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We study the continuity and the boundedness of bilinear mappings between
topological vector spaces. We investigate and characterize the compacity of
these mappings. As an application, we prove bilinear versions of the Banach–
Steinhaus and closed graph theorems in the framework of topological vector
spaces.
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1. INTRODUCTION AND PRELIMINARIES

The theory of linear mappings on topological vector spaces emerged as a
counterpart to that of linear operators on normed spaces and concerned mainly
extension properties, continuity, boundedness, compact linear operators and
spectral theory (see [6, 8, 9, 13–15,17] and the references therein).

The aim of this paper is to study and investigate the continuity and the
compacity of bilinear mappings defined on the cartesian product of two topo-
logical vector spaces with values in a topological vector space. We prove the
bilinear Banach–Steinhaus theorem and the closed graph theorem for these
mappings. As far as we know, that is a first attempt in this regard. In this di-
rection, although within different frameworks, many papers have been devoted
to establishing fundamental theorems for bilinear mappings (see [10] and [3]
for bilinear mappings on asymmetric normed spaces, [2] for linear relations on
asymmetric normed spaces, and [1] for bilinear relations on normed spaces).

The paper is divided into three sections. After the introductory one,
in Section 2 we study the concept of continuity and boundedness of bilinear
mappings in topological vector spaces giving the relationship between these
two notions. Also, we introduce and characterize the compacity of these map-
pings. In Section 3 we establish some fundamental theorems: the bilinear
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Banach–Steinhaus theorem and the closed graph theorem for continuous bilin-
ear mappings between topological vector spaces.

Throughout the paper X,Y and Z are topological vector spaces. A neigh-
borhood U of the origin 0 in a topological vector space X is simply called a
zero neighborhood.

Recall that a subset E of a topological vector space X is said to be
bounded if it is absorbed by every zero neighborhood, i.e., if for every zero
neighborhood U in X there exists λ > 0 such that E ⊂ λU . Note that the
notion of boundedness may not coincide with the metric notion of boundedness
(see [13, p. 23]). Also, a locally bounded topological vector space is a topolog-
ical vector space that possesses a bounded zero neighborhood. A subset E of
X is said to be balanced if λE ⊂ E for every λ ∈ K such that |λ| ≤ 1.

The next theorem gives an important characterization of the boundedness
by means of sequences in topological vector space.

Theorem 1.1 ([13, p. 23]). A subset E of a topological vector space X is
bounded if and only if, for every sequence of scalars (αn)n ⊂ K that converges
to 0 and every sequence (xn)n in E, the sequence (αnxn)n converges to 0 in X.

A linear map T : X −→ Y , between topological vector spaces, is bounded
if it maps bounded sets into bounded sets. As consequence of the translational
invariance of the topological vector spaces, if the linear mapping T : X −→ Y
is continuous at zero then it is continuous everywhere. For a linear functional
T : X −→ K if T (x) ̸= 0 for some x ∈ X, then T is continuous if and only if T
maps some zero neighborhood in X into a bounded set in K (see [13, p. 15]).
The space of all continuous linear functionals over X is denoted by X∗ and is
called dual of X.

A metric d on a vector space X is called invariant if

d(x+ z, y + z) = d(x, y)

for all x, y, z in X. The topological vector space X is an F -space if its topology
is induced by a complete translationally invariant metric. An F -space is a
Banach space if in addition

d(αx, 0) = |α| d(x, 0)

for all x in X and all scalar α.

Further details on topological vector spaces can be found in [8,9,13,15,16].
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2. BILINEAR MAPPINGS ON TOPOLOGICAL VECTOR
SPACES

2.1. Continuity and Boundedness

Firstly, note that if X and Y are topological vector spaces over the same
scalar field K, then the Cartesian product X × Y is a topological vector space
under the product topology (see [16, p. 19]). We are interested in the continuity
and boundedness properties of a bilinear mapping T : X × Y −→ Z.

Definition 2.1. A bilinear mapping T : X ×Y −→ Z is continuous if it is
continuous as a function between two topological spaces.

By Λ(X,Y ;Z) we denote the set of all continuous bilinear mappings be-
tween the topological vector spaces X×Y and Z. Note that a bilinear mapping,
between topological vector spaces, is continuous if and only if it is continuous
at the origin (0, 0) (see [16, p. 87]).

The definition of bounded bilinear mappings between topological vector
spaces is similar to the linear case, it is in terms of bounded sets.

Definition 2.2. A bilinear mapping T : X × Y −→ Z is called bounded if
it maps bounded sets into bounded sets.

In the following, we prove the equivalence between the boundedness and
continuity. We show that the result works for bilinear mappings with a metriz-
able domain. For the proof, we need the following preliminary results (see [13,
p. 22]).

Lemma 2.3. If X is a metrizable topological vector space and (xn)n is
a sequence in X such that xn −→ 0, then there are positive scalars sequence
(αn)n such that αn −→ ∞ and αnxn −→ 0.

Theorem 2.4. Let X,Y, and Z be topological vector spaces. Every con-
tinuous bilinear mapping T : X × Y −→ Z is bounded. The converse is true if
X and Y are metrizable.

Proof. Assume that T is continuous. Let E be a bounded subset of X×Y
and let W be a zero neighborhood in Z. Then there exists a zero neighborhood
V in X × Y such that T (V ) ⊂ W. On the other hand, by the boundedness of
E we can choose λ > 0 such that E ⊂ λV . Then

T (E) ⊂ T (λV ) = λ2T (V ) ⊂ λ2W.

Therefore, T is bounded. Now, under the assumption that X and Y are metriz-
able we prove the reverse implication. Suppose T is bounded and take a se-
quence ((xn, yn))n in X×Y such that (xn, yn) −→ (0, 0). By Lemma 2.3, there
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are positive sequences (αn)n, (βn)n ⊂ K such that αn −→ ∞, βn −→ ∞ and
(αnxn, βnyn) −→ (0, 0). This implies that{

T (αnxn, βnyn) : n ∈ N
}

is a bounded subset of Z. Therefore, by Theorem 1.1 we get

T (xn, yn) =
1

αnβn
T (αnxn, βnyn) −→ 0,

which means that T is continuous at (0, 0) and then T is continuous.

Remark 2.5. Note that in the linear case, we have an equivalence between
the continuity and the boundedness of linear mappings with locally bounded
domain into an arbitrary topological vector space (see [17]). Since every locally
bounded Hausdorff topological vector space is metrizable (see [16, p. 30]), then
from the above theorem, the equivalence remains true in the bilinear case.

2.2. Compactness

We introduce and characterize the compactness notions of bilinear map-
pings between topological vector spaces, according to the definition of compact
bilinear operators on Banach spaces, we establish their fundamental proper-
ties, extending some results of Ramanujan and Schock [11], as well as those of
Ruch [12], who provided improvements and corrections to the results in [11].

First note that every topological vector space is a Hausdorff space (see
[13, Theorem 1.12]). A subset of a topological vector space is called relatively
compact if its closure is compact.

Definition 2.6. Let X,Y and Z be topological vector spaces. A bilinear
mapping T : X ×Y −→ Z is said to be compact, in symbols T ∈ ΛK(X,Y ;Z),
if it maps a bounded subset of X × Y into a relatively compact subset of Z.

As a consequence of this definition, we have a result that gives the charac-
terization of the compact bilinear mapping between topological vector spaces.

Theorem 2.7. Let T : X×Y −→ Z be a bilinear mapping. The following
statements are equivalent.

(i) T is compact.

(ii) T (U) is relatively compact in Z, for every bounded zero neighborhood U
in X × Y.

(iii) T (V ×W ) is relatively compact in Z, for every bounded zero neighborhood
V in X and every bounded zero neighborhood W in Y.
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(iv) For all bounded subsets A ⊂ X,B ⊂ Y , the subset T (A×B) is relatively
compact in Z.

Proof. (i)=⇒(ii) Is trivially true.

(ii)=⇒(iii) Follows from the fact that V ×W is a bounded zero neighbor-
hood in X × Y.

(iii)=⇒(iv) The boundedness of A and B inX and Y , respectively, implies
the existence of α > 0 and β > 0 such that T (A×B) ⊂ αβT (V ×W ) for any
bounded zero neighborhood V in X and any bounded zero neighborhood W
in Y and the result follows.

(iv)=⇒(i) Let G be a bounded subset of X × Y. Let π1 : X × Y −→ X
and π2 : X×Y −→ Y be the projections mappings defined by π1(x, y) = x and
π2(x, y) = y. It is easy to see that G ⊂ π1(G)× π2(G). By the continuity of π1
and π2, the subsets π1(G) and π2(G) are bounded in X and Y , respectively.
The result follows from the inclusion T (G) ⊂ T (π1(G)× π2(G)).

The following results assert that the space ΛK(X,Y ;Z) of compact bi-
linear mappings is a linear subspace of the space Λ(X,Y ;Z) of all continuous
bilinear mappings.

Proposition 2.8. Let X,Y be metrizable topological vector spaces and Z
a topological vector space. Every compact bilinear mappings T : X × Y −→ Z,
is continuous.

Proof. Assume that T ∈ ΛK(X,Y ;Z). According to Theorem 2.4, it suf-
fices to show that T is bounded. Let G a bounded subset of X×Y. Then T (G)
is compact in Z, from which it follows that T (G) is bounded in Z (see [13, The-
orem 1.15]) and the proof follows.

Proposition 2.9. Let X,Y be two metrizable topological vector spaces
and Z a topological vector space. If T, S ∈ ΛK(X,Y ;Z) and α ∈ K, then
αT + S ∈ ΛK(X,Y ;Z).

Proof. The proof follows from the fact that the sum of two compact sub-
sets is a compact subset (see [16, p. 26]).

Now we present the ideal properties of spaces of bilinear compact map-
pings.

Proposition 2.10. Let X,Y, Z,W,E, F be topological vector spaces. If
the mappings u : E −→ X, v : W −→ Y, S : Z −→ F are linear continuous,
and T : X × Y −→ Z is bilinear compact, then S ◦ T ◦ (u, v) ∈ ΛK(E,W ;F ),
where (u, v)(z, w) := (u(z), v(w)), z ∈ E,w ∈W.
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Proof. LetG be a bounded subset of E×W.As in the proof of Theorem 2.7
consider the projection mappings π1 : E ×W −→ E and π2 : E ×W −→ W.
Then we have G ⊂ G1 × G2, where G1 = π1(G) and G2 = π2(G). The result
follows immediately from the easy inclusion

S ◦ T ◦ (u, v)(G) ⊂ S
(
T (u(G1)× v(G2))

)
.

3. FUNDAMENTAL THEOREMS

3.1. Bilinear open mapping theorem

Concerning the bilinear open mapping theorem, Rudin in [14, p. 67] asked
the following question: If E,F and G are Banach spaces and T : E ×F −→ G
is a continuous bilinear map, does it follow that T is open at the origin? In
general, the answer to this question is negative. A first counter example was
found by Cohen [4] and, a bit later, Horowitz [7] gave a counter example by
taking E = R3, F = R3, G = R4 and

T (x, y) = (x1y1, x1y2, x1y3 + x3y1 + x2y2, x3y2 + x2y1),

where x = (x1, x2, x3) and y = (y1, y2, y3).
Since every Banach space is a special type of topological vector space,

then the open mapping theorem for bilinear maps fails even in the topological
vector space case.

3.2. Bilinear closed graph theorem

Let T : X × Y −→ Z be a bilinear mapping between topological vector
spaces. The graph of T , in symbols Gr(T ), is the set of elements(

(x, y), z
)
∈ (X × Y )× Z

such that z = T (x, y). Consider the space (X × Y )× Z endowed the product
topology. Associate to each x ∈ X and y ∈ Y the linear mappings Tx : Y −→ Z
and Ty : X −→ Z by defining

Tx(y) = T (x, y) = Ty(x).

The bilinear mapping T is separately continuous if Tx and Ty are continuous for
every fixed x ∈ X and y ∈ Y , respectively. Obviously, the continuity implies
the separately continuity, but the reverse implication is true if X is an F -space
and Y is metrizable (see [13, Theorem 2.17]).

The closed graph theorem for the continuous bilinear mappings between
topological vector spaces can be derived from [13, Proposition 2.15 and Theo-
rem 2.17]. The proof of this result is an adaptation of the proof of main result
in [5].
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Theorem 3.1. Assume that X is F -space, Y is metrizable and the graph
of T is closed in (X × Y )× Z. Then T is continuous.

Proof. For fixed x0 ∈ X and y0 ∈ Y, consider the subsets K1 and K2,

K1 = Gr(T ) ∩
((
X × {y0}

)
× Z

)
,

K2 = Gr(T ) ∩
((
{x0} × Y

)
× Z

)
.

It is easy to check that subsets K1 and K2 are closed in (X × Y ) × Z, and
Gr(Tx0) = ϕ(K1) and Gr(Ty0) = ψ(K2), for every x ∈ X and y ∈ Y, where ϕ
is the homeomorphism

ϕ :
(
X × {y0}

)
× Z −→ X × Z, ϕ

(
(x, y0), z

)
= (x, z)

and ψ is the homeomorphism

ψ :
(
{x0} × Y

)
× Z −→ Y × Z, ψ

(
(x0, y), z

)
= (y, z).

Then Gr(Tx0) and Gr(Ty0) are closed in X × Z and Y × Z, respectively. The
closed graph theorem (see [13, Proposition 2.15 ]) asserts that Tx0 and Ty0
are continuous. It follows that T is separately continuous. Therefore, by
[13, Theorem 2.17], T is continuous.

3.3. Banach–Steinhaus theorem

We now present the uniform boundedness principle (or Banach–Steinhaus
theorem) for the bilinear mappings between topological vector spaces. As far
as we know, that is a first attempt in this regard.

Recall that a subset E of topological vector space X is called nowhere
dense if its closure has an empty interior. Also, E is called of the first category
if it is a countable union of nowhere dense sets. E that is not of the first
category is of the second category.

The next result is the Banach–Steinhaus theorem for linear mappings in
the framework topological vector spaces, it can be found in [13, p. 44] and it
is used to prove the bilinear Banach–Steinhaus theorem.

Theorem 3.2. Let X and Y be topological vector spaces. Let F be a
collection of continuous linear mappings from X to Y. Consider the set B that
consists of elements x ∈ X such that {T (x) : T ∈ F} is bounded in Y . If B is
of the second category, then B = X.

Recall that a family S of bilinear mappings from X×Y to Z is said to be
equicontinuous if for every zero neighborhood W in Z there exists some zero
neighborhood V in X × Y such that T (V ) ⊂W for all T ∈ S.
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We now present the main result of this section. We establish the Banach–
Steinhaus theorem in the special case where the set B ⊂ X × Y is of the form
B = F ×G. Whether the theorem extends to the entire product space X × Y
remains an open question.

Theorem 3.3. Let X,Y, and Z be topological vector spaces. Let S be a
collection of continuous bilinear mappings from X × Y to Z and B the set of
all (x, y) ∈ X × Y such that S(x, y) = {T (x, y) : T ∈ S} is bounded in Z. If B
has the form B = F ×G, where F ⊂ X and G ⊂ Y , and if B is of the second
category, then B = X × Y and S is equicontinuous.

Proof. Firstly, we prove that F and G are both of the second category.
Indeed, suppose that F is of the first category, then there exists a countable
family of nowhere dense sets (Ai)i∈I such that F ×G = ∪i∈I(Ai ×G). Since

◦
Ai ×G =

◦
Ai ×

◦
G = ∅

for every i ∈ I, it follows that B is of the first category, and this contradicts
the assumptions. For a fixed y ∈ G, consider Sy the collection of all continuous
linear mappings Ty : X −→ Z defined by Ty(x) = T (x, y). It is clear that F
coincides with the set of x ∈ X such that {Ty(x) : Ty ∈ Sy} are bounded in Z.
Then by the previous theorem, we get F = X. We apply this argument, with
Ty replaced by Tx : X −→ Z defined by Tx(y) = T (x, y), to obtain G = Y.
Hence B = X × Y.

To see the equicontinuity of S, take W a zero neighborhood in Z. We
have proved that T (X × Y ) is bounded. Thus, there exists λ > 0 such that
T (X × Y ) ⊂ λ2W, and then T ( 1λX × Y ) ⊂ W for all T ∈ S. The proof is
finished.

One of the most important consequences of the bilinear Banach–Steinhaus
theorem, in the framework of topological vector spaces, is that the limit of
sequence of continuous bilinear mappings between topological vector spaces is
always continuous.

A sequence (xn)n in a topological vector space X is called a Cauchy
sequence if for each zero neighborhood V in X, there exists some N ∈ N such
that for all m,n ≥ N , we have xm − xn ∈ V.

Proposition 3.4. Let X,Y, Z be topological vector spaces and (Tn)n a
sequence of bilinear continuous mappings from X × Y to Z. Let C be the set
of all (x, y) ∈ X × Y for which (Tn(x, y))n is a Cauchy sequence in Z. If C
has the form B = F ×G, where F ⊂ X and G ⊂ Y , and if C is of the second
category, then C = X × Y .
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Proof. We can assume that C has the form C = F ×G with F ⊂ X and
G ⊂ Y . As in a similar way that is done in the proof of the above theorem, we
see that F and G are both of the second category. For a fixed y ∈ G, consider
the continuous linear mappings Tn,y : X −→ Z defined by Tn,y(x) = Tn(x, y).
It is clear that F coincides with the set of x ∈ X such that (Tn,y(x))n is a
Cauchy sequence in Z. Then by (a) in [13, Theorem 2.7], we get F = X. By
a similar argument, we get G = Y.

As a consequence of the above proposition and (b) in [13, Theorem 2.7],
we obtain the following.

Corollary 3.5. Let X,Y, Z be topological vector spaces and (Tn)n a
sequence of bilinear continuous mappings from X × Y to Z. Let D be the set
of all (x, y) ∈ X × Y for which T (x, y) = limn−→+∞ Tn(x, y) exists. If D has
the form B = F × G, where F ⊂ X and G ⊂ Y , and if D is of the second
category, and if Z is an F -space, then D = X × Y and the bilinear mapping
T : X × Y −→ Z is separately continuous.
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