INEQUALITIES FOR DERIVATIVES AT FIXED POINTS OF
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Any analytic self-map f of the open unit disk D has a distinguished (so-called
Denjoy-Wolff) fixed point (o € D at which |f'(¢o)| < 1. Any other fixed point
¢ of f (if exists) is unimodular and f'(¢) > 1. C. Cowen and Ch. Pom-
merenke (1982) established sharp estimates for the series Y ﬁ (over all
“non-distinguished” fixed points) in terms of f({o) and f'(o) for the elliptic
(I¢o] < 1) and hyperbolic (|¢o| = 1 and f'(¢o) < 1) cases. The parabolic case
(I¢] = 1 and f'({o) < 1) was settled by the authors and M. Elin. In this paper,
we propose a somewhat different approach that allows to cover all three cases in
a unified way. The same approach also applies to a greater class of holomorphic
pseudo-contractions and a closely related class of infinitesimal generators, for
which similar inequalities for derivatives at fixed points come up with no extra
efforts.
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1. INTRODUCTION

We start with the class S of functions f analytic on the open unit disk
D and such that || f|loc := sup,ep | f(2)| < 1. This class (the closed unit ball of
the Hardy space H*) is commonly known as the Schur class; by the maximum
modulus principle, any f € § is either an analytic self-map of D or a unimodular
constant. Adopting the notation

(1.1) f(t) = lim f(rt) and f(t):= lim f'(rt) (}t]=1)

for radial boundary limits (whenever they exist), we say that ¢ € D is a fized
point of f if f({) = ¢. By the Julia—Carathéodory theorem, the boundary
limit f/(¢) > 0 exists (finite of infinite) at any boundary fixed point of f € S.
Furthermore, f/({) > 0, unless f is a unimodular constant. Throughout the
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paper, we deal with radial boundary limits, although they can be equivalently
replaced by the nontangential ones. By “id” we mean the function f(z) = z.

By the Schwarz-Pick theorem, f € S\{id} has at most one interior fixed
point zg € D and then necessarily, |f'(20)| < 1. In this case, f is called an
elliptic self-map of . If f has no fixed point in I, then it has a unique
boundary fixed point tp € T = 9D with f/(tg) < 1, by the Denjoy—Wolff
theorem [9], 19]. In this case, f is called hyperbolic if f'(tg) < 1 or parabolic if
f'(to) = 1. _

Thus, any function f € S\{id} has a unique fixed point {y in I such that
|f'(¢o)| < 1 (the Denjoy—Wolff point of f). Besides, it may have other fixed
points ¢ € T with f/(¢) > 1. Although the set of these other fixed points can
be uncountable (by the Rudin-Carleson interpolation theorem [I7, [6], given
any closed subset E of Lebesgue measure zero on the the unit circle T, there
is a disk-algebra function f such that f(z) = z for all z € T and |f(2)| < 1 for
all z € T\E; see also [8, Example 2.2]), there are at most countably many of
them with finite boundary derivative, and hence we may consider the positive
series

1
12) > =  Kp={CeT: f(¢{)=¢ and 1< f'({) < oo}.
P RiGRE
f
This series converges if f is elliptic or hyperbolic. Sharp upper bounds for (|1.2)
in terms of f/({y) (the derivative of f at the Denjoy—Wolff point of f) were
established by Cowen and Pommerenke in [§].

THEOREM 1.1 ([8]). Let (o be the Denjoy—Wolff point of a function f € S
with f'(Co) # 1 and let (1, ...,(, € T be other fized points of f. Then

n L-|f"(C)>
1 =g G €D,
(1.3) — - < {ll—f (Co)l
2 )

15}"(5(04)0) ifGeT
Moreover, equality holds if and only if f is a finite Blaschke product: of degree
n+114if (o €D or of degree n if (o € T.

The elliptic case f'({p) = 1 was handled in [2]: it was shown that
under the assumption that the boundary derivative f”({y) # 0 exists and
R(Cof"(Cp)) = 0, then f"”({p) exists (finitely or infinitely), and the series in
equation is dominated by % — 1 with equality if and only if f is
a finite Blaschke product of degree n 4+ 1. In this paper, we recapture these
results in a more unified way, which admits an almost immediate extension
to the class of holomorphic pseudo-contractions and a closely related class of
infinitesimal generators. We explain why the sufficient conditions imposed on
f in the elliptic case are essentially necessary and we consider the case where
n = oo in some detail.
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2. BACKGROUND: THE JULIA-CARATHEODORY THEOREM

A closely related (via Cayley’s transform) to the Schur class S is the
Carathéodory class C of functions analytic and with positive real part in D.
Any function p € C admits the Riesz—Herglotz representation [16] [13]

(2.1) p(z) = iS(p(0)) +/T§1Ljdu(g): _p(o)jL/T?Edf(ZC)

with a positive Borel measure 1 on T, which in turn is recovered from p by the
Stieltjes inversion formula. In particular,

(2.2) 2u({to}) = ,1}_%(1 —r)p(rtg) for any tp € T.

We recall the classical Julia-Carathéodory theorem which establishes connec-
tions between the boundary behavior of p, p’ and of the quantity

W@ HPE [ Q)
23) 80 = 5 = [

THEOREM 2.1. For p € C of the form (2.1) and to € T, the following are
equivalent:

(1) A= hrr_l)itnf Ap(z) <00 (2 — to unrestrictedly in D).
z—to
(2) Ap(to) := li_>n% A, (rty) < oo.

du(¢)
(2.4) (3) | TiE <

(2.5) (4) The limits p(to), p'(to) exist and R(p(to)) = 0.
Moreover, if these conditions hold, then

(2.6) A= Ayty) = / 4pl©) _top;(to)‘

T [ —tol?
Finally, if p'(to) = 0 then p is an imaginary constant.

Proof. The implication (1) = (3) follows by Fatou’s lemma:
/ o) < liminf/ dple) liminf Ay (2) < oo.
TIC—t? 7 i JplC—zP b
The implication (3) = (2) follows by Lebesgue’s dominated convergence theo-
rem:

dp(C) _/ du(Q) _ A (t)
T

¢ — to]?
which applies since [(—tg| < 2|(—rtp|. Since the implication (2) = (1) is trivial,
we already have the equivalence of (1), (2), (3) and the equality A = Ap(tp).

lim A,(rtg) = li =
’I”E p(T 0) ’I“E 11‘|C—7”t0’2
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To verify (3) = (4), let us assume that condition ({2.4) is in force. Then

e 20— [ 2dp()
2) plto) = limyp(rta) = —p(0) + iy [ 2N — g [ 2

2¢dp(¢) / 2¢dp(¢)
(2.8) p'(to) := lim p'(rto) = lim T@—rmV (C—10)?
where the leftmost equalities hold due to , while the rightmost are justi-

fied by Lebesgue s dominated convergence theorem Since §R( C ) =1, it is
immediate from (2.7 that Rp(tg) = 0. In addition, we see from that

2(todpu(C) /[ 2dp(C)
2.9 top'(t —/—— — = = —2A,(ty) < 0.
( ) Op(O) T (C_to)g T‘C_t0|2 I)( 0)
Assuming (4), we use the boundary asymptotic expansion
p(rto) = p(to) + (rto — to)p'(to) + o(1 — 1)
to compute the similar one for Ay (rtp):
R(p(to) — (1 —r)R(t +o(l—r top/(t
Aty = RlPe) = (1= Rl ) £ 001 =) __ o)
—-r 147

which implies (1). Finally, it follows from (2.9) that p’(t9) = 0 implies dp = 0
and hence p(z) =i3(p(0)), by (2.1). O

Via the Cayley transform accompanied by straightforward manipulations,
Theorem translates to its original Schur-class version [14], [5].

+o(1),

THEOREM 2.2. For s € § and tg € T, the following are equivalent:

(2.10) (1) d=liminfds(z) < 0o, where ds(z):= M
z—to ’ 1— |Z’2
(2)  da(to) = lim dy(rto) < oo.
(2.11) (3)  The limits s(tg), s'(to) exist and |s(ty)| = 1.
Moreover, if these conditions hold, then
(2.12) d = dy(to) = tos'(to)s(to) = |5 (to):

Finally, if s'(to) =0, then s is a unimodular constant.

3. FIXED POINTS OF SCHUR-CLASS FUNCTIONS

Our presentation relies on a linear fractional representation of f € S
with a given Denjoy—Wolff point ¢y € D, that is, on a single-point Schur-class
interpolation result. The interior and the boundary cases were considered
separately by Schur [I§] and Julia [14]; curiously, in the fixed-point case, both
cases are settled by the same formula.
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THEOREM 3.1. A point (o € D is the Denjoy—Wolff point of a function
f e S\{id} if and only if f admits a representation

(2 — Go)(1 — 2Go)
(3.1) f(z)=2z- E (?-S-ICOI ,(z)f ) for some p € C.

If |o] = 1, then simplifies to
_ (2 = ¢)?
(3.2) fz)=z+ ople) = (2 =)’

Furthermore, f of the form (3.2)) is hyperbolic (i.e., f'(¢o) < 1) if
(3.3) p(¢) =0 and [p'(o)] < o0,
and is parabolic (f'({p) = 1) otherwise.

peC.

Proof. 1t is verified by straightforward computations that f of the form
belongs to S and satisfies f((y) = (o. The “only if” part is verified
separately for the interior and the boundary cases as follows.

If |¢o| < 1 and f(Co) = o, then the function

— 1— 2
(3.4) gz = LB =G 1=
1—f(2)¢o 2~ G0
belongs to the Schur class S, by the Schwarz—Pick lemma. Therefore, the
Cayley transform of &,

p(z) _ 1 - KOP . 1 +g(z) _ (Z — CO)(l — ZZO) _ 1+ KO’Z
2 1-&(2) z— f(z) 2
belongs to the Carathéodory class C. Solving the latter equation for f gives

equation (3.1)). Note that by (3.4), f'(¢o) = £(¢o) and hence, |f'(¢p)| < 1 (with
equality if and only if f is an automorphism of D). Furthermore, f'({y) # 1,

unless f(z) =id(z) = z.
If |¢o| = 1 and f(¢p) = o, we write (3.2]) (or equivalently, (3.1)) as

Qo+ f(z) Gtz _ 2

Qo—fz) G-z pz)
By (3.4), the Herglotz measure of the Carathéodory-class function gﬁ;g; has
an atom % at (o, and therefore, the function on the left side of ( still
belongs to C if and only if f'(¢y) < 1 and its Herglotz measure has an atom at
o if and only if f'({p) < 1. Passing to the reciprocals in (3.5 shows that p(z)

belongs to C if and only if f'(¢y) < 1 and that p(z) satisfies conditions (3.3)) if
and only if f'({y) <1. O

+ ZZO

(3.5)
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Remark 3.2. Let f be of the form (3.1]) and let u be the Herglotz measure
of p. Then for any ¢ € T\{(o},

(3.6) f(¢) =¢ ifand only if p(¢) = oc.
Furthermore, for each fixed point ¢ € T\{(p} of f,
/ K CO‘Q
3.7 —1=
D T )

The equivalence (3.6)) is clear from (3.1). Combining (3.1)) and ( we have

(r¢ - G)(1 —r<c0> ~

N (GO R (SN p(r¢) + (55 - r¢gy)

SO = lim == = lim C(r-1)¢
B 57 L2 M

T = r)p(rQ) + (1= 1r)C(=5"= —r¢Co)
n (€= G)A—¢Co) _ €~

Cimy1 (1 =7)p(r¢)  2p({¢})
In fact, the equivalence holds true for any point ¢ € D\{¢o}, but the
interior case |(| < 1 is irrelevant unless p = oo (i.e., f = id). Excluding this
exceptional case, we see that f of the form indeed has no interior fixed

points and that (y is a unique interior fixed point for f of the form (3.1).
Furthermore, if p # oo, then f/(¢) > 1 for every fixed point of f other than (.

Remark 3.3. By (3.7)), the finite measure u has atom at any point from
the set Ky defined in (1.2), and besides, u may have atom at (o. Therefore,
the set Ky is at most countable.

3.1. Cowen—Pommerenke inequalities

We now get to inequalities (3.8]).

THEOREM 3.4. Let f # id be a Schur-class function with the Denjoy-
Wolff point (o € D and the set Ky (1.2) of all other regular boundary fized

points.

1. If |¢o| < 1, then

_ 1= 1)
(3.8) < :
g;ff =1 = @)
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2. If |Col =1 and f'({o) < 1, then

/(%)
&) > 1S T

CGKf

3. If [l = f'(Co) = 1, §R(C{)J”'(CO)) =0 and f"(Co) # 0, then

_2MG)
o Rt

4. If [Gol = f/(¢o) = 1, f"(¢o) = 0, and R(GFFD(Co)) = 2[£" ()| < oo,
then

3 _ 39 3fM(¢)?
f/

(3'11) —_1 = 10f”’(< )2 8f”’(40)3

CeEKy

Furthermore, equality holds in each case if and only if the Herglotz measure of
the parameter p € C in the representation formula (3.1) of f is discrete.

Proof. By Theorem f can be represented in the form (3.1). Let u
be the Herglotz measure of the parameter p € C in the representation for-

mula (3.1)). If /,L({Cg}) = 0, then due to (3.7), we have

2((C)) [ 2dpalQ) _ [ 2dn()
P iE 17 2 =GP e lC=0 < =P

where 14 is the discrete part of the measure p. Thus, (3.12)) holds with equality
if and only if p is discrete. Writing the rightmost integral in (3.12]) in terms of
fU) (&) settles parts (1)—(3). Details are given below.

Elliptic case. If |(y| < 1, then we see from (3.1]) that

1— ¢l 116> 1+ f(¢o)

7p(<0)+%’ that is, p(CO): 9 1—f/(C0)'

(3.13)  f'(Go) =1

Therefore,

/ 2du(Q) _ (20) = p(Go) +p(Go) _ 1—1f"(G)I?
7 ¢ — Col? P 1 —[¢ol? 1= f(¢o)?’

by (2.3)) and (3.13)). Combining the latter equality with (3.12]) implies (3.8).
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Hyperbolic case. If |(y| =1 and f'({p) < 1, then p({y) = 0, by (3.3)).
In particular, u({{p}) = 0, and relations (3.12)) hold. We see from ({3.2)) that

/ _ 1 . f/(CO)
PGl =1+ Gy -1 e @@=y 1 <0
Thus, the conditions in part (4) of Theorem are met and hence,
2du(¢) . p(réo) +p(r¢) . o (o)
e[ = e IR = ) =

by (2.6). Combining the latter with (3.12)) leads us to (3.9).

Parabolic case. If [{y] =1, f(¢p) = 1, and u({¢x}) = 0, we still have
relations , which produce a meaningful estimate (in terms of () for the
series on the left side only if the integral on the right side converges. By
Theorem this is the case if and only if the boundary limits p(¢p) and p’(¢p)
exist, and R(p(¢o)) = 0. Note that since f is parabolic, p(¢y) # 0, by (3.3).
The existence of the latter limits is equivalent to the existence of f”(¢y) and
1" (¢o)- Solving for p and taking the radial limits gives

2 21" (o)
3.15 - - (o) =1 — =L B0
(319) PO =Gy PO g2
In particular, the requested condition R(p({p)) = 0 translates to
R(Cof"(Co)) =
If this condition is met, then (3.14) modifies to
2du(¢) . p(réo) +p(réo) / 21" (o)
= 1 = — =

et an =P W0 = gy

on account of (3.15)). Combining the latter with (3.12)) leads us to (3.10)).

_1’

Special parabolic case. If f/(¢p) = 1 and f”({y) = 0, then it follows

from (3.2)) and - that
6 3

) = I e et — G =12~ GaliGol)

Also, if f""(¢p) = 0, then necessarily f = id. Hence, in the current case, the
measure u has atom at (p,
3 3

M({CO}) = _Cgf”/(C ) = |f///( O)|
If we let 1= p — pu({Co})d¢, = p+ CQf,,,( )540 and

(3.16) p(z) :=p(z) + (o) C—=2 v TC— %
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then the formula (3.2)) can be written in terms of p as

(2 = ¢o)*
(3.17) f(z) =24+ — -,
GoP(2) + o = 2 = Gpingy * 6

while relations modify to
2p({¢}) 2dp(¢) . p(réo) + p(rdo)
(3.18) Zf, — =2 _/T = lim ==

(R, (R, I¢ — Col? ¢ —¢Co2 =1 1 —r2

Similarly to the previous case, the inequality leads to an estimate of
the series on the left side only if the limit on the right side is finite. By
Theorem [2.1] - this is the case if and only if the boundary limits p({y), ' (o)
exist and R(p((p)) = 0. The existence of the latter limits is equivalent to the
existence of f™®(¢y), f®)(¢). Solving for p and taking the radial limits

gives

3fWG) 3 3G/ 3
260" (C0)* G5 f"(Co) 2f"(Co)l> 1" (Go)l”
oy 319(G) | 3FW(¢)?
(3'20) Cop (CO) - _10f”/(C )2 + f///(<0)3
Due to (3.19), the condition R(p({o)) = 0 translates to

RGN (C0)) = 21" (%)l
If this condition is satisfied, then

lim ﬁ(TCO) ‘1‘15;(7(0) — _COﬁ(<0)7

r—1 1—r

by Theorem [2 . which being combined with - leads us to (13.11)).
The last statement of the theorem is obvious, as and - ) hold
with equality if and only if the measure p is discrete. D

(3.19) p(G) = —

+ 1.

Example 3.5. The inner function

f(z) = e
has the Denjoy—Wolff point (; = 0 and regular boundary fixed points
2min + 1 4m’n? 43 1
21 K:{ T Z}, g) = S gy = 2
We have
oo
2 1 1—1f(0)]
) =Y 2 —coth(yz) = L VO
GEs S A + 1 e—1 |1—f(0)]?

CEKf
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which directly verifies that (3.8) holds for this function with equality. The
same conclusion follows by Theorem [3.4] since f can be represented in the

form (3.1]) with (o = 0,
z+1
1 1+4e=1 C+=z
pz) = ———Fg = /T du(¢),

N 2 . 1 —ez-1 C -z
and since, furthermore, p is the discrete measure supported by K with atoms
1
:U’({é-n}) = m for n € Z.

Ezample 3.6. For any (y € T, the (inner) function
(2 = ) 1 14

3.22 flz)=2z+ ,  where p(z) = = - —
(3:22) ) Cop(2) — (2 — Co) (=) 2 1 _ .4
has the Denjoy—Wolff point {y and regular boundary fixed points &, = gfr%ﬂ

as in (3.21)). We next spell out several specific choices of (.

(a) If ¢ = M+l then

 omi—1
2 2 2
/ o+ 1 / . m(2n — 1)
f<C0)_7T2—|—57 f(fn)—1+ﬂ_27+1fornEZ

Since f'(¢p) < 1, the point (y is hyperbolic. Furthermore,

e 2

I | S o S e o S 44 (0
Zf’(()—l_ 2 n:ZOO(QH—l)Q_ 44 1= ()

CGKf
which confirms that (3.9)) holds for f with equality.

(b) If (o = T2, then

) =1, f60) = 4T, fG) =5 +20)- (52
Therefore, (y is parabolic, %((of" (o)) = 0, and
21" (Co) m+4
3/7(Go2 16
On the other hand,
2 2
(&) =1+ 2777542171—41) for n € Z.

Then we have
> 1

1 44 & 1 w2 + 4
Z f’(()—lz 22 nzzoo(lln—l)?: 272 1;(271—1)2

CGKf
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I D S o S i ()
o228 16 3f7(¢o)?
which confirms that (3.10|) holds for f with equality.

_1’

(c) If (o = 1 (the only limit point of Ky), then f'(1) =1, f"(1) =4
1" (1) = 24. Hence, {y = 1 is parabolic. Furthermore, f'(¢,) = 3 for all n € Z.
Hence, the series on the left side of diverges, while the expression on the
right side equals zero. Therefore, inequality does not hold in this case.

Ezample 3.7. The function
9z +1

I =5

belongs to the Schur class and has two boundary fixed points: (y = 1 (the
parabolic Denjoy—Wolff point) and ¢; = —1. Simple calculations reveal

3 2 4
/_1:7 /1:1 //1:7 ///1:7.
Fey=3 ro=1 ro=% ro-=;
Therefore, W = 2, % — 1 = 1 and the inequality (3.10)) does not
hold.

Note that the extra condition R((of" (o)) = 0 from part (3) in Theo-
rem is satisfied in Example (b) and is not met in Example (c) and

Example
The following result was established in [§] for the elliptic and hyperbolic
cases and in [2] for the parabolic case.

PropoOSITION 3.8. Let us assume that f € 8§ has finitely many regular

fized points: Ky = {C1,...,¢n}. Then (3-8)-([B-11) hold with equality if and
only if f is a finite Blaschke product: of degree n in the hyperbolic case, of

degree n + 1 in the elliptic or parabolic case (3.10)), and of degree n + 2 in the
special parabolic case (3.11]).

Proof. We take f in the form (3.1]) and write it as
2
zp(z) — zilﬂgol + (o
1+l -
p(z) + H5eE — 2¢,

By (3.12)), equality holds in (3.8)—(3.10) if and only if the Herglotz measure p
of p € C is supported by Ky, i.e., if and only if p is a rational function

(3.23) 1) =

(3'24) Z,u {gz C N
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of degree n and with real part vanishing on T\ K¢, in which case, f of the form
(3.1) is unimodular on T and therefore, f is a finite Blaschke product. Upon

substituting (3.24) into (3.1), we can write f as the ratio of two polynomials

of degree n+ 1. Zero cancellation cannot occur at the poles (1,...,(, of p. To
examine other points, we solve the system

1+ (¢l 1+ Gl
(3.25) zp(z) — 22’<0| + ¢ =0, p(z) + 2|CO‘ —2(p=0

and conclude that the numerator and the denominator in vanish simul-
taneously if and only if either
2 2

1= leol or (2)z:i and p(l)zil_lcol .

2 Co Co 2
Since R(p(z)) is nonnegative for |z| < 1 and nonpositive for |z| > 1, the latter
is possible if and only if |(y] = 1 and p((y) = 0, that is, in the hyperbolic case.
Note that (y is a multiple common zero in if and only if p/(¢y) = (,- But
in this case, (op’(¢o) = |¢o|*> = 1 > 0 which cannot happen, by (2.6]). Therefore,
in the hyperbolic case there is one zero cancellation in @ and therefore,
deg f = n. Zero cancellations do not occur in the elliptic and parabolic cases
and therefore, in these cases, deg f = n + 1.

If holds with equality, then y is supported by K¢U{(o}. Therefore,
p is of the form

(1) z=¢o and p(Co) =

Zu {¢:}) g +Z

and since the zero cancellation does not occur in ), f is a Blaschke product
of degree n 4 2. This completes the proof of the only if” part. The “if part”
is verified directly. [

We are not aware of an intrinsic characterization of f € S for which one of
the relations f holds with equality. Such f is necessarily inner since
the Herglotz measure p of the parameter p € C is discrete and hence, p has
imaginary boundary values almost everywhere on T. On the other hand, if p is
a continuous singular measure, then still R(p(¢)) = 0 a.e. on T, and hence, f
of the form is an inner function for which equalities in f cannot
occur, by the last statement in Theorem [3.4]

Remark 3.9. Let f # id be a Schur-class function with the Denjoy—Wolff
point (o # 0 and the set Ky (1.2) of all other regular boundary fixed points.
Then

(3.26) Z ’C 50’ 2@}&(1%)) —1— |Gl
cer
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Proof. Since (y # 0, we have f(0) # 0. As in the proof of Theorem
we take f in the form (3.1). Then

o o 1+l
p(0) + Ll f(0) 2

Let p be the Herglotz measure of p. By (3.7) and similarly to (3.12]),

S L0l = 5 a1 <2 [ du©) = p0) +500)

CEKf CeEKy

which together with (3.27) implies (3.26). [

(3.27) f(0) = that is, p(0) =

Inequality ((3.26) was established in [8] for the boundary case |(y| = 1.

4. FIXED POINTS OF HOLOMORPHIC
PSEUDO-CONTRACTIONS

The Schwarz—Pick lemma tells us that any Schur-class function is a con-
traction with respect to the hyperbolic metric on D. Holomorphic pseudo-
contractions were introduced in [10] (see also [11l Section 3.8]) as a specializa-
tion of the general pseudo-contraction (introduced in the Banach-space context
by Browder in [4]; see also [15]) to the hyperbolic metric on . Alternatively,
the class PC of holomorphic pseudo-contractions can be introduced in terms
of Schur-class functions as follows.

Let us observe that given f € S, for each ¢ € [0,1) and any point w € D,
the boundary (radial) limits of the function

G(z)=tf(z)+ (1 -thw

are less than one in modulus. Therefore, F' has no boundary fixed points and
its Denjoy—Wolff point z := J;(w) belongs to D. Note that for each t € [0,1) the
function J; belongs to S as a function of w and that the curve Ji(w) converges
to the Denjoy—Wolff point of f (as t — 1) for each fixed w € D. Dropping the
assumption that f is bounded in I, we arrive to the alternative definition of a
holomorphic pseudo-contraction.

Definition 4.1. A function f analytic on DD is called pseudo-contractive if
for each ¢t € [0,1) and each w € D, the equation

(4.1) z=tf(2)+ (1 -thw

has a unique solution z = Jy(w) € D which is analytic in w.
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Similarly to the Schur-class case, given an f € PC, the curve J;(w) con-
verges to the same fixed point ¢y € D of f for each w € D (see [1, Theorem 3.3])
which suggests to call {y the Denjoy—Wolff point of f. Another result from [I]
is parallel to Theorem [3.1] although the proof is quite different.

THEOREM 4.2. A point ¢y € D is the Denjoy—Wolff point of a function
f € PC\{id} if and only if f admits a representation

(z = ¢o)(1 = 2¢p)
p(2)

(4.2) f(z) =2 —

for some peC.

Immediate consequences of the representation formula are listed
below. )

o If [Co| < 1, then f/(Co) =1— 1;('55)' and hence, R(f'(¢o)) < 1.

o If |(p| = 1, then f’({p) = 1 unless p satisfies conditions in which

case,

<1

/ _ 1 — 1 _ 1
For =1+ = W

As in the Schur-class case, f'({p) is a real number, but now it does not have
to be positive.

e A point ¢ € D is a fixed point of f € PC of the form if and only
if p(¢) = oo. Therefore, f has no fixed points in D other than (.

o If ( € T\{(o} is a fixed point of f € PC of the form and p is the
Herglotz measure of p, then the boundary derivative f/({) exists and

/ e ’C_<0’2
43 PO =5y

(the proof is the same as in the Schur-class case, see Remark . Hence, the
Denjoy—Wolff point of f € PC can be defined as a unique fixed point (o of f
such that f/({p) # 1.

Due to , relations hold for any f € PC which leads to inequal-
ities for the series in the present setting with the sharp upper bound

i P(r60) + p(rGo)

r—1 1-— 7“2‘60’2
The only difference with the Schur-class case is that in the course of evaluating
the latter limit in terms of the original f, we use the formula (4.2)) rather than

equation (3.1)). As a result, each right-hand side expression in (3.8)—(3.11]) gets
the extra term

o( Lt _ 2 201 _ )2
R ) 6P
r—1 1 —1r2[(o|? r—1 1 —1r2|¢p|?

=1.
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We arrive at the following result established in [1].

THEOREM 4.3. Let f # id be a Schur-class function with the Denjoy—
Wolff point {y € D and the set K¢ (1.2) of all other regular boundary fized
points.

1. If |¢o| < 1, then

_1-1F(G)P
2 FO-1 o per

(EKy

2. If |¢ol =1 and f'(o) < 1, then
1
2 (S 1f1_f'(§0)

(eK;

3. If |l = f'(Co) = 1, W(of”(( )) =0 and f"((o) # 0, then
2f”’(§o)
Z fQ)—-1~ 3f”(C0)

(eEKy

4. If [Gol = £/(¢o) = 1, f"(¢o) = 0, and R(GFFD(Co)) = 2[£"(Co)| < o0,

then
Z 1 3f () 3fW(¢)?
f/ -1 - 10f///(<0) 8f’”(<0)3 '

(EKy

Furthermore, equality holds in each case if and only if the Herglotz measure of
the parameter p € C in the representation formula (4.2)) of f is discrete.

5. FIXED POINTS OF INFINITESIMAL GENERATORS

Let us consider a one-parameter semigroup (¢¢)i>0 C S, i.e., a collection
of Schur-class functions ¢:(z) such that ¢g = id,

¢s 0 P = psiy for all s, >0 and %ir% ¢i(z) = z for all z € D.
%

If a (¢¢)r>0 is non-trivial in the sense that ¢¢ # id for some ¢ > 0, then all
elements ¢; (t > 0) have the same Denjoy—~Wolff point (y € D. Furthermore,
the function t — ¢4(z) is differentiable for any z € D, and there exists a unique
function G(z) analytic on D such that

dgb;EZ) = G(¢t(z)) for all z €D and ¢t > 0.
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This function G is called the infinitesimal generator of the semigroup (¢¢)>0,
and the point (p is referred to as to the Denjoy—Wolff point of G. A result
due to Berkson and Porta [3] states that any infinitesimal generator with the
Denjoy-Wolff point ¢y € D admits the representation

(2 = Go) (1 — 2Co)
p(z)
Comparing (5.1) and (4.2), we see that G is an infinitesimal generator if and
only if f(z) := z — G(z) is a holomorphic pseudo-contraction. Therefore, we

have

o If [Go] < 1, then G'(¢p) = /2 and hence, R(G'(¢o)) > 0.

o If |o] = 1, then G'({p) = 0 unless p satisfies conditions (3.3]) in which

case,

(5.1) G(z) =

for some p € C.

1 1

!/
)= @ ~ W@
e A point ¢ € D is a fixed point of G of the form if and only if
p(¢) = oo. Therefore, G has no fixed points in I other than (.
o If ( € T\{(p} is a fixed point of G of the form and p is the Herglotz
measure of p, then the boundary derivative G’(¢) exists and

2
02 O =S

By letting f(z) = z — G(z) in Theorem we arrive at the following result.

> 0.

< 0.

THEOREM 5.1. Let G # 0 be an infinitesimal generator with the Denjoy—
Wolff point (o € D and let Kg be the set of all other reqular boundary fized
points of G.

1. If |¢o] < 1, then
3 1o 2R(G'(G))

G0~ GGl

(EKG

2. If |Col = 1 and G'({p) > 0, then

1 1
P T Relrey

(eEKg
3. If || = G'(¢o) = 0, R(CG"(¢o)) = 0 and G"((o) # O, then
1 2G" (¢o)
2. G0 7 560

(eEKa
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4. If |G| = G'(¢o) = 0, G"(Co) = 0, and R(GGW(G)) = 2|G"(¢o)| < o0,

e 1 3GO)(G)  3GW(G)?
0 0
2 GO 17 106G 8G™(Go)®

(eKg

Furthermore, equality holds in each case if and only if the Herglotz measure of
the parameter p € C in the representation formula (5.1) of f is discrete.

We refer to [7, 12] for several related results involving fixed points of
infinitesimal generators.
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