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This paper aims to discuss a stabilization problem for quasi-linear systems and
to study the asymptotic behavior of a distributed system on an evolution do-
main with a p-Laplace operator in a containing structure of a nanolayer. The
epi-convergence method is considered to find the limit problem with interface
conditions. This approach consists of studying the stability of the approximate
problem associated with our initial problem, then studying the limit behavior in
order to determine the stability of the limit problem. The obtained results are
numerically tested.
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1. INTRODUCTION

A dynamical system is always affected by perturbations. Therefore, the
system needs to function well to remedy these perturbations by considering
the notion of stabilization, which entails returning the perturbed system to its
equilibrium state.

The problem of linear and nonlinear system stabilization in finite dimen-
sions is now well established and has given rise to a rich literature (Whon-
ham [20], Quin [18], Azzo–Houpis [9], Lasalle [13], etc.). In the case of infinite-
dimensional systems, works on strong and/or weak stabilization of distributed
systems are mainly due to Ball–Slemrod [5], Triggiani [19], Benchimol [6] etc.

The link between the asymptotic behavior in time of a system, the spec-
tral properties of its dynamics, and the existence of a Lyapunov functional are
explored in [15]. The exponential stability is studied in [19] via an appropri-
ate state space decomposition. The asymptotic and exponential stability are
studied in [4], using the Riccati equation. Pritchard [16, 17], uses a dynamic
programming approach to reduce the quadratic cost minimization problem to

REV. ROUMAINE MATH. PURES APPL. 70 (2025), 3-4, 217–234
doi: 10.59277/RRMPA.2025.217.234

http://dx.doi.org/10.59277/RRMPA.2025.217.234


218 T. Boulahrouz, M. Filali, J. Messaho, and N. Tsouli 2

a solution of the Riccati equation, which is differential in the finite horizon
case and algebraic in the infinite horizon case. This study was completed
by Zabczyk [22], then developed by other authors: Lions [14], Curtain and
Pritchard [7, 8], Quinn [18] etc., the researchers that study stability are es-
sentially concentrated on the global domain with the macroscopic structure in
which the system evolves. We then return to the works of Quinn [18], and
Ball–Slemrod [5], concerning finite and infinite-dimensional nonlinear systems,
to characterize the regional stabilization feedbacks, particularly the one with
minimal cost. Koshkin [12] generalizes Wonham’s theorem on the solvability
of Riccati equations with algebraic operators in Banach spaces. Artamonov [3]
shows that for an X reflexive Banach space, a Riccati integral equation with a
non-autonomous operator has a unique, strongly continuous, self-adjoint, and
non-negative solution.

To do so, let us considers the problem of quasi-linear evolution in a body
that occupies a bonded domain, Ω ⊂ R3, with a Lipschitz border ∂Ω, composed
of a nanolayer Bε, with an oscillating border Σ±

ε , and a remaining region of
Ωε (see Figure 1). The body occupying the Ω domain is bounded, and the
operator L ∈ Cs(I; L(X∗, X)) is linear and bounded, L(t) = L∗(t) and positive
(⟨L(t)x, x⟩ ≥ 0, ∀x ∈ X∗), for all t ∈ I. With the set of admissible controls
Uad = {u(t) ∈ X∗ : ∥u∥X∗ ≤ C}, ∀t ∈ I. The problem is modeled with the
following equations

(P)



ż − div(|∇z|p−2∇z) = 0, in Ω∞
ε ;

ż = 1
εα div(|∇z|p−2∇z) + L(t)u, in B∞

ε ;
z(t, x) = 0, on Γ∞ =]0, ∞[×∂Ω;
z(0, x) = z0, in Ω;
[z(t, x)] = 0, on ]0, ∞[×Σ±

ε ;
|∇z|p−2 ∂z

∂n |Ωε = 1
εα |∇z|p−2 ∂z

∂n |Bε , on ]0, ∞[×Σ±
ε .

The conductivity is expressed by 1
εα , a triple

X = W 1,p(Bε) ↪→ H = L2(Bε) ↪→ X∗ = (W 1,p)′(Bε)
of spaces with dense embeddings for a reflexive Banach space X for p > 1,
where H is a Hilbert space. Now, the aim of the present work is to study
the stability of a quasi-linear problem via a feedback control with a p-Laplace
operator and interface conditions. In our case, we work with a Bε region of
nanostructure, which can cause problems during the numerical resolution with
the finite element method and, more precisely, during the creation of the mesh
of the domain, which is very fine and can cause numerical explosions.

In this article, we focus on establishing the following main result, which
demonstrates the limit behavior presented in the theorem below.
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Figure 1 – Domain Ω

Consider the following energy operator:

Fε (zε) = 1
p

∫
Ω∞

ε

|∇zε|p + 1
pεα

∫
B∞

ε

|∇zε|p −
∫

B∞
ε

L(t)uεzε.

One denotes by τf the weak topology on Lp(0, ∞; W 1,p
0 (Ω)).

Theorem 1.1. According to the values of α, there exists a functional F α

defined on Lp(0, ∞; W 1,p
0 (Ω)) with a value in R∪{+∞} such that τf −lime Fε =

F α in Lp(0, ∞; W 1,p
0 (Ω)), where the functional F α is given by

(1) If 0 ≤ α < 1:
F α(z) = 1

p

∫
]0,∞[×Ω

|∇z|p,

for all z ∈ Lp(0, ∞; W 1,p
0 (Ω)).

(2) If α ≥ 1:

F α(z) = 1
p

∫
]0,∞[×Ω

|∇z|p + 2m(φ)η(α)
p

∫
]0,∞[×Σ

|∇′z|Σ|p,

for all z ∈ G ⊂ Lp(0, ∞; W 1,p
0 (Ω)).

The idea would be to look for another equivalent approximation model
to work with the finite element method in an accurate way in order to obtain
the limit problem and reach the object of this article, which is organized as
follows: Section 3 serves to show what we call feedback-controlled stability
using Riccati’s equations with algebraic operators in Banach spaces, which
makes the quasi-linear system stable for the approximate problem associated
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with the initial problem, and we prove a priori estimates. Then, we proceed
to the limit, using preliminary results, definitions, and some properties for
the minimization problem. The epi-convergence method is considered to find
the limit problem with interface conditions. Finally, in Section 4, we give a
numerical test illustrating the theoretical results obtained.

2. PRELIMINARIES

2.1. Notations

In this section, we give the notations that are used throughout this paper:
• Q =]0, ∞[×Ω, Ω∞

ε =]0, ∞[×Ωε, B∞
ε =]0, ∞[×Bε.

• Lp (0, ∞, X) has the norm,

∥z∥Lp(0,∞,X) =
(∫ ∞

0
∥z(t)∥p

Xdt
) 1

p

with X, a Banach space.

• [z]Σ±
ε

= z|Ωε|Σ±
ε

− z|Bε|Σ±
ε

.

• We have

G =
{

z ∈ Lp(0, ∞; W 1,p
0 (Ω)) : η(α)z(t) |Σ∈ Lp(0, ∞; W 1,p(Σ)) if α ≤ 1;

z ∈ Lp(0, ∞; W 1,p
0 (Ω)) : z(t) |Σ= C if α > 1.

D =
{

D(]0, ∞[×Ω) if α ≤ 1;
{z ∈ D(]0, ∞[×Ω) : z(t) |Σ= C} if α > 1,

• Let us define the operator mε which transforms functions defined z on
Bε into functions defined on Σ by

mεz(t, x1, x2) = 1
2εφε

∫ εφε

−εφε

z(t, x1, x2, x3)dx3.

(t, x) = (t, x′, x3), where x′ = (x1, x2), λ = 1, 2, ∇′ = ( ∂
∂x1

, ∂
∂x2

), the space
Y =]0, 1[×]0, 1[, the function φ : R2 → [a1, a2] where φ is Y -periodic and
a2 ≥ a1 > 0, φε(x′) = φ(x′

ε ), ∂φ
∂xλ

∈ C(Σ) ∩ L∞(Σ), m(φ) =
∫

Y φ(x′)dx′,
η(α) = limε→0 ε1−α, with α ≥ 0.

• If X1, X2 are Banach spaces, then by L (X1, X2) we denote the space of
bounded operators acting from X1 to X2.

• By Cs(I; L(X1, X2)) we denote the space of strongly continuous opera-
tor functions on interval I =]0, T [ ranging in L(X1, X2).
In the following, C denotes any constant with respect to ε.
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2.2. Functional Framework

In this section, we propose a concept of operator’s sequence convergence
known as epi-convergence, which is a subset of the Γ-convergence introduced
by De Giorgi and Spagnolo [10]. It is well suited to the asymptotic analysis of
sequences of minimization problems.

Definition 2.1 ([2], Definition 1.9). Let (X, τ) be a reflexive Banach space,
Fε : X → R ∪ +∞ a family of convex functionals, and F : X → R ∪ +∞ a
convex functional. Suppose that

1. lim infε→0 Fε(x) ≥ F (x) for all x ∈ X.

2. For any sequence (xε) ⊂ X such that xε ⇀ x weakly in X, we have
lim supε→0 Fε(xε) ≤ F (x). Then, we have Fε

τ−epi−−−→ F .

Note the following fundamental result of epi-convergence.

Theorem 2.2 ([2], Theorem 1.10). Suppose that

(1) Fε admits a minimizer on X,

(2) the sequence (z̄ε) is τ -relatively compact,

(3) The sequence Fε epi-converges to F in this topology τ . Then each
cluster point z̄ of the sequence (z̄ε) minimizes F on X and

lim
ε′→0

Fε′(z̄ε′) = F (z̄)

if (z̄ε′)ε′ denotes the subsequence of (z̄ε)ε that converges to z̄.

This theorem shows that if X is a reflexive Banach space, then Riccati
equation has a unique strongly continuous self-adjoint non-negative solution
P (t).

Theorem 2.3 ([3], Theorem 2). Let X be a reflexive Banach space and
the following assumptions hold:

1. {S}0≤s≤t≤T is strongly continuous and uniformly bounded forward evo-
lution family in L(X). Then S∗ is strongly continuous and uniformly bounded
backward evolution family in L(X∗).

2. Operator functions C ∈ Cs(I; L(X, X∗)) and L ∈ Cs(I; L(X∗, X)).
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3. C(t) = C∗(t) ≥ 0 and L(t) = L∗(t) ≥ 0 for all t ∈ I. Then for all self-
adjoint non-negative P0 ∈ L (X, X∗) the (backward) integral Riccati equation

P (t) = S∗(t)P0S(t) +
∫ t

0
S∗(t − s)

(
C∗(s)C(s)

− P (s)L(s)L∗(s)P (s)
)
S(t − s)ds, t ≥ 0

has a unique self-adjoint non-negative solution P ∈ Cs(I; L(X, X∗)).

3. MAIN RESULTS

3.1. Stability Study

Consider the following approximate problem:

(Pε)



żε(t, x) − div(|∇zε(t, x)|p−2∇zε(t, x)) = 0, in Ω∞
ε ;

żε(t, x) = 1
εα div(|∇zε(t, x)|p−2∇zε(t, x)) + L(t)uε(t), in B∞

ε ;
zε(t, x) = 0, on Γ∞ =]0, ∞[×∂Ω;
zε(0, x) = z0,ε, in Ω;
[zε(t, x)] = 0, on ]0, ∞[×Σ±

ε ;
|∇zε(t, x)|p−2 ∂zε(t,x)

∂n |Ωε = 1
εα |∇zε(t, x)|p−2 ∂zε(t,x)

∂n |Bε , on ]0, ∞[×Σ±
ε .

We are interested in stabilizing the following equation:

(1) żε = 1
εα

div
(
|∇zε|p−2∇zε

)
+ L(t)uε in B∞

ε ,

with interface conditions.
Based on successive linearizations, the Newton method replaces the dis-

crete nonlinear problem (1) with an iterative sequence of linear problems, which
can be directly solved by standard methods of linear algebra.

The term A(zε,k+1) = 1
εα div(|∇zε,k|p−2∇zε,k+1) can be linearized using

the following expression:
(2) A(zε,k+1) = A(zε,k) + (zε,k+1 − zε,k)A′(zε,k)
which is obtained from Taylor’s series, with second and higher orders neglected.
The term A′(zε,k) represents the differentiation of A(zε,k) with respect to zε,k.
If we assume zε,k is the known value and zε,k+1 is unknown, the right-hand
side of equation (2) is always linear. Equation (1) now becomes

(3) żε,k+1 = 1
εα

div
(
|∇zε,k|p−2∇zε,k+1

)
+ L(t)uε,k+1 in B∞

ε .

The z’s in the boundary conditions now become zk+1’s. It should be
noted that if zk+1 = zk, then equation (3) reduces to (1). It is obvious that
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in applying equation (2) to linearize (1) or any nonlinear equation, only the
nonlinear terms need to be considered.

According to the Hille–Yosida theorem, we have the existence of a solu-
tion, denoted zε,k=0, then computing zε,k=1, k = 1, 2, . . ., from equation (3),
with the values for zε,k=1 known, the values for zε,k=2 are obtained. This
process is repeated until the required accuracy is obtained.

Let ε be the maximum error allowed, and the required accuracy can be
defined by the following equation:

∥zε,k+1 − zε,k∥ < ε, k = 0, 1, 2, . . .

We show the convergence of the method. By contradiction, let us suppose
that zε,k+1 − zε,k is not bounded for k big enough and take

z′
ε,k = zε,k+1 − zε,k

∥zε,k+1 − zε,k∥Lp(0,∞;X)
,

replacing z′
ε,k in the problem (3), with X = W 1,p(Bε), and using the variational

formulation, we obtain:

<ż′
ε,k, z′

ε,k >Bε=<
1
εα

div
(
|∇z′

ε,k−1|p−2∇z′
ε,k

)
, z′

ε,k >Bε + <L(t)u′
ε,k, z′

ε,k >Bε

and

<ż′
ε,k, z′

ε,k >Bε + <
1
εα

|∇z′
ε,k−1|p−2∇z′

ε,k, ∇z′
ε,k >Bε= − <Pz′

ε,k(t), z′
ε,k >Bε .

Furthermore

<ż′
ε,k, z′

ε,k >]0,T [×Bε
+ <

1
εα

|∇z′
ε,k−1|p−2∇z′

ε,k, ∇z′
ε,k >]0,T [×Bε

≤ 0∫ T

0

d

dt
∥z′

ε,k∥2
L2 + 1

εα
inf∫ T

0 ∥|∇z′
ε,k−1|p−2∥ p

p−2
=∥z′

ε,k−1∥p
Lp(0,T ;X)=1

< |∇z′
ε,k−1|p−2, |∇z′

ε,k|2 >]0,T [×Bε
≤ 0

∫ T

0

d

dt
∥z′

ε,k∥2
L2 +

∫ T

0

1
εα

∥z′
ε,k∥p

1,p =
∫ T

0

d

dt
∥z′

ε,k∥2
L2 +

∫ T

0

1
εα

∥|∇z′
ε,k|2∥ p

2
≤ 0

∥z′
ε,k(T, x)∥2

L2 − ∥z′
ε,k(0, x)∥2

L2 +
∫ T

0

1
εα

∥z′
ε,k∥p

1,p ≤ 0,

such that when T → ∞, we get:

∥z′
ε,k∥p

Lp(0,∞,X) =
∫ ∞

0
∥z′

ε,k∥p
1,p ≤ Cεα.

Contradiction as the norm ∥z′
ε,k∥p

Lp(0,∞,X) = 1, hence ∥zε,k+1 − zε,k∥ < ε.
As we get Aε,k, it approaches Aε, which allows us to have a semigroup

Sε,k associated to the operator Aε,k.
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By the following Riccati equation [21]:
Ṗ (t) = A∗

ε,kP (t) + P (t)Aε,k + C∗C − P (t)L(t)L∗(t)P (t), P (0) = P0.

Note that A∗
ε,k is the adjoint operator.

Since Lp(0, ∞; W 1,p
0 (Bε)) is a reflexive Banach space, the Riccati equation

has a unique strongly continuous, self-adjoint, and non-negative solution P (t)
(see Theorem 2.3).

Formally, it can be demonstrated by analogy to the Hilbert case [20, 21]
that the optimal control is found in the feedback form uε,k(t) = −L∗(t)Pzε,k(t),
where P is a bounded symmetric positive definite operator that solves the
algebraic operator Riccati equation (see [12]).

3.2. Limit Behavior of Solution

3.2.1 Approximate problem

The set V = W 1,p
0 (Ω) is a Banach and reflexive space, where W 1,p

0 (Ω) has
the norm ∥·∥

W 1,p
0 (Ω), according to the separability of V , hence it admits a count-

able basis {w1, w2, w3, . . . , wm, . . .}, with wi ∈ V, for all m, {w1, w2, w3, . . . , wm}
is a free family, H = Vect{w1, w2, w3, . . . , wm, . . .} is dense in V .

Let us consider in the spaces Vm = Vect{w1, w2, w3, . . . , wm} the following
approximate problem. We put

zε(t) =
m∑

i=1
hiε(t)wi ∈ Vm.

(Pm,ε)



<żε, wi >Ωε − <div(|∇zε|p−2∇zε), wi >Ωε= 0, in ]0, ∞[
<żε, wi >Bε=< 1

εα div(|∇zε|p−2∇zε), wi >Bε + <L(t)uε, wi >Bε ,

in ]0, ∞[
zε(t, x) = 0, on Γ∞ =]0, ∞[×∂Ω
zε(0, x) = z0,ε, in Ω
[zε(t, x)] = 0, on ]0, ∞[×Σ±

ε

|∇zε|p−2 ∂zε
∂n |Ωε = 1

εα |∇zε|p−2 ∂zε
∂n |Bε , on ]0, ∞[×Σ±

ε .
With < ·, · > is a duality bracket.

From the results on systems of differential equations, we are sure that the
problem (Pm,ε) has a solution zε(t) in an interval ]0, T [, such that T → ∞ for
ε → 0.

Lemma 3.1. The family (zε,k)ε>0,k∈N satisfies:

(4)
∫ ∞

0
∥∇zε,k∥p

Lp(Bε) ≤ Cεα.
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(5)
∫ ∞

0
∥∇zε,k∥p

Lp(Ωε) ≤ C.

Moreover, zε,k is bounded in Lp(0, ∞, W 1,p
0 (Ω)).

Proof. Consider problem (Pm,ε); multiply the equations defined on B∞
ε

and Ω∞
ε by hiε(t) and sum from i = 1 to m, for a fixed k. We get

<żε,k, zε,k >Ω =<div
(
|∇zε,k|p−2∇zε,k

)
, zε,k >Ωε

+ <
1
εα

div
(
|∇zε,k|p−2∇zε,k

)
, zε,k >Bε + <L(t)uε,k, zε,k >Bε ,

and furthermore
<żε,k, zε,k >Ω+ < |∇zε,k|p−2∇zε,k, ∇zε,k >Ωε + <

1
εα

|∇zε,k|p−2∇zε,k, ∇zε,k >Bε

= − <Pzε,k(t), zε,k >Bε .

We have uε,k(t) = −L∗(t)Pzε,k(t), where P is a bounded symmetric pos-
itive definite operator, so L(t)uε,k = −Pzε,k(t), and since P is a bounded
symmetric positive so − < Pzε,k(t), zε,k >Bε≤ 0,

(6) 1
2

d

dt

∫
Ω

|zε,k|2 +
∫

Ωε

|∇zε,k|p + 1
εα

∫
Bε

|∇zε,k|p ≤ 0,

and by integration from 0 to T :
1
2∥zε,k(T, x)∥2

L2(Ω) − 1
2∥z0,ε∥2

L2(Ω) ≤ − 1
εα

∫ T

0
∥∇zε,k∥p

Lp(Bε) −
∫ T

0
∥∇zε,k∥p

Lp(Ωε).

So,
1
εα

∫ T

0
∥∇zε,k∥p

Lp(Bε) +
∫ T

0
∥∇zε,k∥p

Lp(Ωε) ≤ −1
2∥zε,k(T, x)∥2

L2(Ω) + C.

Then, let us reduce −1
2∥zε,k(T, x)∥2

L2(Ω) by 0, such that T → ∞, we get
1
εα

∫ ∞

0
∥∇zε,k∥p

Lp(Bε) +
∫ ∞

0
∥∇zε,k∥p

Lp(Ωε) ≤ C.

So
(7)

∫ ∞

0
∥∇zε,k∥p

Lp(Bε) ≤ εαC.

and
(8)

∫ ∞

0
∥∇zε,k∥p

Lp(Ωε) ≤ C.

It is clear that for a small enough ε, the solution (zε,k) is bounded in the space
Lp(0, ∞, W 1,p

0 (Ω)).

Since Lp(0, ∞; W 1,p
0 (Ω)) is a reflexive space, then there exists a sub-

sequence of (zε,k)ε>0,k∈N , always denoted by zε,k, such that zε,k ⇀ z∗ in
Lp(0, ∞; W 1,p

0 (Ω)).
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3.3. Proof of Theorem 1.1

We recall the energy operator of our problem

inf
z∈Lp(0,∞;W 1,p

0 (Ω))

{1
p

∫
Ω∞

ε

|∇z|p + 1
pεα

∫
B∞

ε

|∇z|p −
∫

B∞
ε

L(t)uz

}
(P1)

Remark 3.2 ([11]). According to the Hille–Yosida theorem, we have the
existence of a solution. Moreover, z is given by the formula

z(t) = S∆p(t)z0 −
∫ t

0
SA(t − s)Pz(s)ds, t ≥ 0

where S∆p(t) denotes the semigroup associated to ∆p.

To prove our theorem, we need to establish Lemmas 3.3 and 3.4 and
Proposition 3.5.

Lemma 3.3. The operator mε is linear and bounded in Lp(0, ∞; Lp(Bε))
(resp. Lp(0, ∞; W 1,p

0 (Bε))) and in Lp(0, ∞; Lp(Σ)) (resp. Lp(0, ∞; W 1,p
0 (Σ))).

Moreover, for all z ∈ Lp(0, ∞; W 1,p
0 (Bε)), we have

(9)
∥∥mεz − z|Σ

∥∥p

Lp(]0,∞[×Σ) ≤ Cεp−1
∫ ∞

0

∫
Bε

|∇z|p.

Proof. We have∫
Σ

|mεz|p dx1dx2 =
∫

Σ

( 1
2εφε

)p ∣∣∣∣∫ εφε

−εφε

zdx3

∣∣∣∣p dx1dx2.

Since 0 < a1 ≤ φε ≤ a2, and according to the Hölder inequality,

(10)

∫
Σ

|mεz|p dx1dx2 ≤
∫

Σ

1
2εφε

(∫ εφε

−εφε

|z|pdx3

)
dx1dx2

≤ 1
2εa1

∫
Σ

(∫ εφε

−εφε

|z|pdx3

)
dx1dx2.

Since z ∈ Lp (]0, ∞[×Bε) and (10), it follows that mεz ∈ Lp(]0, ∞[×Σ).
Let z ∈ D (]0, ∞[×Bε), we have

∂

∂xλ
(mεz) (t, x1, x2) = 1

2
∂

∂xλ

(∫ 1

−1
z (t, x1, x2, x3εφε) dx3

)
= 1

2

(∫ 1

−1

∂z

∂xλ
(t, x1, x2, x3εφε)

+ εx3
∂φε

∂xλ

∂z

∂x3
(t, x1, x2, x3εφε)dx3

)
= 1

2εφε

∫ εφε

−εφε

(
∂z

∂xλ
+ x3

εφε
· ε

∂φε

∂xλ
· ∂z

∂x3

)
dx3.
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So that,∫
Σ

∣∣∣∣ ∂

∂xλ
(mεz)

∣∣∣∣p =
∫

Σ

∣∣∣∣ 1
2εφε

(∫ εφε

−εφε

∂z

∂xλ
+

(
x3
εφε

) (
ε

∂φε

∂xλ

)
∂z

∂x3
dx3

)∣∣∣∣p
≤

( 1
2εa1

)p ∫
Σ

(∫ εφε

−εφε

∣∣∣∣ ∂z

∂xλ
+

(
x3
εφε

) (
ε

∂φε

∂xλ

)
∂z

∂x3

∣∣∣∣p dx3

)
.

However, ∂φ
∂xλ

∈ C(Σ) ∩ L∞(Σ), then ε∂φε

∂xλ
is bounded, and therefore∫

Σ

∣∣∣∣ ∂

∂xλ
(mεz)

∣∣∣∣p ≤ C

ε

∫
Bε

(∣∣∣∣ ∂z

∂xλ

∣∣∣∣p +
∣∣∣∣ ∂z

∂x3

∣∣∣∣p)
dx3 ≤ C

ε

∫
Bε

|∇z|p.

By density arguments, for any z ∈ Lp(0, ∞; W 1,p
0 (Bε)), we have∫ ∞

0

∫
Σ

∣∣∣∣ ∂

∂xλ
(mεz)

∣∣∣∣p ≤ C

ε

∫ ∞

0

∫
Bε

|∇z|p.

Let z ∈ D (]0, ∞[×Bε), so that

∥mεz−z|Σ∥p
Lp(Σ) =

∫
Σ

∣∣∣∣( 1
2εφε

∫ εφε

−εφε

z(t, x1, x2, x3)dx3

)
− z(t, x1, x2, 0)

∣∣∣∣pdx1dx2.

Using the Hölder inequality,

∥mεz − z|Σ∥p
Lp(Σ) ≤ 1

2εa1

∫
Σ

(∫ εφε

−εφε

|z(t, x1, x2, x3)−z(t, x1, x2, 0)|p dx3

)
dx1dx2

≤ C

ε

∫
Σ

(∫ εφε

−εφε

∣∣∣∣∫ x3

0

∂z

∂x3
(t, x1, x2, w)dw

∣∣∣∣p dx3

)
dx1dx2

≤ C

ε

∫
Σ

(∫ εφε

−εφε

|x3|p−1
(∫ εφε

−εφε

∣∣∣∣ ∂z

∂x3
(t, x1, x2, w)

∣∣∣∣pdw

)
dx3

)
dx1dx2

≤ Cεp−1
∫

Σ

(∫ εφε

−εφε

∣∣∣∣ ∂z

∂x3

∣∣∣∣p dx3

)
dx1dx2

≤ Cεp−1
∫

Bε

|∇z|pdx.

By density arguments, we have for all z ∈ Lp(0, ∞; W 1,p
0 (Bε))∥∥mεz − z|Σ

∥∥p

Lp(]0,∞[×Σ) ≤ Cεp−1
∫ ∞

0

∫
Bε

|∇z|pdxdt.

Hence the result.

Lemma 3.4. Let (zε)ε>0 ⊂ Lp(0, ∞; W 1,p
0 (Ω)) which satisfies (4) and (5).

Then

(11)
∥∥∇′ (mεzε)

∥∥p
(Lp(]0,∞[×Σ))p ≤ Cεα−1.

In addition, mεzε have a bounded sub-sequence in Lp(]0, ∞[×Σ).



228 T. Boulahrouz, M. Filali, J. Messaho, and N. Tsouli 12

Proof. According to a result of Lemma 3.3, we have∫ ∞

0

∥∥∥∥∂ (mεzε)
∂xλ

∥∥∥∥p

Lp(Σ)p

≤ Cε−1
∫ ∞

0

∫
Bε

|∇zε|p dx.

According to (4), one has∫ ∞

0

∥∥∥∥∂ (mεzε)
∂xλ

∥∥∥∥p

Lp(Σ)p

≤ Cεα−1.

Then from Lemma 3.3, we get

∥mεz − z|Σ∥p
Lp(]0,∞[×Σ) ≤ Cεp−1

∫ ∞

0

∫
Bε

|∇z|p ≤ Cεα+p−1.

The sequence (zε)ε is bounded in Lp (0, ∞; W 1,p
0 (Ω)), it follows that there exists

z∗ ∈ Lp(0, ∞; W 1,p
0 (Ω)) and a sub-sequence zε, always noted zε, such as zε ⇀ z∗

in Lp(0, ∞; W 1,p
0 (Ω)), then zε|Σ is a bounded sequence in Lp(]0, ∞[×Σ).

Since,

∥mεzε∥Lp(]0,∞[×Σ) ≤ ∥mεzε − zε|Σ∥Lp(]0,∞[×Σ) + ∥zε|Σ∥Lp(]0,∞[×Σ),

then there exists C such that ∥mεzε∥p
Lp(]0,∞[×Σ) ≤ C.

Proposition 3.5. (zε)ε has a weakly convergent sub-sequence to an ele-
ment z∗ in Lp(0, ∞; W 1,p

0 (Ω)) satisfactory

(1) If α = 1, z∗|Σ ∈ Lp(0, ∞; W 1,p
0 (Σ)).

(2) If α > 1, z∗|Σ = C.

Proof. The sequence zε is bounded in Lp(0, ∞; W 1,p
0 (Ω)). It follows that

there is an element z∗ ∈ Lp(0, ∞; W 1,p
0 (Ω)) and a sub-sequence of zε, always

designated by zε such as zε ⇀ z∗ in Lp(0, ∞; W 1,p
0 (Ω)). We have

∥mεzε − zε|Σ∥p
Lp(]0,∞[×Σ) ≤ Cεα+p−1 and zε|Σ ⇀ z∗

|Σ in Lp(]0, ∞[×Σ).

For α = 1, according to the evaluation (11), the sequence ∇′mεzε has a sub-
sequence, always denoted by ∇′mεzε weakly convergent to an element z2 in
Lp(0, ∞; Lp(Σ))2, as mεzε ⇀ z∗

|Σ in Lp(0, ∞; W 1,p
0 (Σ)) and ∇′z∗

|Σ = z2. Hence
z∗

|Σ ∈ Lp(0, ∞; W 1,p
0 (Σ)). For α > 1, one shows, as in the case α = 1 and

taking z2 = 0, that z∗
|Σ = C. Hence the results.

The previous results have helped us to highlight our fundamental result
(Theorem 1.1).
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Proof. The limit behavior of the problem (P1), is derived with the epi-
convergence method. Let

Fε(zε) = 1
p

∫
Ω∞

ε

|∇zε|p + 1
pεα

∫
B∞

ε

|∇zε|p −
∫

B∞
ε

L(t)uεzε

= 1
p

∫
Ω∞

ε

|∇zε|p + 1
pεα

∫
B∞

ε

|∇zε|p −
∫

B∞
ε

L(t)
(
−L∗(t)Pzε(t)

)
zε

= 1
p

∫
Ω∞

ε

|∇zε|p + 1
pεα

∫
B∞

ε

|∇zε|p +
∫

B∞
ε

Pzε(t)zε.

(a) We determine the upper epi-limit.
Let z ∈ G ⊂ Lp(0, ∞; W 1,p

0 (Ω)), and (zk
ε ) a sequence in Lp(0, ∞; W 1,p

0 (Ω)).
From the fact that ∆p is of type S+, we conclude the convergence zk

ε → z in
the space Lp(0, ∞; W 1,p

0 (Ω)), when k → +∞.
Since zk

ε → z in Lp(0, ∞, W 1,p
0 (Ω)), when k → +∞. According to the

classical result, the diagonalization lemma [2, Lemma 1.15], there is a func-
tion k(ε) : R+ → N increasing to +∞ when ε → 0, such as z

k(ε)
ε → z in

Lp(0, ∞, W 1,p
0 (Ω)), when ε → 0.

Fε(zk
ε ) = 1

p

∫
Ω∞

ε

∣∣∇zk
ε

∣∣p + 1
pεα

∫
B∞

ε

∣∣∇zk
ε

∣∣p +
∫

B∞
ε

Pzk
ε (t)zk

ε .

So that

Fε(zk
ε ) = 1

p

∫
]0,∞[×(

∣∣x3
∣∣>2εφε)

∣∣∇zk
ε

∣∣p + 1
p

∫
]0,∞[×(εφε<|x3|<2εφε)

∣∣∇zk
ε

∣∣p
+ 1

pεα

∫
]0,∞[×Bε

∣∣∇zk
ε

∣∣p +
∫

B∞
ε

Pzk
ε (t)zk

ε

= 1
p

∫
]0,∞[×(|x3|>2εφε)

∣∣∇zk
ε

∣∣p + 1
p

∫
]0,∞[×(εφε<|x3|<2εφε)

∣∣∇zk
ε

∣∣p
+ 2ε1−α

p

∫
]0,∞[×Σ

φε

∣∣∇′zk
ε|Σ

∣∣p + 2ε

∫
]0,∞[×Σ

φεPzk
ε|Σ(t)zk

ε|Σ.

Since φε is bounded, we can easily verify that

lim
ε→0

{1
p

∫
]0,∞[×(εφε<|x3|<2εφε)

∣∣∇zk
ε

∣∣p}
= 0.

Since Pzk
ε (t) ∈ L (X, X∗), the boundedness of Pzk

ε (t) in X∗ yields the
convergences Pzk

ε (t) ⇀ Pz(t) in X∗, and zk
ε → z in Lp(0, ∞; W 1,p

0 (Ω)):

1. If α = 1: Since φε
∗

⇀ m(φ) in L∞(Σ) and ε1−α → η(α), it follows that

lim
ε→0

2ε1−α

p

∫
]0,∞[×Σ

φε|∇′zk
ε|Σ|p = 2m(φ)η(α)

p

∫
]0,∞[×Σ

|∇′z|Σ|p.
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By passing to the upper limit, we have

lim
ε→0

sup Fε(zk
ε ) = lim

ε→0
sup

(1
p

∫
]0,∞[×(|x3|>2εφε)

|∇zk
ε |p

+ 2ε1−α

p

∫
]0,∞[×Σ

φε|∇′zk
ε|Σ|p+2ε

∫
]0,∞[×Σ

φεPzk
ε|Σ(t)zk

ε|Σ

)
≤ 1

p

∫
]0,∞[×Ω

|∇z|p + 2m(φ)η(α)
p

∫
]0,∞[×Σ

|∇′z|Σ|p.

2. If α ̸= 1: By passing to the upper limit, we have

lim
ε→0

sup Fε(zk
ε ) = lim

ε→0
sup

(1
p

∫
]0,∞[×(|x3|>2εφε)

|∇zk
ε |p

+ 2ε

∫
]0,∞[×Σ

φεPzk
ε|Σ(t)zk

ε|Σ

)
≤ 1

p

∫
]0,∞[×Ω

|∇z|p.

(b) We determine the lower epi-limit.
Let z ∈ G and (zk

ε ) a sequence in Lp(0, ∞; W 1,p
0 (Ω)) such as zk

ε ⇀ z in
Lp(0, ∞; W 1,p

0 (Ω)), so that

(12) χΩ∞
ε

∇zk
ε ⇀ ∇z in Lp(

0, ∞, Lp(Ω)
)3

.

1. If α ̸= 1: Since

Fε(zk
ε ) ≥ 1

p

∫
Ω∞

ε

∣∣∇zk
ε

∣∣p +
∫

B∞
ε

Pzk
ε (t)zk

ε .

According to (12) and by passage to the lower limit, one obtains

lim inf
ε→0

Fε(zk
ε ) ≥ 1

p

∫
]0,∞[×Ω

|∇z|p.

2. If α = 1: If lim infε→0 Fε(zk
ε ) = +∞, there is nothing to prove, because

1
p

∫
]0,∞[×Ω

|∇z|p + 2m(φ)η(α)
p

∫
]0,∞[×Σ

|∇′z|Σ|p ≤ +∞.

Otherwise, lim infε→0 Fε(zk
ε ) < +∞, there is a sub-sequence of Fε(zk

ε ) still
designated by Fε(zk

ε ) and a constant C > 0, such as Fε(zk
ε ) ≤ C, which implies

that

(13) 1
pεα

∫
B∞

ε

|∇zk
ε |p +

∫
B∞

ε

Pzk
ε (t)zk

ε ≤ C.
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Therefore, zk
ε satisfies the hypothesis of Lemma 3.4, and according to this

last inequality, ∇′mεzk
ε is bounded in Lp(0, ∞; Lp(Σ))2, so there is an ele-

ment z1 ∈ Lp (0, ∞; Lp(Σ))2 and a sub-sequence of ∇′mεzk
ε , always desig-

nated by ∇′mεzk
ε , such as ∇′mεzk

ε ⇀ z1 in Lp(0, ∞; Lp(Σ))2, since zε|Σ ⇀

z|Σ in Lp(]0, ∞[×Σ), and thanks to (9) and (13), one has mεzk
ε ⇀ z|Σ in

Lp(]0, ∞[×Σ), then mεzk
ε ⇀ z|Σ in Lp(0, ∞; W 1,p

0 (Σ)), so z1 = ∇′z|Σ, so that
∇′mεzk

ε ⇀ ∇′z|Σ in Lp(0, ∞; Lp(Σ))2,

Fε(zk
ε ) ≥ 1

p

∫
Ω∞

ε

|∇zk
ε |p + 1

pεα

∫
B∞

ε

|∇zk
ε |p +

∫
B∞

ε

Pzk
ε (t)zk

ε

≥ 1
p

∫
Ω∞

ε

|∇zk
ε |p + 2ε1−α

p

∫
]0,∞[×Σ

φε|∇′mεzk
ε |p

+ 2ε

∫
]0,∞[×Σ

φεPzk
ε (t)mεzk

ε .

Using the subdifferential inequality, we have

Fε(zk
ε ) ≥1

p

∫
Ω∞

ε

|∇zk
ε |p + 2ε1−α

p

∫
]0,∞[×Σ

φε|∇′z|Σ|p

+ 2ε1−α

p

∫
]0,∞[×Σ

φε|∇′z|Σ|p−2∇′z|Σ(∇′mεzk
ε − ∇′z|Σ)

+ 2ε

∫
]0,∞[×Σ

φεPzk
ε (t)mεzk

ε .

By [1, Lemma 7.1], we have φε → m(φ) in L2(Σ), so according to (12)
and by passing to the lower limit, we obtain

lim inf
ε→0

Fε(zk
ε ) ≥ 1

p

∫
]0,∞×Ω

|∇z|p + 2m(φ)η(α)
p

∫
]0,∞[×Σ

|∇′z|Σ|p.

Hence the result.

To complete our main theoretical result, we have the following proposi-
tion.

Proposition 3.6. According to the values of parameter α, there exists
(z∗, u∗) satisfying

zk
ε ⇀ z∗ in Lp(0, ∞; W 1,p

0 (Ω))
Pzk

ε (t) ⇀ Pz(t) in X∗

F α (z∗) = inf
v∈G

{F α(v)} .
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Proof. Firstly, (zk
ε ) is bounded in Lp(0, ∞; W 1,p

0 (Ω)), so it has a τ -cluster
point z∗ in Lp(0, ∞; W 1,p

0 (Ω)). As a consequence of a classical result of epi-
convergence (see Theorem 2.2 ), we have z∗ is a solution of the problem

inf
v∈G

{F α(v)} . (Plim)

3.4. Conclusion

In this paper, we worked on a class of quasi-linear evolution systems and
showed that this approach is stabilizable by a control for the approximate
equivalent problem on a three-dimensional bung. We also learned the limiting
behavior of this type of problem, finding that the effect of the nanolayer does
not exist and the control disappears, i.e., the nanolayer behaves as a part of Ω
and the limiting problem becomes an autonomous problem.

4. NUMERICAL TESTS

For a sufficiently small value of ε, the solution zε of the approaching
problem approaches the solution z∗ of the limit problem. We are interested in
the numerical treatment in this section and we concentrate on the impact of
the control on the B∞

ε domain, with
T = 10 L(t)u is linear and bounded

Ω = {(x, y)| x ∈]0, 1[, y ∈] − 1, 1[, z ∈]0, 1[} uε(t) = −L∗(t)Pzε(t)
Bε =]0, 1[×] − φε(x), φε(x)[×]0, 1[ φε(x) = 1.2 + sin(π x

ε ).
Using the Python programming language, with the finite element method

and the Newton method, with p = 2.1 and ε = 1e − 10, one has the results
shown in the table.

The solution of the approximation problem converges to that of the limit
problem.

Initially, u∗ does not stabilize the state on all of Ω, which is normal
because the control is defined only on Bε, so the control stabilizes the state
only on a sub-region, so α = 1 is all that is of interest.

t ∥zε∥ ∥z∗∥
α = 0.1 α = 1 α = 3 α = 0.1 α = 1 α = 3

t=0 6.19263e+10 6.19263e+10 6.19263e+10 14.8623 14.8623 14.8623
t=3.3 4.57764e-05 3.8147e-05 6.10352e-05 9.11214e-06 1.95399e-13 1.59872e-14
t=5 1.88712e-05 1.87712e-13 1.00003e-15 9.11214e-06 1.9255e-13 1e-15
t=6.6 1.79815e-05 1.41572e-13 6.19263e+10 9.11214e-06 1.9255e-13 14.8623
t=8.3 1.8238e-05 1.16754e-13 6.19263e+10 9.11214e-06 1.9255e-13 14.8623
t=10 1.78143e-05 1.16425e-13 6.10352e-05 9.11214e-06 1.9255e-13 14.8623

Table 1 – System stability for different α values
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Table 1 shows that the solution of the approximation problem converges
to that of the limit problem and demonstrates that uε stabilizes the state zε,
and u∗ stabilizes the state z∗ on the nanolayer. Specifically, when α = 1, we
found that the system is stabilized, and even when α is close to 1, stability can
still be observed. However, as we move further away from α = 1, we begin to
lose stability, which is the desired outcome. This illustrates that the model is
suitable for control specialists working on the nanolayer.

Acknowledgments. The authors would like to thank the referee(s) for his/her com-
ments and suggestions on the manuscript.
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