)|2
+ 1.

2. If |ζ0| = 1 and f ′(ζ0) < 1, then∑
ζ∈Kf

1

f ′(ζ)− 1
≤ 1

1− f ′(ζ0)

3. If |ζ0| = f ′(ζ0) = 1, ℜ(ζ0f ′′(ζ0)) = 0 and f ′′(ζ0) ̸= 0, then∑
ζ∈Kf

1

f ′(ζ)− 1
≤ 2f ′′′(ζ0)

3f ′′(ζ0)2
.

4. If |ζ0| = f ′(ζ0) = 1, f ′′(ζ0) = 0, and ℜ(ζ30f (4)(ζ0)) = 2|f ′′′(ζ0)| < ∞,
then ∑

ζ∈Kf

1

f ′(ζ)− 1
≤ 3f (5)(ζ0)

10f ′′′(ζ0)2
− 3f (4)(ζ0)

2

8f ′′′(ζ0)3
.

Furthermore, equality holds in each case if and only if the Herglotz measure of
the parameter p ∈ C in the representation formula (4.2) of f is discrete.

5. FIXED POINTS OF INFINITESIMAL GENERATORS

Let us consider a one-parameter semigroup (ϕt)t≥0 ⊂ S, i.e., a collection
of Schur-class functions ϕt(z) such that ϕ0 = id,

ϕs ◦ ϕt = ϕs+t for all s, t ≥ 0 and lim
t→0

ϕt(z) = z for all z ∈ D.

If a (ϕt)t≥0 is non-trivial in the sense that ϕt ̸= id for some t > 0, then all
elements ϕt (t > 0) have the same Denjoy–Wolff point ζ0 ∈ D. Furthermore,
the function t → ϕt(z) is differentiable for any z ∈ D, and there exists a unique
function G(z) analytic on D such that

dϕt(z)

dt
= G

(
ϕt(z)

)
for all z ∈ D and t ≥ 0.
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This function G is called the infinitesimal generator of the semigroup (ϕt)t≥0,
and the point ζ0 is referred to as to the Denjoy–Wolff point of G. A result
due to Berkson and Porta [3] states that any infinitesimal generator with the
Denjoy–Wolff point ζ0 ∈ D admits the representation

(5.1) G(z) =
(z − ζ0)(1− zζ0)

p(z)
for some p ∈ C.

Comparing (5.1) and (4.2), we see that G is an infinitesimal generator if and
only if f(z) := z − G(z) is a holomorphic pseudo-contraction. Therefore, we
have

• If |ζ0| < 1, then G′(ζ0) =
1−|ζ0|2
p(ζ0)

and hence, ℜ(G′(ζ0)) > 0.

• If |ζ0| = 1, then G′(ζ0) = 0 unless p satisfies conditions (3.3) in which
case,

G′(ζ0) = − 1

ζ0p′(ζ0)
=

1

|p′(ζ0)|
> 0.

• A point ζ ∈ D is a fixed point of G of the form (4.2) if and only if
p(ζ) = ∞. Therefore, G has no fixed points in D other than ζ0.

• If ζ ∈ T\{ζ0} is a fixed point of G of the form (4.2) and µ is the Herglotz
measure of p, then the boundary derivative G′(ζ) exists and

(5.2) G′(ζ) = −|ζ − ζ0|2

2µ({ζ})
< 0.

By letting f(z) = z −G(z) in Theorem 4.2, we arrive at the following result.

Theorem 5.1. Let G ̸≡ 0 be an infinitesimal generator with the Denjoy–
Wolff point ζ0 ∈ D and let KG be the set of all other regular boundary fixed
points of G.

1. If |ζ0| < 1, then ∑
ζ∈KG

1

G′(ζ)
≥ −2ℜ(G′(ζ0))

|G′(ζ0|2

2. If |ζ0| = 1 and G′(ζ0) > 0, then∑
ζ∈KG

1

G′(ζ)
≥ − 1

G′(ζ0)

3. If |ζ0| = G′(ζ0) = 0, ℜ(ζ0G′′(ζ0)) = 0 and G′′(ζ0) ̸= 0, then∑
ζ∈KG

1

G′(ζ)
≥ 2G′′′(ζ0)

3G′′(ζ0)2
.
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4. If |ζ0| = G′(ζ0) = 0, G′′(ζ0) = 0, and ℜ(ζ30G(4)(ζ0)) = 2|G′′′(ζ0)| < ∞,
then ∑

ζ∈KG

1

G′(ζ)− 1
≥ 3G(5)(ζ0)

10G′′′(ζ0)2
− 3G(4)(ζ0)

2

8G′′′(ζ0)3
.

Furthermore, equality holds in each case if and only if the Herglotz measure of
the parameter p ∈ C in the representation formula (5.1) of f is discrete.

We refer to [7, 12] for several related results involving fixed points of
infinitesimal generators.
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