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This paper aims to discuss a stabilization problem for quasi-linear systems and
to study the asymptotic behavior of a distributed system on an evolution do-
main with a p-Laplace operator in a containing structure of a nanolayer. The
epi-convergence method is considered to find the limit problem with interface
conditions. This approach consists of studying the stability of the approximate
problem associated with our initial problem, then studying the limit behavior in
order to determine the stability of the limit problem. The obtained results are
numerically tested.
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1. INTRODUCTION

A dynamical system is always affected by perturbations. Therefore, the
system needs to function well to remedy these perturbations by considering
the notion of stabilization, which entails returning the perturbed system to its
equilibrium state.

The problem of linear and nonlinear system stabilization in finite dimen-
sions is now well established and has given rise to a rich literature (Whon-
ham [20], Quin [I8], Azzo—Houpis [9], Lasalle [13], etc.). In the case of infinite-
dimensional systems, works on strong and/or weak stabilization of distributed
systems are mainly due to Ball-Slemrod [5], Triggiani [19], Benchimol [6] etc.

The link between the asymptotic behavior in time of a system, the spec-
tral properties of its dynamics, and the existence of a Lyapunov functional are
explored in [I5]. The exponential stability is studied in [I9] via an appropri-
ate state space decomposition. The asymptotic and exponential stability are
studied in [4], using the Riccati equation. Pritchard [16] [I7], uses a dynamic
programming approach to reduce the quadratic cost minimization problem to
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a solution of the Riccati equation, which is differential in the finite horizon
case and algebraic in the infinite horizon case. This study was completed
by Zabczyk [22], then developed by other authors: Lions [I4], Curtain and
Pritchard [7, 8], Quinn [I8] etc., the researchers that study stability are es-
sentially concentrated on the global domain with the macroscopic structure in
which the system evolves. We then return to the works of Quinn [I§], and
Ball-Slemrod [5], concerning finite and infinite-dimensional nonlinear systems,
to characterize the regional stabilization feedbacks, particularly the one with
minimal cost. Koshkin [I2] generalizes Wonham’s theorem on the solvability
of Riccati equations with algebraic operators in Banach spaces. Artamonov [3]
shows that for an X reflexive Banach space, a Riccati integral equation with a
non-autonomous operator has a unique, strongly continuous, self-adjoint, and
non-negative solution.

To do so, let us considers the problem of quasi-linear evolution in a body
that occupies a bonded domain, Q C R3, with a Lipschitz border 092, composed
of a nanolayer B., with an oscillating border Egc, and a remaining region of
Q. (see Figure . The body occupying the 2 domain is bounded, and the
operator L € Cs(Z; L(X*, X)) is linear and bounded, L(t) = L*(t) and positive
((L(t)z,z) > 0, Vo € X*), for all t € Z. With the set of admissible controls
Uga = {u(t) € X* : |Jul|x+ < C},Vt € Z. The problem is modeled with the
following equations

z —div(|Vz|P72Vz) = 0, in Q;

2= 2 div(|V2z[P~2V2) + L(t)u, in B;

z(t,x) =0, on I'*® =0, co[x I

2(0,x) = zp, in £

[2(t,x)] = 0, on |0, c0[xXZ;

VaP2 2o, = LIV2P22s,, on |0, co[xTE.

The conductivity is expressed by 8%, a triple
X =W (B.) — H = L*B.) — X* = (W"?)(B.)

of spaces with dense embeddings for a reflexive Banach space X for p > 1,
where H is a Hilbert space. Now, the aim of the present work is to study
the stability of a quasi-linear problem via a feedback control with a p-Laplace
operator and interface conditions. In our case, we work with a B. region of
nanostructure, which can cause problems during the numerical resolution with
the finite element method and, more precisely, during the creation of the mesh
of the domain, which is very fine and can cause numerical explosions.

In this article, we focus on establishing the following main result, which
demonstrates the limit behavior presented in the theorem below.
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Figure 1 — Domain €2

Consider the following energy operator:

1 1
F (=) _p/mo \Vzg\upga/Bw |v,z€\p—/Bw L(#)uez..

One denotes by 7; the weak topology on LP(0, oo; Wol’p (€)).

THEOREM 1.1. According to the values of «, there exists a functional F'*
defined on LP(0, 00; Wy () with a value in RU{+o0} such that Tp—lim, F; =
F< in LP(0, oo;Wol’p (Q)), where the functional F* is given by

(1) If0<a<1:
1

e =,
D J10,00[x Q2
Jor all z € LP(0, 00; WyP ().

(2) Ifa>1:

1 2
Fa(z) _ 7/ |vz‘p 4 m(@)n(a) / ‘VIZ|E|p,
P J]0,00[x02 p ]0,00[x %

Jor all z € G C LP(0, 00; Wy (€2)).

The idea would be to look for another equivalent approximation model
to work with the finite element method in an accurate way in order to obtain
the limit problem and reach the object of this article, which is organized as
follows: Section [3] serves to show what we call feedback-controlled stability
using Riccati’s equations with algebraic operators in Banach spaces, which
makes the quasi-linear system stable for the approximate problem associated
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with the initial problem, and we prove a priori estimates. Then, we proceed
to the limit, using preliminary results, definitions, and some properties for
the minimization problem. The epi-convergence method is considered to find
the limit problem with interface conditions. Finally, in Section [4] we give a
numerical test illustrating the theoretical results obtained.

2. PRELIMINARIES
2.1. Notations

In this section, we give the notations that are used throughout this paper:
o Q=]0,00[x€, Q2° =]0, 00[xQ:, BX =|0, 00[X Be.

o LP(0,00,X) has the norm,

00 1
_ D P
Iellzrooes = ([ I=Olde)
with X, a Banach space.

o« [2lgx = Z|gTE|E§t - Z|Bi\2§-

e We have
oo [#€L7(0,00; W, P()) : n(@)z(t) [s€ LP(0,00; WP(2))  if o < 1;
z € LP(0, oo; Wol’p(Q)) c2(t) [s=C if > 1.

| D(]0,00[xQ2) if o <1;
~ {zeD(0,00[xQ) : 2(t) |s=C} ifa>1,
e Let us define the operator m® which transforms functions defined z on
B. into functions defined on ¥ by

e
mz(t,x1, ) = / z(t, 1, 2, x3)dTs.

2ep¢ —£pe

(t,z) = (t, o', x3), where 2’ = (x1,22), A\ = 1,2, V' = (8%1,8%2), the space
Y =]0,1[x]0,1[, the function ¢ : R? — [aj,as] where ¢ is Y-periodic and

a2 > a1 > 0, (') = p(¥£), £ € C(E) N L¥(D),mlp) = fy pla')da’,

3 89}A
n(a) = lim._,0e!™%, with a > 0.

8

o If X3, Xy are Banach spaces, then by £ (X7, X2) we denote the space of
bounded operators acting from X; to Xo.

o By C4(Z; L(X1, X2)) we denote the space of strongly continuous opera-
tor functions on interval Z =|0, 7| ranging in £(X7, X2).

In the following, C' denotes any constant with respect to €.
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2.2. Functional Framework

In this section, we propose a concept of operator’s sequence convergence
known as epi-convergence, which is a subset of the I'-convergence introduced
by De Giorgi and Spagnolo [10]. It is well suited to the asymptotic analysis of
sequences of minimization problems.

Definition 2.1 ([2], Definition 1.9). Let (X, 7) be a reflexive Banach space,
F. : X - RU 400 a family of convex functionals, and F' : X — RU 400 a
convex functional. Suppose that

1. liminf,_,q Fe(x) > F(z) for all x € X.

2. For any sequence (z.) C X such that x. — x weakly in X, we have

limsup,_,g Fe(z:) < F(x). Then, we have F; TR R

Note the following fundamental result of epi-convergence.

THEOREM 2.2 ([2], Theorem 1.10). Suppose that
(1) F. admits a minimizer on X,
(2) the sequence (zc) is T -relatively compact,

(3) The sequence F. epi-converges to F' in this topology 7. Then each
cluster point z of the sequence (z:) minimizes F' on X and
lim F5/<§€/) = F(E)
e’—=0
if (Zer)er denotes the subsequence of (Z¢). that converges to Z.
This theorem shows that if X is a reflexive Banach space, then Riccati

equation has a unique strongly continuous self-adjoint non-negative solution

P(t).

THEOREM 2.3 ([3], Theorem 2). Let X be a reflexive Banach space and
the following assumptions hold:

1. {S}o<s<t<r s strongly continuous and uniformly bounded forward evo-
lution family in L(X). Then S* is strongly continuous and uniformly bounded
backward evolution family in L(X™).

2. Operator functions C € Cs(Z; L(X, X™)) and L € Cs(Z; L(X*, X)).
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3. C(t) =C*(t) >0 and L(t) = L*(t) > 0 for all t € Z. Then for all self-
adjoint non-negative Py € L (X, X*) the (backward) integral Riccati equation
t
P(t) = S* () PyS(t) + / S*(t — 5)(C*(s)C(s)
0
— P(s)L(s)L*(s)P(s))S(t — s)ds, t>0
has a unique self-adjoint non-negative solution P € Cy(Z; L(X, X™)).

3. MAIN RESULTS
3.1. Stability Study

Consider the following approximate problem:

Z(t,x) — div(|Vze(t, z) P72V 2. (t, 7)) = 0, in QX
Ze(t,x) = L div(|Vae(t, ) P72V ze(t, 7)) + L(t)us(t), in B
) =0, on I'*® =]0, co[x 9

2:(0,z) = 20, in Q;

[2(t,z)] = 0, on |0, co[xXF;
|Vze(t, 2) P22 | = LV (t,2) 22500 |

€ gx

ze(t,x

on ]0, co[xXF.

We are interested in stabilizing the following equation:
1

(1) = div(|V2:[P"2V2.) + L(t)ue in B,
with interface conditions.

Based on successive linearizations, the Newton method replaces the dis-
crete nonlinear problem with an iterative sequence of linear problems, which
can be directly solved by standard methods of linear algebra.

The term A(z py1) = 2 div(|Vze 4PV k41) can be linearized using
the following expression:

(2) Azejr1) = AlZe ) + (Zepr1 — zek) A (2ze )

which is obtained from Taylor’s series, with second and higher orders neglected.
The term A’(z. 1) represents the differentiation of A(z. ) with respect to z. .
If we assume zj is the known value and z. ;41 is unknown, the right-hand
side of equation is always linear. Equation now becomes

) 1. _ .
(3) Zedtl = ;dlv(\Vzak\p °Vze jr1) + L(t)ue gy1 in B,

The z’s in the boundary conditions now become zxi1’s. It should be
noted that if 241 = 2, then equation reduces to . It is obvious that
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in applying equation to linearize or any nonlinear equation, only the
nonlinear terms need to be considered.

According to the Hille-Yosida theorem, we have the existence of a solu-
tion, denoted z. o, then computing 2z, y—1,k = 1,2,..., from equation (3),
with the values for zj,—; known, the values for z.,—» are obtained. This
process is repeated until the required accuracy is obtained.

Let € be the maximum error allowed, and the required accuracy can be
defined by the following equation:

|Zeht1 — zepll <e, k=0,1,2,...

We show the convergence of the method. By contradiction, let us suppose
that z; 41 — 2% is not bounded for k big enough and take

/ Ze k+1 — Zek

z =
=k |26 k41 — ZE,kHLP(O,oo;X) ’

replacing zé, & in the problem , with X = WP(B,), and using the variational
formulation, we obtain:

. 1
/ . / -2 / / / /
<Zek, 2Lk >B.=< = dlv(\Vz&k,l]p Vz&k), Ze g >B. + <L(t)ug s 2e > B,

and

v / 1 ! p—2 / / / /
<Zcky2ep>B. + < ETl|vze,k—1| V2l 1 Vol >p.= — <Pz (1), 2., >B. -
Furthermore

p—2
< e s 2 >10,T % B t<a |vzak P2V 2L 4, V2l >0 rixp. <0
1 inf / p—2 /2 <
allzg K7 + o m <|Vag o177 [Vag 1" >10.7x8. <0

f V2L ey P21 e
p—

=||=" 1

e k— IHLP(O T;X)™

[T+ [ letall, = [ Sl + [ Ll <o

I T~ @) + [ =l <O

such that when T' — oo, we get:

o /
Ik ey = [ N2

Contradiction as the norm ||z k||12p(0 oox) = L hence ||z 1 — 2ol < e
As we get A, 1, it approaches A., which allows us to have a semigroup
Se . associated to the operator A, ;.

1T, < Ce®.
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By the following Riccati equation [21]:
P(t) = AZpP(t) + P(t)Acp + C*C — P(t)L(t)L*(t)P(t), P(0) = F.
Note that A:’k is the adjoint operator.

Since LP(0, oo; WO1 P(B.)) is a reflexive Banach space, the Riccati equation
has a unique strongly continuous, self-adjoint, and non-negative solution P(t)

(see Theorem [2.3)).

Formally, it can be demonstrated by analogy to the Hilbert case [20, 21]
that the optimal control is found in the feedback form u, j(t) = —L*(t) Pz 1 (t),
where P is a bounded symmetric positive definite operator that solves the
algebraic operator Riccati equation (see [12]).

3.2. Limit Behavior of Solution

3.2.1 Approximate problem

The set V = W, ?() is a Banach and reflexive space, where Wy (Q) has
the norm ||- le,p(m, according to the separability of V', hence it admits a count-
0

able basis {wy, wa, w3, ..., Wy, ...}, withw; € V, for all m, {w1, we, ws, ..., wn}
is a free family, H = Vect{w, w2, ws, ..., Wy, ...} is dense in V.
Let us consider in the spaces V;;, = Vect{w1, wa, ws, ..., wy,} the following
approximate problem. We put
m
Ze(t) = Z hie(t)wi € V.
i=1

<Zeyw;>q, — <div(|Vz: P72V z.), w; >q.= 0, in ]0, oo[
<Ze,w;>p.=< E% div(|V2 P72V 2e), w; >p. + < L(t)ue, w; >p.,
in ]0, oo

(Pme) § ze(t,x) =0, on > =]0, 00[xIQ
2:(0,2) = 20, in Q
[2:(t,2)] = 0, on ]0, 00[xXF
|Vzg|p_28—‘25|95 = E%|Vzg|p_2 %Z; |B., on ]O,oo[xzsi.
With <, >isa guality bracket.

From the results on systems of differential equations, we are sure that the
problem (%, ) has a solution z.(t) in an interval |0, T[, such that 7" — oo for
e — 0.

LEMMA 3.1. The family (ze k) ~q pen Satisfies:

(1) | 19zl < Ce



9 Limit resolvability of a quasi-linear system on a nanolayer 225

(5) | 1zl <
Moreover, z., is bounded in LP(0, oo, W, P(Q)).

Proof. Consider problem (%, ); multiply the equations defined on BZ°
and Q2° by h.(t) and sum from ¢ = 1 to m, for a fixed k. We get

. . )

<Ze gy Ze e >0 =<div(|Vze g P7" Ve k), 26 >00

1 . 72
+ < 8704 le(‘VZ&k‘p Vzak), Zek>B. T < L(t)us,k, Zek > B.s
and furthermore
1

. -2 —2

<Zeks ek >0t < |V25,k|p Vzg,k, VZEJC >0, + < gfa ‘styk‘p styk, VZEJC >p,

= —< PZ&*,k(t), Rek >B. -
We have u, j(t) = —L*(t) Pz 1(t), where P is a bounded symmetric pos-

itive definite operator, so L(t)uc = —Pz ;(t), and since P is a bounded
symmetric positive so — < Pz, ;(t), zex >B.< 0,
(© 531 s+ [ Vel [ Vel <o
and by integration from 0 to T
1 ) 1, 1 T ) T
e )o@ — g l0eltaey < 5 [ 1V2ealinmy = [ | .
So,
1

1
19 2ebly + [ 1928 0y < =3, Dy + C.

Then, let us reduce —3 ||z (T, x)”y(g) by 0, such that 7" — oo, we get

1 [o® » o )
501/0 HVZE,kHLp(BE) +A HVZ&,kHLp(QE) <C.

Ea

So
(7) /O 19204115, < 2°C.
and
(8) | ¥zl <

It is clear that for a small enough €, the solution (2. ) is bounded in the space
LP(0,00, Wy (). O

Since Lp(O,oo;I/VO1 P(Q)) is a reflexive space, then there exists a sub-
sequence of (za7k)€>0 pen o always denoted by 2. g, such that z., — 2" in

LP(0, 00; Wy P(Q2)).
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3.3. Proof of Theorem

We recall the energy operator of our problem

1 1
inf {/ |szp+7/ \Vz|p—/ L(t)uz} ()
2€LP(0,00;Wy P () L P JOge pe* JB B

Remark 3.2 ([11]). According to the Hille-Yosida theorem, we have the
existence of a solution. Moreover, z is given by the formula

2(t) = Sa, (t)20 — /Ot Sa(t — s)Pz(s)ds, >0

where Sp  (t) denotes the semigroup associated to A.

To prove our theorem, we need to establish Lemmas [3.3] and [3.4] and
Proposition [3.5

LEMMA 3.3. The operator m® is linear and bounded in LP(0, c0; LP(B;))
(resp. LP(0, 00; WO’p( 2))) and zn LP(0,00; LP (X)) (resp. Lp(O,oo;WOl’p(Z))).
Moreover, for all z € LP(0, oo; Wo P(Be)), we have

9) |m®z — Z|Z||I£P(}0,oo[x2) < Csp_l/o / |V z|P.

Proof. We have
1 \P| [eve
/]mgz]pdxldx2:/< > / zdxs
> b 25805 —Epe

Since 0 < a1 < ¢ < a9, and according to the Holder inequality,

1 Epe
m-z|” dridxy < z|"dxs |dx1dxo
2P dxyd Pd dzrid
b ¥ 260 \J—cp.
1 e
< /(/ |z]pd:c3>dx1dx2.
25@1 > —EPe

Since z € LP (]0,00[x B;) and (10)), it follows that m®z € LF(]0, oo[xX).
Let z € D (]0, 0o[x B:), we have

1 0 1
(m®2) (t,x1,22) = 291, (/_1 z (t,x1,x2, T380:) d:z:3>

1/ (Y 0z
= (/1 837 (t %1,%2,%35@5)

&ps 0z
8.%',\ 8

1 0z r3  Op. 0z >
= a3 : - — |dzs.
2epe -/—agas (8$>\ + EPe 881‘)\ Oxs 3

p
dridxsy.

(10)

Oy

_|_

(t Z1,I2, $3€Q05)d1'3>
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gre Oz T3 8%) 0z )
9z 924
/ 20 </_¢ o7 i (s%) (gam dws
0z T3 &pg) 0z |P )
—1 d .
<2€a1) ( . |0y " <€<Pe> <€3$A dzs|
However, aaTi € C(X)N L>®(X), then Eg = is bounded, and therefore

p
Ll o < S [ (] + |2 Vam< € [ vap.
b € JB.

671')\ E)xg
By density arguments, for any z € Lp((), 00; Wo P (B)), we have

[ Lol < ), oo

Let z € D (]0, 00[x Be), so that
1 feve
( / Z(t,$1,$2,$3)d$3) — z(t, 21, 2,0)
b

2e0¢ —Epe

Using the Holder inequality,

1 Epe
Iz = 25l < 5o ([ et n 0,200, 1, 20,0 dy )

AT
—epe
EPe
<L ()
€ JE\J —epe —EPe
SCsp—1/ (/E% oz |P
b —E€Pe

< Capfl/ |Vz|Pdx.
Be

So that,

i[5z

p

axA

— (m®2)
4

p
dridxs.

||m5z—z‘2||ip(2) =

xs3 aZ p
/ —(t, z1, 2, w)dw darg) dx1dxy
0o Ox3

3
8;03

(t, 21, x2, W)

p
dw) dxg)dxl dzo

8.%3 dl‘3> d$1d$2

By density arguments, we have for all z € LP(0, oo; Wol’p (B:))
o0
m =25 o sy < €1 [ [ 195wt
Hence the result. [

LEMMA 3.4. Let (z:),o C LP(0, oo; Wol’p(Q)) which satisfies and ().
Then

(11) IV (1% 2e)[[{ o go,coxmyyr < O

In addition, mfz. have a bounded sub-sequence in LP(]0, 00[xX).
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Proof. According to a result of Lemma [3.3] we have
/ o0 H 0 (mcze)
0 Oz,
According to (4]), one has

W5

8:@

p

< Cs_l/ / V2P dx.
Lp(XT)P 0 B

p
< e 1,
Lp(S)P

Then from Lemma [3.3] we get
oo
1Mz = 250 0mpes) < cgp—lfo / V2P < ceotrt,

The sequence (2: ). is bounded in L (0, 0o; VVO1 P(Q)), it follows that there exists
z* € LP(0, 00; Wol’p(Q)) and a sub-sequence z., always noted 2., such as z, — z*
in LP(0, oo; V[fol’p(Q))7 then z|5; is a bounded sequence in LP(]0, co[xX).
Since,
M 22|l Lp 0,00 x) < 1M 2 = 2zl 2r0,00[x5) + 262l 2r(0,00[x5)

then there exists C' such that ngzenip(}o,oo[xz) <C. 0O

PROPOSITION 3.5. (2¢)e has a weakly convergent sub-sequence to an ele-
ment z* in LP(0, co; Wol’p(Q)) satisfactory

(1) Ifa=1, z*|y € LP(0, 00; Wy P(%)).
(2) Ifa>1, 2%y, =C.

Proof. The sequence z. is bounded in LP(0, 0o; VVO1 P(Q)). Tt follows that
there is an element z* € LP(0, oo; VVO1 P(Q)) and a sub-sequence of z., always
designated by z such as z. — z* in L?(0, 00; Wy ?(Q)). We have

|m®z. — zE‘EngGOm[XE) < Ce*P1 and zelw = 2y in LP(]0, 0o[xX).

For a = 1, according to the evaluation , the sequence V'mz. has a sub-
sequence, always denoted by V'mfz. weakly convergent to an element z5 in
LP(0,00; LP(X))?, as m®z. — 2y, in LP(0, 00; W[)l’p(Z‘)) and V’zr‘z = z9. Hence
2y € Lp(O,oo;WOl’p(Z)). For a > 1, one shows, as in the case « = 1 and
taking zo = 0, that z|*2 = C. Hence the results. O

The previous results have helped us to highlight our fundamental result
(Theorem [1.1)).
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Proof. The limit behavior of the problem (7)), is derived with the epi-
convergence method. Let

1 1
F. = - Vz|P —/ \Y p—/ L(t
) = [ Vel o [ v = [ Do

1 1

== Vzp+—/ Vzp—/ L) (—=L*(t)Pz. (1)) z

Ry R MO AR O

1 1

:7/ |vz5|p+7a/ |vz5|p+/ Pe(l)z..
D Jag pe™ JBx Bge

(a) We determine the upper epi-limit.

Let z € G C LP(0, 00; Wy P(Q)), and (2F) a sequence in LP(0, oo; W, P(2)).
From the fact that A, is of type ST, we conclude the convergence 2P = 2 in
the space LP(0, co; Wol’p(Q)), when k — +oo.

Since z¥ — z in LP(O,oo,Wol’p (©)), when k& — +o00. According to the

classical result, the diagonalization lemma [2, Lemma 1.15], there is a func-
k(e)

tion k(¢) : RT — N increasing to +o0o when ¢ — 0, such as 2:°’ — z in
LP(0, 00, Wy P (Q)), when & — 0.
1 1
ky _ kP k|P k(e k
R = [ VAP VP [ Poek
So that
1 1
REb=- [ P+ | VAP
P J10,00[x(|w3]>220:) P J10,00[x (e <[] <2e0¢)
1
+ — Vzkp—}—/ PzE(t)2F
pec ]O,OO[XBE’ ¢l B e(t)z
1 1
- [ P+ | kP
P J]0,00[x (Jz3|>2e0c) D J]0,00[x (epe <|z3]<2e¢)

2€1—a
/ %‘v/zfm‘p + 25/ (pEPzQE(t)zfm.
p 10,00[x 2 10,00[x 2

Since . is bounded, we can easily verify that

1
lim{/ |Vz§|p} ~ 0.
e=0 P J]0,00[x (ee <|z3]|<2e00¢)

Since PzF(t) € £(X,X*), the boundedness of PzF(t) in X* yields the
convergences PzF(t) — Pz(t) in X*, and z¥ — 2 in LP(0, oc; Wol’p(Q)):

1. If o = 1: Since . = m(p) in L=(X) and ' =® — n(a), it follows that

2el-a 2
lim € / (pe‘v/z?‘x‘p _ m(w)n(a)/ |v/z‘2|p.
e=0 p ]10,00[x X b 10,00[x X
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By passing to the upper limit, we have

1
lim sup F. Zk = lim su (/ Vzkp
m p Fe(z) 0 p P }07oo[><(|z3|>2€<Ps)’ .

261—01
+ / 908|VIZ§|Z|])+25/ ‘Psngz(t)'zgz)
b 10,00[x % 10,00[x %

1 2
< ,/ V2P + m(@)n(a)/ |V/Z|2‘p_
P J10,00[x Q2 p 10,00[x X

2. If a # 1: By passing to the upper limit, we have

1
lim sup F. Zk = lim su ( / VZk p
50 p E( 6) e—0 p D J10,00[%x (|z3]|>2c0¢) | €|

k k
+ 2¢ /]0 s (ngde(t)ng)

<! / V[P
D J]0,00[x02

(b) We determine the lower epi-limit.
Let z € G and (2¥) a sequence in LP(0, oc; Wol’p(Q)) such as zF — z in
LP(0, 005 Wol’p(Q)), so that

(12) XoeVzE = Vz in Lp(O,oo,Lp(Q))S.

1. If o # 1: Since
1
PR = [ VAP [ Ptk
b Jag B

According to and by passage to the lower limit, one obtains
1

lim inf F. (2" >f/ VzP.
mipt £ = [

2. If a = 1: If lim inf._,¢ F.(2¥) = 400, there is nothing to prove, because

1 2
,/ |szp+m(90)77(o‘)/ V25 ]P < +o0.
P J10,00[x p 10,00[x =

Otherwise, liminf. . Fe(zﬁ) < 400, there is a sub-sequence of Fg(zf) still
designated by F.(z*) and a constant C' > 0, such as F.(z¥) < C, which implies

that
1

] |sz|p+/3w PE():k < C.

(13)
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Therefore, z satisfies the hypothesis of Lemma and according to this
last inequality, V'mfz* is bounded in Lp((),oo7Lp(Z))2, SO there is an ele-
ment z; € LP (0,00; LP(X))? and a sub-sequence of V'mfz¥ always desig-
nated by V/'m¢z¥, such as V'm®zF — 21 in Lp((),oo;Lp(E))Q, since zy5 —
25 in LP(]0,00[x ), and thanks to (9) and (L3), one has mzF — 25 in
LP(]o, oo[xE) then mzf — 25 in Lp(O,oo;WOl’p(Z)), so 21 = V'zz, so that
V'mézF — V'zy, in LP(0, 00; LP(X))?,

1 1
F(h) > */m vk [ vk [ Pk

P pe
1 2el—

> [ v [ vmea
D Jage b ]0,00[x %

+ 2¢ / @ Pz (t)yme2F.
10,00[x X

Using the subdifferential inequality, we have

1 2e!~
Rz [ vt =— [ o Vi
P Jag p 10,00[x%

21 / p—2v7/ 1k 7/
+ SDEIV Z\E| VZ|Z(VTTL Ze VZ‘E)
b ]0,00[x 2

+ 25/ e Pz (t)yme2F.
10,00[x X

By [1, Lemma 7.1], we have ¢. — m(y) in L*(X), so according to (12))
and by passing to the lower limit, we obtain

1 2
liminf F(2%) > f/ |Vz|P + m(gp)n(a)/ V' 2z |P.
e—0 P J]0,00x9 4 10,00[x%

Hence the result. O

To complete our main theoretical result, we have the following proposi-
tion.

PROPOSITION 3.6. According to the values of parameter o, there exists
(z*,u*) satisfying
fé 2" in LP(0, 0o; Wo’p(Q))
2B (t) = Pz(t) in X*
")

< = inf {F*(0)}.
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Proof. Firstly, (z¥) is bounded in LP(0, oc; I/VO1 P(Q)), so it has a T-cluster
point z* in L?(0,00; Wy ?(Q)). As a consequence of a classical result of epi-
convergence (see Theorem ), we have z* is a solution of the problem

inf {F°(0)}. (Pim) O

3.4. Conclusion

In this paper, we worked on a class of quasi-linear evolution systems and
showed that this approach is stabilizable by a control for the approximate
equivalent problem on a three-dimensional bung. We also learned the limiting
behavior of this type of problem, finding that the effect of the nanolayer does
not exist and the control disappears, i.e., the nanolayer behaves as a part of €2
and the limiting problem becomes an autonomous problem.

4. NUMERICAL TESTS

For a sufficiently small value of ¢, the solution z. of the approaching
problem approaches the solution z* of the limit problem. We are interested in
the numerical treatment in this section and we concentrate on the impact of
the control on the BZ° domain, with

T=10 L(t)u is linear and bounded
Q= {(‘Tay” Z 6]07 1[7y E] -1, 1[72 E]O, 1[} ue(t) = _L*(t)Pze(t)
B =]0,1[x] — we(x), p=(x)[x]0, 1] pe(x) = 1.2 +sin(wL).

Using the Python programming language, with the finite element method
and the Newton method, with p = 2.1 and € = le — 10, one has the results
shown in the table.

The solution of the approximation problem converges to that of the limit
problem.

Initially, u* does not stabilize the state on all of €2, which is normal
because the control is defined only on B,, so the control stabilizes the state
only on a sub-region, so a = 1 is all that is of interest.

v llz |l [El

a=0.1 a=1 a=3 a=0.1 a=1 a=3
t=0 6.19263e+10 | 6.19263e+10 | 6.19263e+10 14.8623 14.8623 14.8623
t=3.3 || 4.57764e-05 3.8147e-05 | 6.10352e-05 | 9.11214e-06 | 1.95399e-13 | 1.59872¢-14
t=5 1.88712e-05 1.87712e-13 | 1.00003e-15 | 9.11214e-06 | 1.9255e-13 le-15
t=6.6 || 1.79815e-05 1.41572e-13 | 6.19263e+10 | 9.11214e-06 | 1.9255e-13 14.8623
t=8.3 || 1.8238e-05 1.16754e-13 | 6.19263e+10 | 9.11214e-06 | 1.9255e-13 14.8623
t=10 1.78143e-05 1.16425e-13 | 6.10352e-05 | 9.11214e-06 | 1.9255e-13 14.8623

Table 1 — System stability for different o values
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Table [T] shows that the solution of the approximation problem converges
to that of the limit problem and demonstrates that u. stabilizes the state z.,
and u* stabilizes the state z* on the nanolayer. Specifically, when o« = 1, we
found that the system is stabilized, and even when « is close to 1, stability can
still be observed. However, as we move further away from o = 1, we begin to
lose stability, which is the desired outcome. This illustrates that the model is
suitable for control specialists working on the nanolayer.
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