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Let K3 be a non-normal cubic extension over Q. And let Tlf 3(n) denote the
k-dimensional divisor function in the number field K3/Q. In this paper, we
investigate the asymptotic behaviour of higher power moments of Tlf 3(n) over
a certain sparse sequence of positive integers. In a more explicit manner, we
consider the asymptotic formula of the following type

> (& ()",

n:a%+a%+a§+aﬁ+a§+a%§z
(a1,a2,a3,04,a5,a6)€L°

where k > 2,/ > 2 are any given positive integers. Furthermore, as an appli-
cation, we also establish the asymptotic formula of the variance of (1,2 (n))*.
These results generalize the recent works in this direction.
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1. INTRODUCTION

Arithmetic functions play a prominent role in number theory, and it is
customary to investigate the average behaviour of arithmetic functions by es-
tablishing the corresponding asymptotic formulae. The average behaviour of
the coefficients of the Dedekind zeta function is an interesting and important
topic in modern number theory, which plays a significant role in algebraic
number theory.
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Let K/Q be a number field of degree d. The Dedekind zeta function is
defined by

(1) Ch(s)= Y. (Na)y = =TJ(1 - Vp)™)~", R(s)>1,
aCOgk p

where Na is the norm of the integral ideals a, and the sum ranges over all the
non-zero ideals in the ring Ox. We can rewrite the Dedekind zeta function as
a Dirichlet series

@) Gele) =3 M gy s,

nS

n=1
where ax(n) denotes the number of integral ideal in K with norm n, which
is called the coefficients of the Dedekind zeta function. It is obvious that
ax(n) = 0 for all n > 1. Tt is well known that ax(n) is a real multiplicative
function and for any € > 0,

(3) ax(n) < T(n)d <«nt,

here 7(n) is the classical divisor function and d = [K : Q]. From the result in
Chandrasekharan and Narasimhan [3], we know the tighter upper bound for
ar(n) that

(4) ax(n) < (7(n))

Clearly, we can expand the expression as an Fuler product

d—1

gK(s):i”;(S") :H(H‘”;gp) +---+W;E£k) te)s R > 1
n=1 p

The investigation of coefficients of the Dedekind zeta function has a rich
history, and it has also attracted the attentions of plenty of scholars. Lan-
dau [31] proved the asymptotic formula

(5) Y ax(n) = ez + O "7+

ne
for arbitrary algebraic number fields of degree d > 2, where ¢ > 0 is some
suitable constant depending on K. Let K/Q be a number field with d = [K :

QJ, for h being the class number of K, and set r; and 2ry the number of real
and complex conjugate field embeddings, respectively, one has

(6) > ak(n) = hix + E(z),

where
71 +ro R

IRTINE

)
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Here, the symbols w, R and A denote the number of roots of unity in K, the
regulator of K, and the discriminant of K, respectively. In 2020, Paul and
Sankaranarayanan [50] made some improvement for E(z) appearing in () in
comparison with () for general number fields and cyclotomic fields under some
mild conditions.

Let K/Q be a Galois extension of degree d. In [3], Chandraseknaran and
Narasimhan considered the second moment of ax(n), and they proved that

Z a%(n) < xlog? ' z.

n<e

Later, for K/Q being a Galois extension of degree d, Chandraseknaran and
Good [2] investigated the higher moments of ax (n) and established the asymp-
totic formulas

Z ab(n) = zPg(logx) + O(a:l_d%Jra)

K ;

nLx
where ¢ > 2 is a positive integer and Pg(t) is a polynomial of ¢ with degree
d“~' —1. In 2010, Lii and Wang [45] improved the results of Chandraseknaran
and Good, by establishing the asymptotic formula that

Z ab(n) = zPg (logz) + O(:vl_d%%ﬁ)

n<x

for any fixed integer ¢ > 2, where Pk (t) is a polynomial of ¢ with degree
d=t —1.

A significant and important problem in number theory is to consider the
quantity

S(a) =) r(n),

n<x
where x > 0 is a sufficiently large number. Indeed, one can establish the
following asymptotic formula

S(x) = zlogx + (27 — )a + O(z?),

where 7 is the Euler’s constant and ¢ is a real number with 0 < ¥ < 1.
The precise determination of the exponent ¥ is the celebrated Dirichlet divisor
problem. In an analogous manner, we can also study the k-dimensional divisor
problem, which investigates the average behaviour of 7i(n), generalizing the
classical Dirichlet divisor problem. Here, as usual, 7(n) denotes the number
of the representations of n as a product of k positive integers. Let k > 2 be any
fixed integer, and let Ay (x) denotes the error terms of the asymptotic formula

for
Z Tk (n)v

n<x
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where ((s)* = > on>1 Te(n)n™*. Using elementary argument, one can show that

Ag(r) < o logh—2 .

Define aj, > 0 as the least number of Ag(z) such that Ag(x) < 2@, the exact
order of qy is famously known as the general divisor problem which is still
widely open up to-date. For a more comprehensive treatment, the interested
readers may refer to Ivi¢ |25/ Chapter 13] and the references therein. The
estimations of the average behaviour of classical divisor function over certain
interesting sparse arithmetic sequences has also been investigated extensively in
the literature, by appealing to some deep analytic methods from this fascinating
area. For a historical line of developments, the readers may refer to [54] and
the references therein.

For a number field K and positive integers k£ and n, it is a natural problem
to consider the number of representations we can write n as a product of norms
of k ideals in the ring of integers Ok of K. A number of authors are interested
in investigating the average behaviour of the arithmetic function

(7) T,f{(n) = Z 1= Z ag(ni)ax(ng)...ax(ng),

N(ajaz...ax)=n n=ninz...ng

which is known as the k-dimensional divisor problem in the number field K.
Namely, we are interested in the asymptotic behaviour of the sum

ZT,f(n) = Z 1.

n<T N(a1a2...ak)<50

Clearly, using , one can infer that 7']5( (n) is a multiplicative function of
n. In 1988, Panteleeva [49] considered the divisor problem for quadratic and
cyclotomic fields, establishing the corresponding asymptotic formulae for both
cases. Let K = Q(v/D) for some square-free integer D, with |D| < log®z.
Then, for any integer k > 1, she showed that

- 2
Z 5 (n) = zPy(log ) + ft 133k 3 (C'logz)?*,

n<x

where Py is a polynomial of degree k — 1, |5| < 1, and C > 0 is an absolute
constant. For the cyclotomic field K = Q((x), where (i is a k-root of unity.
Then, among other things, she successfully proved that

~ _2
S (n) = aP(log x) + '~ = EOR T (Clog ) Ok,
n<e
where Py is a polynomial of degree k — 1, |5\ < 1, and C > 0 is an absolute
constant, and ¢(t) denotes the Euler’s totient function. Afterwards, a number
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of authors extended the above divisor problems to several number fields in
various settings (see, for example, [4}10,/44]). For general divisor problem
associated to holomorphic cusp forms, a number of authors investigated this
profound topic and obtained some enlightening results (see, for instance, [17,
41,42)).

Let K3/Q be a non-normal cubic extension, which is given by an irre-
ducible polynomial h(z) = 2® + Az? + Bz + C of discriminant D. In 2008,
Fomenko [12] considered the second and third moments of ag,(n) under the
condition D < 0 and he proved that

(8) Zai{s(n) = Cl$10gm+02$+0(w%+5)7
n<e
and
(9) Zaig’(n) = 2P(log z) + O(x%‘*‘s)’
n<x

where ¢; and ¢y are some suitable constants, and P(t) is a polynomial of ¢ with
degree 4. In 2013, Lii [43] refined the exponents in the error terms of and
@ to :2,)—? and %, respectively. Recently, Liu [35] made further improvement
concerning the error term of @ to %, and he also considered the general di-
visor problem for non-normal cubic extension K3/Q. Very recently, the author

and his collaborator |22] generalized the above results to
Skae(@) =) af,(n)
n<x
for any fixed integer £ > 4, by adopting the recent breakthrough of Newton

and Thorne [47/48], establishing the corresponding asymptotic formulae. More
accurately, for any given integer ¢ > 4, we successfully proved that

(10) Skse(r) = 2Pk, o(log x) + O(x* 1),
where P, ¢(t) denotes a polynomial in ¢ of degree 7, with 1, determined by

{Hm + kg2 — 1, =201 > 4,
Ne =

(11)
ve1+ o — 1, {=20+1205,

and apy =1 — %, here, the constants ry;, 04,7 = 1,2 are given by
01 / l1—1 /

s () e ()7
7=1 7j=1

and

Lo ) Lo )
1 =1 A = D;
(13) vep =1+ ; <2j> Jy V2 Z (2]. N 1) s

Jj=1
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respectively, and the constants A;, D;,j > 1 are defined as
4 -

(29! o (25 + 1)!
TG T (=D +3)Y
In order to understand the arithmetic functions in different aspects, an
important direction is to consider the average behaviour of the arithmetic func-
tions over certain sparse sequences. In 2017, Yang [57] derived the asymptotic
formula for the sum

i>1

Skae(x) = Y af,(nf +nd)
n%—l—n%ﬁx
with ¢ = 1. In 2020, Hu and Wang [15] considered the average behaviour of
higher moments of the arithmetic function ag,(n) over sum of two squares by
using the Rankin—Selberg theory, and, moreover, they proved that

(14) §K3,g(:v) = zPy(logz) + O(2%+)
for any € > 0, where 2 < ¢ < 8 and Fy(¢) is a polynomial of ¢ with degree 7y,
2 = ]-7 n3 = 45 N4 = 12, 5 = 33,
g = 88, Ny = 232, 18 = 609,
the exponents in the error terms are given by
o1 70 71 217
O = — O3 = — 0y = — 05 = —
ST N X T ° T 218
1987 6047 18356
O = ——, 7= 8 = —oara-
1990 6050 18359

Very recently, the author [20] generalized the result of Hu and Wang [15] to
the cases for any fixed integer ¢ > 9, by adopting the recent breakthrough of
Newton and Thorne [47,/48|, together with the nice analytic properties of the
associated L-functions. In a more explicit expression, for any given integer
> 9, we are able to show that

Srcy () = 2Py, ,(logz) + O(z+°),
where Pp. ,(t) denotes a polynomial in ¢ of degree 1, as defined in , and

Bo = 1_7?#4“37}%37 { =20 > 10,
[ 1—-— 21 0=2+1>09,

73T duy 1 137

where k¢ 1 and vy 1 are defined as and , respectively. In the meanwhile,
Liu and Lao [38] independently refined the results of (14), and also generalized
it to the cases for all £ > 2, via a different approach in comparison with the
author, by using the recent work of Newton and Thorne [47,/48], along with
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a different shifting the line of integration and better subconvexity bounds for
the associated L-functions.

More recently, motivated by the above results, the author [21] established
the asymptotic formulae for the summatory function

J4
Y @ (nf+n3)),
n%—l—n%éx

where ni,ny € Z, and k > 2,/ > 2 are any fixed positive integers. More
precisely, for kK > 2,/ > 2 being any given integers and for any € > 0, the
author established the following

Sk kt(x) = 2Py o(log ) + O(a”h079),

where P, 1 ¢(t) is a polynomial in ¢ of degree

_ kf -1, 0 =201 > 2,
deg PK3 k.t = g(f%’l - 5672) 1
K, k(V€,1+V472)—1, 0=200+1>3,
and the exponents are given by
210 B
1- 1537k2+430° {=2,
210 B
Oy = 1 = w00 {=3,
T 21 B
1= 21’(3]9,)[7451@,2,14*3’ = 261 > 4,
1-— 21 L=20,+12>5,

21-(3]{)[741116,&14*3 ’

where ki 01 = k:ef@g,l and v 1 = keljg’l, and the constants kg 1, kg2 and vy 1, v 2
are defined as and , respectively. For the results related to the Fourier
coefficients of holomorphic cusp forms over certain sparse sequence of posi-
tive integers, the interested readers can refer to |16}/18,|19}36,56] and various
illuminating references therein.

Recently, there are a flurry of activities towards the average behaviour of
coefficients of Dedekind zeta function for K3/Q over certain sparse sequence
of positive integers. Before proceeding further, we introduce Hypothesis p
concerning the subconvexity of ((s) as follows.

HyPOTHESIS p. There exists a least real number p such that
1
(15) ¢(5+it) < 1+
for any € > 0, where = u(%)

It is well known that the Phragmén—Lindel6f principle leads to
C(o +it) < (1 + |¢))2=0)+e
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uniformly for % < o < 2and |t| > 1. Very recently, Hiary, Patel and Yang [23]
derived the explicit subconvexity bound for {(s) which yields that

1
‘c(§ n zt)‘ < 0.618¢6 log t,

by employing a new version of Kusmin—Landau bound. The best record up
to-date towards Hypothesis u is due to Bourgain [1] with p = g, hence, one
has i,
C(o+it) < (14 |¢))=Uo)+e

unconditionally for % <o < 1and [t| > 1. The celebrated Lindelof Hypothesis
asserts that p(3) = 0, and this remains one of the most challenging open
problems in modern number theory.

In 2023, for any given integer k£ > 1, Sharma and Sankaranarayanan [54]
considered the asymptotic formula of the summatory function

K3
E 7.2 (n).
n:a%—l—a%—&—a%—l—ai—t—a% +a% <z

(a1,a2,a3,a4,a5,a6)EZ°

In fact, they successfully established the following

Z 72 (n) = 2° Po_1(log x) + B, (),
n:a%+a§+a§+ai+a§+a%<:p
(a1,a2,a3,a4,a5,a6)EZS
where Py_1(t) is a polynomial in ¢ of degree k — 1, and the error term EKB’k(x)
can be evaluated explicitly for which it gives a non-trivial upper bound. Here,
the error term E, j(x) is closely linked with Hypothesis f.

Inspired by the above enlightening results, in this paper the principal
purpose is to consider the higher power moments analogue of the result ob-
tained by Sharma and Sankaranarayanan [54]. More precisely, we consider the
asymptotic behaviour of the following summatory function

K- l
(16) Ska k() 1= > (72 (n))",
n:a%—l—a%—i—a%—l—ai—i—a%—l—a%éz
(a1,a2,a3,a4,a5,a6)€Z°
where k > 2,¢ > 2 are any fixed positive integers. More accurately, we are able
to establish the result as follows.

THEOREM 1.1. Let K3/Q be a non-normal cubic extension, which is given
by an irreducible polynomial h(z) = 23+ Ax? + Bx + C of discriminant D with
D < 0. Let k> 2, > 2 be any given integers, and let Sk, i, ¢(x) be defined as
(16). Then, for any e > 0, we have

Sks () = :E3PK37k7g(10g x) + O(x“’“”a),
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where P, . ¢(t) denotes a polynomial in t with degree vy 1 + vgea — 1, and
the constants vy 04,1 < i < 4 are defined as (35)). Here, the exponents oy are
given by oy ¢ = 3 — %w’ and Oy ¢ are determined by

L3R + 2(4p — Vvkes — Fvnea — S+ 55,
(17) Ore = § 2(3k)" — HeVhe1 — 5xVk02 T 383> if p=1g;
1(3k) = Lupe1 — Evkeo + Do if u=0.

The interplay of number theory and statistics revealed fruitful results in
the literature, and has also received considerable attentions in recent decades,
see, for example, [36,37,46]. For a random variable X defined on a countable
sample space V, we denote by E(X) and Var(X) the mathematical expectation
and variance of X, respectively. As a direct application of Theorem we
can obtain the asymptotic formulae of the variances of (7'153 () k>2,0>2
for

(18) D::{n€Z+:1§n<x, n:ZaJZ, aEZG},
j=1

denoted by Var((T,f‘*(n))e)D. Here, we set @ = (a1, az,as,a4,as,as). More
precisely, we have the following result.

THEOREM 1.2. Let k > 2,0 > 2 be any given integers, and let Ks/Q
be a mon-normal cubic extension, which is given by an irreducible polynomial
h(z) = 2%+ Az? + Bx + C of discriminant D with D < 0. Let D be defined as
(118). Then,

= __2
Var((7-153 (n))Z)D = Pg, koe(logz) + Oz "kt +£),

where ﬁK37k7Qg(t) is a polynomial in t with degree vy 201+ Vi 204 —1. Here, O 2
are given by , and the constants vy ;,1 < i < 4 are defined as (35)).

The organization of this paper is arranged as follows. In Section [2, we
introduce some preliminaries and also give some useful lemmas. In Section
we are devoted to the proofs of two main propositions, which are crucial to the
proofs of the main results in this paper. In Section [d, we complete the proofs
of Theorems [[.1] and .2l

Throughout the paper, we assume that € > 0 is an arbitrarily small
number which may vary in different occurrences. Let (f) be the binomial

coeflicient, with the convention that (f) = 0 provided j < 0. And we always
denote by p a prime number.
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2. PRELIMINARIES

In this section, we review some analytic properties of automorphic L-
functions and introduce some useful lemmas, which play an essential role in
the proof of the main results in this paper.

Let K3 be a non-normal cubic extension over @@, which is given by an
irreducible polynomial h(z) = 23+ Ax? 4+ Bz + C of discriminant D. If D < 0,
from the paper of Fomenko [12] we know that

(19) Cis(s) = C(s)L(f, s),

where f is a holomorphic cusp form of weight 1 with respect to the congruence
group T'o(|D]). If f is a holomorphic cusp form of integral weight x for the
congruence group ['g(N), then f admits a Fourier expansion at the cusp oo:

Z/\f n)n"z enz) 3(z) >0,
where e(z) = €™, and the Fourier coefficients A¢(n) € R are Hecke eigenvalues
of the Hecke operators T}, with A\¢(1) = 1. It is well known that for each p,
there exist two complex numbers a¢(p), 5f(p) such that

ayp(p)’t — By(p)r T

by pl/ = 14 2 1
Ry P R
and )
ar(p) =ef(p)p™2, Br(p) =0,  ifp[|D],
|y (p)| = o (p)Br(p) = 1, if pt|D|,
with e¢(p) = £1. By Deligne’s bound [9], we also have

[Af(n)] < n®

for any € > 0. For more background and details, the interested reader can refer
to |33l Section 1].
From , we have the convolution

ax,(n Z Ar(d
din
In particular, we have
(20) ar;,(p) =1+ Xf(p).

Let K be a number field of degree d over the rational field Q, and let
Cr(s) be the Dedekind zeta function of the field K. Then from the definition

of T;f(n) in ( , we have
ZZ Z Ngg(a1)Ngjg(az) .- Ngjglar)) ™

ap as
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x© K
n=1
Since 7/ (n) is also multiplicative, by , then
T,f((n) = Z arg(ny)...ax(ng)

n=nj..ng

(22) < 3 (r(m).or() T <0t

n=nj..ng

R(s) > 1.

The j-th symmetric power L-function attached to f is defined by

L(sym/ f,s) =[] H 1—ay(p) "B (p)"p~*) "

p m=0
for R(s) > 1. We may expand it into a Dirichlet series
o0
, Agvmi £ (1
L(sym’ f,s) = Z SymJA ()

ns
n=1

_H< Symjf()_'_”‘_’_)\symjkl;(pk)+...>, §R(S)>1.

p

In particular, we have L(sym®f,s) = ¢(s), and L(sym'f,s) = L(f,s). Appar-
ently, Agymsf(n) is a real multiplicative function of n.

Let x be a Dirichlet character modulo ¢g. Similarly, for 5 > 1, the j-th
twisted symmetric L-function is defined as

Lisym’f @ x,8) = [ [T (1 = er®)? " 8; @)™ x(p)p~*) "

» m=0
—Z Symﬂf A XR) gy o,

For (p,|D|) =1, it is standard (cf. [33]) to find that

, a(p)itt j+1 J
A7) = Ay 1 (p) = “j() gﬁg =3 ap VB )™

m=0

which can be written as

(23) A7) = Agymi £ (0) = U (A1 (9)/2),
where Uj(z) is the j-th Chebyshev polynomial of the second kind.

Associated to a primitive cusp form f, there is an automorphic cuspidal
representation 7 of GL2(Ag) and hence, an automorphic L-function L(7wy¢, s)
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which coincides with L(f, s), namely

L(ms,s) = L(f.9).
It is predicted by the Langlands functoriality conjecture that 7 gives rise to a

symmetric power lift sym’ f-an automorphic representation whose L-function
is the symmetric power L-function attached to f,

L(sym/ 7y, s) = L(sym’ f, s).

For the known cases, the lifts are cuspidal, namely, there exists an au-
tomorphic cuspidal self-dual representation, denote by sym/’ 7y of GLj11(Aq)
whose L-function is the same as L(sym’f,s). For j = 1,2,3,4, this special
Langlands functoriality conjecture that sym’f is automorphic is shown by a
series of important works. See, for example, Gelbert and Jacquet [13], Kim [28],
Kim and Shahidi [29,130], and Shahidi [53]. Later, Dieulefait [11] and Clozel
and Thorne [6-8] investigated the cases j < 8. Very recently, Newton and
Thorne [47,48] proved that sym’f corresponds with a cuspidal automorphic
representation of GLj;1(Aq) for all j > 1. In particular, in 48, Theorem A.1]
the authors established the existence of the symmetric power liftings sym"
for all n > 1 regarding the automorphy of the symmetric power lifting for cus-
pidal Hecke eigenforms of weight 1. Hence, the symmetric power L-function
L(sym/ f, s) for any j > 1 is an entire function and satisfies certain functional
equation. For the primitive holomorphic cusp forms f considered in our oc-
currence, the result of Fomenko [12] gives that L(sym?®f, s) can be analytically
extended to the whole complex plane except for a simple pole at s = 1.

Let

(24) rp(n) == #{(al,ag,...,ak) cZk.n= a% —i—a% —|—---+ai},

allowing zeros, distinguishing signs, and orders. For k = 6 in , we learn
from [55, Lemma 2.1] that

re(n) =16 Y x(n/d)d® — 4> x(d)d®,
dln din

where x is the non-principal Dirichlet character modulo 4, i.e.,

1, if n = 1(mod4),
(25) x(n) =< -1, if n = —1(mod4),
0, if n = 0(mod?2).
We can also rewrite rg(n) as
2
n

re(n) = 162)(@)@ 43 " x(d)d’

dln dn
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= 16l(n) — 4v(n) :=l1(n) — vi(n).

Clearly, the functions I(n) and v(n) are both multiplicative, due to the fact
that the non-principal character y is multiplicative.

Note that
1(p) =p* + x(p),
(26) 1(p*) = p* +p°x(p) + x(»?),
and
v(p) =1+ p*x(p),
(27) v(p?) = 1+ p*x(p) + p"Xx ().
For Sk, ke(x) defined as , we can reinterpret it as
¢
Sk ke(T) = > (72 ()
n:a%+a%+a§+ai+ag+a%<x
(al,ag,a37a4,a5,a6)EZ6
4
=> (7)) > 1
n<w n:a%—i—a%—&-a%—i—aﬁ—&-a%—i—a%ﬁx
(al,ag,ag,a4,a5,a6)EZ6
y4
=> (7*(n)) re(n)
n<x
=16 2(7,5(3 (n))gl(n) —4 2(7,5(3
n<x n<x
4 V4
— Z(TkK?’ (n)) lLi(n) — 2(7{3 (n)) vi(n)
n<x n<x
(28) = Sk k01(%) — Sky k02(),
where
l
(29) Skamker(@) =Y (TE3(n) i (n),
n<e
and
¢
(30) Sz k() =D (T (n) vi(n),
n<x

and k > 2,0 > 2 are any given integers. Then, for R(s) > 3, we can define the
associated L-series by

[e’e} K3

B (7% ( Kl1 B Tk (n))l(n)
(31) LKg,k,E(S) = Z —_— 162 N

n=1
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and

> K3 n ZU n o] - n ZU n
(32) Lizre(s) = W =1y Mj
n=1 n=1

respectively. By the multiplicative property of (7,53 (n)t,1(n),v(n), for R(s) >
1, one has

(33) Lic, (s —16H<1+Z i ( )>,

m>=1
and
T ’U
(34) Loy el —4H<1+Z ke Ll )>.
m>=1

Now, we state an important result due to Lii and Ma [44].

LEMMA 2.1 (|44, Lemma 2.1]). Let K be an algebraic number field of
finite degree d over the rational field Q, and the function T,f((n) is defined as
@. Then, for any prime p, we have

% (p) = kax (p).

For simplicity, we write

[T By )7 = T (Lsymd f.5 = 2)L(sym™ f @ x, )",
j J
and

HTL(Sym”jf, s)"7 = l_I(L(Symjf7 s)L(sym™ f ® x,s —2))",
J J

where n; > 0,7; > 1,7 > 0 are any given integers, and X is a non-principal

character modulo 4. We assume the convention that Ho ,HO denote the

products with 1.

In order to obtain the asymptotic behaviour of Sk, ¢(x), we need to
decompose the associated L-series Ly, i ¢(s) and L, r¢(s) given by and
, respectively, into the product of lower degree irreducible L-functions,
along with a Dirichlet series which converges absolutely and uniformly in the
half-plane R(s) > 5 + ¢ for any & > 0.

LEMMA 2.2. Let K3/Q be a non-normal cubic extension, which is deter-
mined by an irreducible polynomial h(x) = x3 + Ax? + Bz + C of discriminant
D, with D < 0. Let k > 2, > 2 be any fized integers, and let Ly, 1 ¢(s) be
defined by . Then

Ly ee(s) = Gry o0 (8)Uki(5),
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where G, ;.4(8) is an L-function of degree (3k)* of the type

GKs k() < H 'L (sym’~'f,s) V’““)H GKy k()

1<5<4

where CNJK&;M(S) is an L-function of degree (3k)* — Z?Zl JVk,j, which can be
represented as

Grca e (S) HL (sym™ f, s)*/

for suitable constants r; = 4,w; > 0,] > 0, and the exponents v j,1 < j < 4
are defined as

Kkt =201 >2
(35) veeg =
Kk,0,55 =20l+12>3,

and the exponents ki j,1 < j < 4 are given by

El g 51—1 e
_ e . _ gt .
Kol =k <1 + ; <22> A1>, Koo =k <€ + 2 (2i N 1)31)7

01 f l1—1 g
=k i =k D;
Kk,0,3 2 (22')0’ Kk, 0,4 <2i N 1) 7

=1

and the exponents Ky j,1 < j < 4 are given by

1) / lo 0
et () w0 E 0 )m)
=1\ =1\
0 < ¢ ¢ b 14
K3 =k z:: (23’) ¢y, Rea =k Jz_; <2j N 1) D;.

The constants A;, Bj,C; and D; with j > 1 are given by

o (29)! - 2i+ 1)
A= JG+1r Bi= 2j!(j+2)!’
A_% 4@+t
GEGoOGrr PTG G e

Here, the Dirichlet series Uy (s) converges absolutely and uniformly in the
half-plane R(s) > 3 + ¢ and Uy ¢(s) # 0 with R(s) =

Proof. From , and Lemma along with the binomial expan-
sion, we learn that

(kar, (p) 1p) = k(1 + As(0)) (1 + x(p))
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14

(36) =1 (3 (1)) 6+ x0)

n=0
From the result of Lau and Lii [32, Lemma 7.1}, for j = 2m,m > 1, we have
(37) Np)=Am+ D Con(w)Agymeug(p) + Mgz £ (p),
1<u<m—1
and, for 7/ =2m' +1,m' > 1,
(38) )‘iv (p) = B Af(p)+ Z Dy (U/))‘Sym2u’+1f(p) +)‘Sym2m'+1f(p)7
1<uw/<m’—1

where Ay, By, Cr(u) and D,y (u') are suitable constants which can be eval-
uated explicitly as in [32, Lemma 7.1]. In the right half-plane R(s) > 3, the
p-th coefficient of the Euler product determines the analytic properties of the
L-series L, 1 o(5)-

Therefore, the term (kax,(p))‘l(p) in can be rephrased as

¢
(39) (kaKs (p)) l(p) = ij (pz)‘sym"jf(p) + Asymnff(p)X(p»?
j=1
where wj,n; > 0 are some suitable constants. Set
(40) b(p) = Y wi (P*Aqymrs £(P) + Agymrs £ (0)X(D))
j=1

and extends to all integers n for b(n) using multiplicativity, by defining the
automorphic L-function

= b(n
(41) G s e (S) HLsym"Jf, =Y ),

nS
From , , f@, we can obtain
k 2 [l 2\ b 2
Ly (8) = Greyee(s) - 16(1 + (ka, (p7))"1(p7) — b(p°) +>

p28
(42) = Gry ke 0(5) U e(5),

where Uj¢(s) admits a Dirichlet series which converges absolutely and uni-
formly in the half-plane R(s) > 3 +e.

Now, it remains to determine the exponents of the associated L-functions
in the decomposition of G, x¢(s). In the half-plane R(s) > 2, the coefﬁ(:lents
of p™* determine the analytic property of L, 1 /(s). On combmmg .,
and comparing the p-th coefficients of both sides of (4 ., we can calculate the
exponents of associated L-functions as depicted in the next lemma. [

n=1
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LEMMA 2.3. Let K3/Q be a non-normal cubic extension, which is deter-
mined by an irreducible polynomial h(x) = 23 + Az? + Bz + C of discriminant
D, with D < 0. Let k > 2,0 > 2 be any fized integers, and let Lk, 1 o(s) be
defined by . Then

Ly e0(8) = Hicy eo(5)Uke(5),
where Hic, 1. ¢(s) is an L-function of degree (3k)* of the type

Hpey 1e(s) ( H L(sym’~' f, s) "“”)H Hiey p.0(5)

1<j<4

where fIK&k’g(s) is an L-function of degree (3k) — 2?21 JVkej, which can be
represented as

(43) HK57k£ HL (sym'7 f, s)“

for suitable constants r; > 4,w; = 0,7 = 0, and the exponents v ;,1 < j < 4
are defined as in . Here, the Dirichlet series UW( s) converges absolutely
and uniformly in the half-plane R(s) > 5 + ¢ and Uy, ¢(s) # 0 with R(s) =

Proof. This can be handled in a similar approach along the line of argu-
ment as that of Lemma on noting

(kaK3 (p))ev(p) = /{:E(l + )\f(p))e(l +p2X(P))

- kf(i: (i) A?(p)) (1+p*x(p))-

n=0
This completes the proof of Lemma O

Remark 2.4. In the half-plane R(s) > 3, we learn from Fomenko [12]
that L(sym?f,s) has an analytic continuation to that half-plane except for a
simple pole at s = 1 though in most cases it is entire. Then, we learn from
Lemmas and that the factorizations of Ly, 1 ¢(s) and L, k. ¢(s) in the
same half-plane have a pole of finite order at s = 1 which comes from the

factors ((s) and L(sym3f, s).

To prove the main result, we also need the following individual or average
subconvexity bounds for the associated automorphic L-functions.

LEMMA 2.5. For any € > 0, one has

(44) /1 ! c(? 4 z't) N

dt < T'te
uniformly for T > 1
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Proof. The result follows from the work of Ivi¢ [24]. O
LEMMA 2.6 ([52, Lemma 1]). For § < o < 2, and T sufficiently large,
there exists a T* € [T, T + T3] such that the bound
log ¢(o +iT*) < (loglog T*)? < (loglog T')?
holds uniformly for % <o <2, and hence
(45) (0 +iT*)| < exp((loglog T*)?) < T°
on the horizontal line with t =T* for % <o <2

Remark 2.7. By adopting a similar argument as that of |39, Lemma 2.6],
we know that also holds for Dirichlet L-function L(s,x) in the t-aspect.
Here, as in the context, x is a non-principal character with modulus 4.

LEMMA 2.8. For any € > 0, we have

(46) L(f, 0+ it) < (1 + |t])mex{51-0)0}+e
and
(47) L(sym2f, o+it) < (1+ |t|)maX{§(1—a),O}+e

uniformly for % <o<2and|t] > 1.

Proof. The results follow from Phragmén—Lindel6f convexity principle for
a strip, along with the impressive work of Good [14] and Lin, Nunes and Qi
[34, Corollary 1.2], respectively. [

LEMMA 2.9. Let x be a non-principal character modulo 4, for any € > 0,

T 5
Ll = )t
/1 (7“”‘)

uniformly for T > 1, and
L(f @ x,0 +it) < (1 4 [¢])maxt5(1-0).00+e
L(sym?f @ x, 0 +it) < (1 + ‘t‘)max{g(lfa),o}+g7

we have
12

dt < T'e

uniformly for 1 < o <2 and |t| > 1.

Proof. By adopting a similar argument as that of [39, Lemma 2.6], it
can be seen that twisting L-functions by a character y does not affect the
subconvexity bounds, convexity bounds and integral mean estimates of the
corresponding L-functions in the t’s aspect. For a detailed description, the
interested readers are invited to refer to [36, Lemma 2.7]. [
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Remark 2.10. By following a similar argument as in |39, Lemma 2.6], one
can also show that Hypothesis p also holds for L(s, x) in the t-aspect, where
X is the non-principal character modulo 4.

Let d:= (d1,...,dy), m = (my,...,my) with dj, m; € (NU{0}), and set

1
Ad,m) = o > dj(m; +1).
j=1
Let x be a primitive character modulo ¢, and define
J

(48) L (fix8) =[] Llsym™ f @ x, )%,
j=1
this general L-function is in the sense of Perelli [51] due to the recent deep

works of Newton and Thorne [47,/48]. The following lemma follows plainly
from Perelli [51, Theorem 4].

LEMMA 2.11. Let £8 (f,x,s) be defined as in , for any € > 0, we

have

2T 2A(dm)(1-0)+
(49) / 14, (f,x,0 +it)Pdt <peam (q(1+T)) @777
T
uniformly for % <o<l4+eandT > 1, and

) A
(50) L (fx, 0 +it) <gedm (a1 + )™
uniformly for % <o<1l+ceandlt] > 1.

dm)(l—o)+e

Proof. This can be derived by following an argument similar to that of
Zou et al. [58, Lemmas 8], which was originally deduced from Jiang and Lii [27]
Lemma 2.4]. O

3. THE MAIN PROPOSITIONS

In order to obtain the asymptotic formula for Sk, ¢(x), one needs to
demonstrate the following two propositions concerning the asymptotic be-
haviour of Sk, ¢1(x) and Sk, k¢ 2(2) as defined in and , respectively.

Now, we are in the stage to prove the following main propositions.

PROPOSITION 3.1. Let K3/Q be a non-normal cubic extension, which is
given by an irreducible polynomial h(z) = 2® + Ax® + Bz + C of discriminant
D with D < 0. Let k > 2,£ > 2 be any given integers, and let Sk, ¢1(x) be
defined as . Then, for any € > 0, we have

SfiJ’,
Sty ke () = 23 Prey g o(logx) + Oz~ Tmi ),
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where P, 1. ¢(t) denotes a polynomial in t with degree vy g1+ Vg4 —1, and the
constant O ¢ is given by

1 1 2 8 29
SR + 2 (A= Vg — —thgs — opt —
7( )"+ 7( p—1)vg 1 Sy Vet2 Tt o

and the constants vie;,1 < i < 4 are defined as (35). Here, p is the least
non-negative number appearing in .

(51) O =

Proof. Applying Perron’s formula (see, e.g., [40, Theorem 2.1]) and in-
voking Lemma we have

Sk k1 (T) = 2(7'15(3 (n))gh(n)

n<x
1 n+iT’ x5 p3te
52 N L T O( )
( ) 27TZ n_iT K37k7£(8) s S + T

where = 3 + ¢, and we make the special choice T' = T™ which satisfies ,
here 2 < T < x is some suitable parameter to be determined later. We note
that the utilization of Lemma [2.6] in handling the integrals over the horizontal
segments can be ensured by the choice of the parameter 1", which is taken as
a positive power of sufficiently large x.

By shifting the line of integration in to the parallel line with R(s) =
o= 1—79, together with Cauchy’s residue theorem, we get

S

T
Sk ke1(T) = Eifg{LKg,k,z(S)?}

1 a+1iT n+iT a—iT s
+ {/ +/ -l-/ }LK37k74(S)dS
21\ Ja—iT atil  Jn—iT s

l,3+e
+0()
3 .’L‘3+E
(53) = PKg,k,E(IOg )+ +J2+ I3+ 0 7 )

where P, 1, ¢(t) denotes a polynomial in ¢t with degree vy 1 + vk ¢4 — 1, and
the constant v 01 and vy ¢4 are defined as . In the region

a <R(s) <n,13() < T,

by Lemma we note that the L-series L., 1 ¢(s) is a meromorphic function
having a pole at s = 3 of order vy 1 + V44 coming from the factors (s)"*¢1
and L(sym? f, s)"s¢4, which contributes the main term z3 Pk, j, ¢(log x).

Now, it remains to handle the three integrals Ji, Jo and J3, by exploiting
the aforementioned nice analytic properties of the associated L-functions. We
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begin to handle the integral .J;. For simplicity, using Lemma[2.2] we can rewrite
G ke(s) as

GKske(s) = (C(s —2)L(s, X))VH'1 (L(fv s—=2)L(f ®x, S) Vk’é’ZHbG?(S,k,e(SL

where G, ; ,(s) is an L-function of degree v , := (3k)* — Z?:l V0,1, Which
takes the shape

Gy (8 H L(sym™ f, s)*/

for some suitable constants n; > 2 wj > 1,7 > 1, and the constants vy g,

1,2 are defined as . For convenience, by . ., and (| ., we have
27 5 12

dt < Tite,
YA
2Ty 5 3
RQ(Tl) = / L(f, ? + Zt)
T <t<2Ty

dt
T
()
22,92 24c

(55) <TP7 < TP

and
2T, 5
R3(Th) = / Gles bt <7 + it)

Th
(56) < T%”Z,l—"—e < T%(gk)‘e*%'/k,é,l7%”1@,&2"'5
1 1 .

From Hypothesis pu, , 7, along with Holder’s inequality, we

2

< sup dt

/ 2T,
T1

o34

2
dt

get

1 a+iT s

T
J = — L. —dt
1 27T2 il Kg,k‘,f(s) s

19 T 5 Vi,e,1 Vk,e,2 5
< m*f/ ‘§<7+it) ( +zt> }}S’]ﬁg(?'f—’it)tl
1
19
+x7+6
it
Gl Jlrea)

dt

V0,12 Vi,e,2—1

9, _
LxT sup sup T1
1<Ty ST/Q T <t<2Ty

.Rl(Tl)%RQ(Tl)%Rg(Tl)%

(57) < x7+5T7(3k)z+7(4N_1)Vk,€,1_%Vk,éﬂ_%,u_%'f‘g.
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Here, we appeal to the fact that Uy ¢(s) < 1 for R(s) > 5 + <.
Now, we turn to handle the contributions from the horizontal line integrals
J2 and J3. By appealing to Lemmas and , we have

1+4-¢
Jo+ J3 < m2+8/ |Gy (o +iT)z T |do
5

7

< $2+8 sup J’C(U + ,L'T)‘Vk,e,l ’L(f, o+ Z‘T)|Vk,£,2
g o<l+e

| L(sym?® f, 0 +4T)|"43 | L(sym® f, o + iT) |04
|G pe(o +iT) T
< 2°**  max 20T Wh et 30k 02+ 8vk03+5((BR) =5, vk.e,5))(1-0)+e
S<o<ite
.71
3+e

19 1apy0_ 1 2 3
(58) < 4 $7+€T7(3k) —7Vk, 0,17 57 Vk, 0,27 35 Vk, 0,3 1FE

Combining , and , it leads to

3
Sk ke (x) = 2°Prey g e(log )
+ O(a;%JFET%(3k)l+%(4/1*1)1%,@,1*%Vk,e,2*§u*%+€)

(59)
x3+a
+0( - )
Set,
1., 1 2 8 29
— S (4p—1 e — St
B0 7(3k> +7( p— 1)1 V62~ Zht o

2

On taking T = z™+¢ in (59), we obtain

Jr
Sk (x) = 2° Py g o(log ) +0@" T

This completes the proof of Proposition O]

)-

In what follows, we deal with the sum Sk, i 2(x), by following the ar-
gument similar to the proof of Proposition with slight modifications. We
have the following result.

PROPOSITION 3.2. Let K3/Q be a non-normal cubic extension, which is
given by an irreducible polynomial h(x) = 23 + Ax? + Bz + C of discriminant
D with D < 0. Let k > 2, > 2 be any given integers, and let Sk, r¢2(x) be
defined as . Then, for any e > 0, we have

83—+
Ska k() =0z ki),

where the constant 0y ¢ is defined the same as in .
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Proof. By applying Perron’s formula to Lemma [2.3] we have

Sk k2(®) =Y (1% (n)) vi(n)

n<e

1 n+iT 8 p3te
60 —— c o O( )
(60) o ), i Ks,k,z(S)S s+ T

where 1 = 3 + ¢, and we make the special choice T' = T™ satisfying , here
2 < T < x is some suitable parameter to be determined later.

Now, we shift the line of integration in to the parallel line with
R(s) = a := 2 in combination with Cauchy’s residue theorem, then

7
a+iT n+iT a—1iT s
St k2T {/ / / }LK,H ds
> 27” a— a+iT ’ ) S
3+e
X
()
* T
x3+z—:
(61) :211+I2+13+O( T )

In the region @ < R(s) < n,|S(s)| < T, using Lemma [2.3] it can be found that
the L-series L, k¢(s) is analytic and has no singularity inside.

Now, the main goal is to estimate the three integrals I, Is and I3 suitably,
with recourse to the aforementioned analytic properties of the associated L-
functions. For brevity, by using Lemma we can rewrite Hy, 1 ¢(s) as

Hicypoa(s) = (C(5)L(s — 2,30)™ " (L(f, ) L(F @ xo 5 — 2)) 2] iy o (5),

where Hy. ,; ,(s) is an L-function of degree v}, := (3k)* — S22 ivg g, which
takes the shape
Hie, o(s) =[] L(sym™ £, ),

J
for some suitable constants n; > 2,w; > 1,7 > 1, and the constants vy ¢;,7 =
1,2 are defined as . For the L-function H K37k’g( s) twisted by the non-
principal character x(mod 4), we also set

Hy, 1.0(8:X) HL sym™ f ® x, s)“
j

By appealing to Lemma and , we have

2T 5 12
(62) Q1(Th) := /T L<7 + it,X> dt < Tite,
1
2T 5 3
Q2(T1) ::/ L(f@x, —|—z’t> dt
T 7
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2T1 5 2
< sup (f@x, —i—zt)‘ <f®x,+it> dt
Ty <t<2T, 7
2.2,9.2 16
(63) T13 712 7+€ < T21+5
and
2T1 5
Qg(Tl) = Hngz(,?-l-Zt X>
2

(64) <<T7 k£+ <<T7 3k)‘— Vk21—*l/kez+6‘

From Lemma Remark [2.10) m, and —, along with Holder’s in-
equality, we get
1 a+1T s
I =— Licae(s)—-dt

19 T 5 Vk,0,1 5 Vk,e,2
<<x7+€/ ‘L(—l—it,x) L<f®x,+it)
1 7 7
dt + 27+

5 . _
H}‘<37k’g<7+zt,x>t !
5 .
11C<7+zt> <f, +zt>

< p7te sup sup T
1 1 1
- Q1(T1)5Q2(T1)3Q3(T1)2

1<Ty <T/2 T <t<2Ty
< xL;)+€T%(2/1(’/1@,18,1_2)"‘%(Vk,€,2_1))+%+%‘1*?+%'%ﬂ; —14e

Vk,0,1—2 Vge2—1

(65) < x$+€T$(3k)l+%(4u*1)l/k,e,1*fl/km Sp— 126+€

Here, we apply the bound ﬁk’g(s) < 1for R(s) > 3 +e.

Let ﬁIK3,k7g(s,x) be the L-function defined as for which fIK&k,g(s) is
twisted by non-principal character y(mod 4), where H K ke(s) is defined as
equation (43)). For the integrals over the horizontal segments Iy and I3, by

appealing to Remarks [2.7] u . 2.10, Lemma [2.9| m and (| ., we have

1+e
I+ I3 < 2**¢ /5 |Hrcy go(o +iT)z" T~ do

7
<@ sup af|Lo 4T, X)) L(f @ X, 0 4T[0
S<o<lte
| L (Sym2f ® x,0 +iT)|"*3 |L(sym3f, o + )|t
NHiey po(o + 4T, x)|T 7"

< 22 max xUT(Vk,e,lf-i-%Vk,e,z—i-gl/k,e,:s-i-%((3k)£—2?:1jl’k,z,j))(l—a)'*f
S<o<lte
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.71

3+e
19 1 £_1 2 3
7+6T7(3k) _*Vk,e,l_ﬁl’k,z,z—*llk,l,'i_]+5.

66) <2

Therefore, by inserting the estimates . and ( into ( , we get

x?)-‘r(:‘

19 1 £, 1 _ _2 _8,_97
(67) SKg,k‘,Z,Q(‘T) & g7 Terr GR) Ha(du—1rk 1 — 57k 2= 135 TE | =

2
We choose T' = z "¢ in (67)), then

3—2—+
Skyea(a) =0 Pre ),

where 6, ¢ is defined the same as in (51)). This completes the proof of Propo-
sition O

4. PROOF OF THEOREMS [1.1] AND

In this section, we first deal with the proof of Theorem then we
complete the proof of Theorem
By Propositions and along with , it follows that

Sks k() = xSPK&k,g(log x) + O(x‘s’“”g),

where 00 = 3 — %, and P, 1, ¢(t) denotes a polynomial in ¢ with degree
Vet + Vkea — 1, and the constant 10 is given by , and the constants
Vkeir 1 <4 <4 are defined as .
Now, we turn to the demonstration of the proof of Theorem From
the classical monograph of Iwaniec and Kowalski [26} (1.76)], we know that
3
(68) Rg(x) = Z re(n) = (;Eil)) + O(z*log z).

n<x

From the variance formula [5, Theorem 3], for random variable X defined on
a countable sample space V, we have

(69) Var(X) = B(X?) — B*(X).
With the help of Theorem and , we have

E((r%(n)")p = SKS"C(E( %)

)
= 7T (4) P,y oo (log ) + O(a%73%) (1 + O(z ™ log 7))
(70) = 7r_3I‘(4)PK3yk,g(log x) + O(:U‘S’“vf_3+a),
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where ﬁK&k’g(t) is a polynomial in ¢ with degree vy o1 + v4 ¢4 — 1. Then, by

, , we deduce that
K3 L — K3 20 2 K3 l
Var((*(n)) p = E((7, () ™) p, — E* (7. (n))")
= 1730 (4) P, pae(log ) — (T (4))*PE, 1 o(log z)
4 O(x5k,2£*3+8)
= ﬁKg,k‘,Qé(lOg x) + O(xék,2273+5)’

where ]3K37k724(t) is a polynomial in ¢ with degree vy 21 + vk 204 — 1. This
completes the proof of Theorem
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