DEFORMATIONS WITH FIBRE CONSTANCY
YING CHEN, CEZAR JOITA, AND MIHAI TIBAR

ABSTRACT. Deformations which split the singularities into simpler ones while preserving
the general fibres are fundamental tools for studying the local topology of holomorphic
function germs. We define such “admissible deformations” in the general setting of de-
formations of real analytic map germs, and find conditions under which the conservation
of the general fibres holds.

1. INTRODUCTION

Deforming a function germ is the most efficient method for capturing information on
the topology of its general fibre, including its monodromy. In the case of holomorphic
functions with isolated singularities, Brieskorn [Br| showed in this way that the Milnor
number of the function germ Fj is equal to the number of critical points in any deformation
F; with only Morse singularities. If one enlarges the setting by considering holomorphic
functions with isolated singularities on singular space germs, then one needs to define
“allowable deformations” in order to obtain convenient conservation properties, see for
instance [JiT|, [MT] where the Brieskorn principle is extended. In another direction, con-
sidering holomorphic functions Fy with non-isolated singularities, Siersma and his school
studied the general fibre of Fjy by using a class of “admissible deformations”, see e.g. [Si,
[Scl, [d]], [Pe], |Za], [Fe], and some more recent papers such as [FM], [ST], [MPT|. These
deformations F; have the property that the general fibre of Fj is preserved as being iden-
tifiable with the global general fibre of the deformation within a fixed ball neighbourhood
of the origin. This property will be defined in a precise manner by Definition 1.2 below,
and will be called here fibre constancy. Two very recent papers define several natural
classes of deformations for which the “fibre constancy” holds, cf [Hof] and [JST].

We address here the problem of selecting meaningful classes of “admissible deforma-
tions” in the more general setting of analytic map germs F : (K", 0) — (K™, 0) in both
real and complex settings, i.e. K =R or C. This is a more delicate task especially in the
real setting where there are several general fibres, unlike the complex setting where there
is only one.

To set the notations and introduce our main definitions and statements, let £ : (K™ x
K,0) — (K™ 0), n > m > 1, K =R or C, be a K-analytic map germ regarded as a
one-parameter deformation Fy(z) of the map germ Fy(z) := F(x,0). We consider the
associated map germ F' = (K" x K, 0) — (K™ x K, 0), F(z,t) := (F(z,t),t).

For simplicity, we fix K = R in the next definition. Let p denote the square of the
Euclidean distance function in R**,
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Definition 1.1 (Tame deformations).
We say that Fy(z) = F(x,t) is a tame deformation of Fy if the following condition holds
(called p-regularity, cf Definition 2.1):

(1.1) M(F) () Fy(0)nSingFy < {(0,0)},

where M (F) := Sing(F, p) \ Sing F.

Tame deformations insure that the image of F is well-defined as a set germ at (0,0) €
R™ x R, and that the image F(SingF) is a well-defined set germ at (0,0) € R™ x R,

in which case one usually calls it discriminant and denotes it by Disc F (see Proposition
2.4). The p-regularity of Definition 1.1 also implies (cf. [ART, Proposition 4.2]) the key
property that F has a locally trivial fibration outside its discriminant, which one calls
Milnor-Hamm fibration, see Definition 2.5.

With this preparation at hand, we may now state our announced definition (see also

[JST, Definition 1.1]):

Definition 1.2 (Deformations with fibre constancy).

Let Fy : (R™,0) — (R™,0), n > m > 2 be a non-constant analytic map germ. We say that
the deformation F' of F{ is a deformation with fibre constancy if F' has a Milnor-Hamm
fibration.

This tells the following: if B, C R™ x R and by Bs C R™ x R are those balls of radii
r > 0 and ¢ > 0, centred at the respective origins, which occur in Definition 2.5 for
G := F, then we have the diffeomorphism of fibres:

B.NFy'(a) ~ B.NF ' (\)

for any a € (Bs N {t = 0}) \ Disc F and any A, € Bs \ DiscF which belongs to the same
connected component! of Bg\Discﬁ as a. In particular, the fact that F has a locally trivial
fibration over the complement of the discriminant Disc F implies that F{ has a locally
trivial fibration over the complement of its own discriminant Disc Fy = {t = 0} N Disc F.

The above definition tacitly assumes that the involved maps have well defined images
and discriminants. Throughout the paper we will take care that our hypotheses insure
this property too.

Let us briefly explain an application of the above defined fibre constancy. Let Fj :
(C™,0) — (C™,0) define a complete intersection with non-isolated singular locus Sing Fj :=
Yo of dimension 1, and consider a deformation F' : (C"* x C,0) — (C™,0) with fibre con-
stancy in the sense of Definition 1.2. Therefore Fy has a Milnor-Hamm fibration, and thus
the topology of its Milnor fibre can be studied by extending the technique developed in the
paper [ST| for “admissible deformations” of a function germ. More precisely, the singular
set Sing Fyy deforms into Sing F; which is a disjoint union of a 1-dimensional singular set >,
and a finite set P, of isolated singularities. Outside a certain finite set ); C ¥; of “special
points”, on any connected component of ¥, \ ¢y, the map F; has the transversal type of an

Let us remark the equality Disc Fy = {t = 0} N Disc F.
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ICIS (isolated complete intersection singularity), and the corresponding transversal Mil-
nor fibre is endowed with a Milnor monodromy and with a vertical monodromy?. Then,
as described in [ST|, one can patch together these data in order to build the homology of
the Milnor fibre of Fj.

Our study focusses on defining deformations with fibre constancy in terms of the partial
Thom regularity (also denoted by 0-Thom regularity, cf Definition 2.2). We first show
that 0-Thom regularity implies p-regularity, which in turn implies the existence of the
Milnor-Hamm fibration needed in Definition 1.2, cf [ART], [JoT1].

Section 3 contains our main results. We show how to control the key 9-Thom regularity
by using inequalities of Lojasiewicz type for map germs in Theorem 3.1, and by using a
Parusinski type inequality in Theorem 3.5. In each case, proofs are new and also radically
different with respect to what had been done before in some particular contexts.

Section 4 treats the composition of deformations in very large generality. We discuss
and provide a general answer, cf Theorem 4.1 and Example 4.2, to a problem addressed

in [AG].
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National Recovery and Resilience Plan.

2. TERMINOLOGY AND PRELIMINARY RESULTS

Let G : (K",0) — (K?,0) be a K-analytic map germ, where K is R or C. We will
denote by V(@) the central fibre G~1(0).

Definition 2.1 (p-regular map).

Let p denote the square of the Euclidean distance function in K”. Let
M(G) := Sing (G, p) \ SingG

be the Milnor set of G. We say that G is a p-regular map map germ if:

(2.1) M(G)NV(G)NSingG C {(0,0)}.

We have recently considered the question what conditions insure the tameness in the
composition of map germs.

Definition 2.2 (0-Thom regularity).

Let G : (K", 0) — (KP,0) be a K-analytic map germ. We say that G is 0-Thom regular if
there exists a Whitney (a)-stratification W of some open ball B centred at 0 € K™ such
that B\ G~'(G(BNSing@)) and {0} are strata, that BN V(G) and BNV (G) N SingG
are unions of strata, and that the pair of strata

(B \ G~1(G(B N SingG)), W)

2For all this terminology, the reader is referred to [ST] and its included references.
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satisfies the Thom (ag)-regularity condition for any stratum W C BN V(G) \ {0}.

Comparing to [JoT1, Definition 5.7|, we observe that the above definition is a particular
case of the 0-Thom regularity used in [JoT1| in the setting where the singular locus itself
has a stratification and one deals with a singular fibration.

2.1. The image problem for map germs. The image of a map germ is not necessarily
well-defined as a set germ. We refer to [ART], [JoT1], [JoT2], [JoT3]| for details, examples,
and recent results.

Let us first recall the following notion: for U,V C K" subsets containing the origin, the
set germs (U, 0) and (V,0) are equal if and only if there exists some open ball B. C K"
centred at 0 of radius € > 0 such that UN B, =V N B..

Definition 2.3. [ART, Definition 2.2], [JoT1] Let G : (K",0) — (K?,0), n > p > 0,
be a continuous map germ, where K is R or C. We say that the image by G of a set
K C K" containing 0 is a well-defined set germ at 0 € K? if the set germ (B6 NG(K), 0)
is independent of the small enough radius € > 0.

Proposition 2.4. Let G : (K", 0) — (K?,0) be a K-analytic map germ which is 0-Thom
reqular. Then G is p-reqular, and the images ImG and G(SingG) are well-defined as set
germs at 0 € KP, cf Definition 2.35. O

Proof. The existence of a d-Thom stratification on some open ball B implies that there
is R > 0 such that, for any positive r < R, the sphere S, C K" is transversal to all
positive dimensional strata W € W such that W C V(G). It follows that the sphere S,
is transversal to the smooth nearby fibres of GG, and therefore G is p-regular.

The p-regularity implies that ImG and G(SingG) are well-defined set germs, as shown
in [JoT1, Theorem 4.5 (a)]. O

Notation. If the image G(SingG) is a well-defined set germ at the origin, then we will
denote it by DiscG, and usually call it “the discriminant of G”. We say that the map
germ G is nice if it has well defined image and discriminant as set germs at 0 € KP.

Definition 2.5 (Milnor-Hamm fibration). Let G : (R™,0) — (RP,0) be a non-constant
nice analytic map germ. We say that G has Milnor-Hamm fibration if, for any ¢ > 0
small enough, there exists 0 < § < € such that the restriction:

(2.2) G : BX NG~ Y(B} \ DiscG) — Bt \ DiscG

is a C'™ locally trivial fibration over each connected component of B} \ DiscG, such that
it is independent of the choice of € and ¢, up to diffeomorphisms.

It has been shown in [ART, Proposition 4.2| that: if G is p-reqular then G has a
Milnor-Hamm fibration. By Proposition 2.4, we then get the following consequence:

Corollary 2.6. If G : (K",0) — (K?,0) is a K-analytic map germ which is 0-Thom
reqular, then G has a Milnor-Hamm tube fibration. O
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3. 0-THOM REGULARITY OF DEFORMATIONS

Let ¢ : (R",0) — (R™,0) be some analytic map germ, n > m > 2, and let V := ¢~1(0).

We discuss here several ways of checking the partial Thom regularity that we assume
in the statement of the main theorem.

The idea is to control the growth of functions by inequalities.

3.1. Thom regularity via the Lojasiewicz inequality. To prove that the Thom (ay)-
regularity holds for functions f, Hamm and Lé showed in [HL| how to use the existence
of the Lojasiewicz inequality for K-analytic function germs f : (K", 0) — (K, 0), namely:
there exists some 0 < 6 < 1, such that for any x in some neighbourhood of 0 one has

(3.1) 1f (@)l < [l grad f(z)],

where grad f(z) denotes here the conjugate of the complex gradient.

In the setting of real analytic map germs ¢ : (R",0) — (R™,0), Hamm and Lé&’s
method of proof may still work when assuming a Y.ojasiewicz type inequality. Massey in
[Ma| points out that if the following condition:

(3-2) [ (2)])” < Kv(),
holds for some 0 < # < 1 and some K > 0 in some neighbourhood of 0, where:
(3.3) v(z) = mln || Zal grad ¢ (x)||

is the Rabier distance function, cf [Ral. Massey shows that this implies the existence of
a Thom (a,)-regular stratification of (V,0).

3.2. Lojasiewicz type inequality in case of deformations of maps.

Let F': (R* x R,0) — (R™,0) be an analytic map germ viewed as one-parameter
deformation F,(z) := F(x,t) = (fi(z,1),..., fm(z,t)), and let F(z,t) := (F(x,t),t) be
the associated map germ.

Let us set the notation:

(3.4) v, () = Irr|1|1n1

Z@z grad, fz(x t)

a7, a7
Borr s B

where grad, f; := (
variables x only. N
We show a condition under which F' is 0-Thom regular.

Theorem 3.1. Let Fy(x) = F(z,t) be a deformation of the map germ Fy := F(x,0) :
(R™,0) — (R™,0). Assume that the following condition holds:

) thus contains the partial derivatives with respect to the

There exists 0 < 0 < 1 such that for any v € F~'(0) N Sing Fy \ {0}
(3.5) there is a constant c¢(xq) > 0 for which the following inequality holds:

|F(z, )] < c(xo)vp, () when (z,t) — (20,0), (z,t) ¢ SingF.

Then the associated map germ F is 9-Thom reqular.
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REMARK 3.2. It may happen that F is 0-Thom regular without F' being d-Thom regular.
For instance, let F(z,y,t) = (f1, f2) = (z,y(z2 +y?) + 2t2), and let F : (R3,0) — (R3,0),
F(z,y,t) = (z,y(z2 + y2) + 2t2,t) be the associated map. Since V(F) = {(0,0,0)},
the map germ F is 0-Thom regular by definition. According to [ART, Example 5.2],
F(z,y,t) = (z,y(2? + y*) + xt?) is not O-Thom regular.

REMARK 3.3. The inequality within (3.5) is a Lojasiewicz type condition. In case of map
germs but without reference to deformations, Massey used such a condition in [Ma| over a
full neighbourhood of the origin, and with the restriction Sing ¥ C F~1(0). In the setting
of deformations of map germs, Massey’s condition appears to be too rigid, since it does
not allow deformations where Sing Fy, splits outside the central fibre F~!(0) and which
are precisely the object of many papers in the literature, e.g. [Si], [dJ], [Pe], [Za].

In contrast, our theorem includes such splittings since it concerns deformations of map
germs without restrictions on the singular locus; observe that condition (3.5) refers only
non-singular points (z,t) ¢ SingF. Our method of proof builds on the idea used by
Hamm and Lé in [HL] to prove the Lojasiewicz classical inequality for analytic functions.

Proof. Let F(z,t) = (fi(z,1),..., fm(x,1)), and let F(z,t) := (F(z,t),t). We consider
the germ at the origin of the following analytic set of dimension n + 1:

X={fi(z,t)—sy == fu(z,t)—sh =0} CR" x Rx R"

where L € N is sufficiently large such that 0 < 6 < £, Let W be a Whitney (a)-regular
stratification VW of the set germ X, such that Sing X is a union of strata. The stratified
singular locus Sing, 7 of the function germ 7 : (X,0) — (R, 0), (z,t,s) — t, is a closed
analytic closed set, and it is included in the fibre X N {t = 0}. As proved by Hironaka,
the Whitney stratification ¥V may be refined into a Whitney stratification which is also
Thom (a.)-regular and such that Sing,,7 is a union of strata. This shows that there
exists a 0-Thom stratification S of Sing,, 7, i.e. satisfying the following condition: for
any stratum S € S, the pair (X \ ({t = 0} USingX), S) is Thom (a,)-reqular.

We consider now the slices S N {s = 0} of all the strata S C Sing,,7. Since these
slices are not necessarily non-singular, one needs to refine the partition into a Whitney
(a)-regular stratification 8" of X N {t = 0} N {s = 0}. Since &’ is a refinement of S, it
follows that, for any stratum W € &', the pair

(3.6) (X \ ({t = 0} U Sing X), W)

is Thom (a,)-regular.

We have the equality SingF N V(F) x {0} = SingX N Singw N {s = 0}, where
Singm C {t = 0}. Thus &' is a stratification of the set Sing ' N V/(F), and we will show
that it is a partial Thom stratification of F', i.c. that the pair (B F~(Disc(F), W)
is (ap)-regular for all W e S

We consider sequences of points (z,t) € B2\ F~1(Disc(F)) such that 2 — zo and
t — 0 where (z,0) € Sing FNV(F), and such that (z0,0) € W for a positive dimensional
stratum W € S’. Note that for a corresponding triple (z,t,s) € X, the variable s
converges 0 € R™, since F'(x(,0) = 0.
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By (3.6), the inclusion:
(3.7) T := m  Te (7 () N X) D Tiago0W

(2,t,5)—(20,0,0)

holds, where dim T(,, 00 W > 1, and by tacitly assuming that the limit 7" exists in the
appropriate Grassmannian. Note that we have dim T = n.

Lemma 3.4. Under the hypotheses of Theorem 3.1, one has the equality:
T=Ax{0} xR"CR" xR xR™,
where A C R™ is some linear subspace of dimension n —m.

Proof. The normal space to T{, ;. (Wﬁl(t) N X) is spanned by the vectors

afl 8-](.1 L—1 n mY\*
(aml(x,t),...,a—%(x,t),O,...,O,Lsi ,o,...,0>e(R x R x R™)",

Vi(z,t,s) =

fore=1,...,m.

We con81der paths y(\) := (xy, ty, sx) € R" X R x R™ depending on a parameter A € R,
such that (zy,ty, sa) — (20,0,0) when A — 0.

We claim that we obtain the cotangent space T dual to T by first considering the limits,
along all such paths v()), of all the linear combinations Y " | a4 V' (xy, ¢y, s\) viewed as
elements in the projective space P(R™ x R x R™)* with coefficients o, depending of the
parameter A too, and such that ||a,|| = 1 for any A # 0. Finally the full cotangent space
T* is the set of all scalar multiples of these limits.

Let us divide Y7 | a4 V¥(xy, Ty, sx) by the positive real vg, (z), and compute the limits.
We find:

m o grad fi(z,t " oabLst!
lim ||Zz:1 o grad, fi(xy, )| >1 and lim HZZ_1 AN, I _
A—0 VFtA (.CE)\) A—0 Z/Ft (,Z')\)

where the former follows by the definition of vg, (x) as a minimum. The later limit justifies
as follows firstly, by the definition of X, we have ||s-!| = || fi(=, DT < |F(z, 6,
where L1 L = 0+¢ and therefore ¢ > 0 by our choice of L. Next, by applying the hypothesis
(3.5) we get :

1F (2, )17 < e(wo)vr, ()| F (=, )],

where ||F(x,t)||* converges to 0 when # — z and ¢ — 0.
This shows that the limit:

1
(3.8) lim —— Za,\V’ Ty, b, S))

A—=0 I/F

represents a nontrivial direction in P(R™ x R x R™)* with its last m positions equal to 0,
and this holds for any path v(\) as considered above.

Since the projective cotangent space PT* is the set of all directions of type 3.8, it follows
that T (which has dimension m + 1) is contained in N x R* x {0},,, where N C (R")*
is some linear subspace. Therefore T' equals A x {0}; x R™, for some linear subspace
A C R”, and since dimT = n, we get dim A =n — m. O
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We continue the proof of the theorem. Let us consider the projection map p : (X,0) —
(R x R™,0), (z,t,s) — (t,s). Since (t,s) is a regular value of p, we have the following
inclusion
(3.9) T = lim Ty ) (77't)NX) > Jim Ty ) (p(t,s)NX) =T
where dim 7" = dim T{, ) (p (£, s) N X) =n —m, and p~'(t,s) N X = F (ﬁ’(m, t)).

In order to complete the proof of the theorem, we need to show the inclusion T(,, 0,0)W C
T'. Both spaces, T" and T, 0.0)W, are included in R" x {0}, x {0},, by their definition,
and they are also included in 7', by (3.7) and (3.9). Since we have the identification
T = A x {0}; x R™ by the above Lemma 3.4, it follows that those two spaces must be
included in the intersection, which is A x {0}y x {0},,.

Now, since the equality of dimensions dim7” = dim A = n — m, this inclusion must
yield an equality: 7" = A x {0}y x {0},,. This implies the inclusion T{,, 00W C R" x
{0} x {0}, NT, thus we get T{,.0,0W C 1", which finishes the proof of our theorem.

0

3.3. Parusinski type inequality in case of map germs. We still consider analytic
map germs F': (K" x K,0) — (K™,0), n > m > 1, regarded as a one-parameter deforma-
tions of Fy := F(z,0), and Fy(x) = F(x,t). For simplicity, we still assume that K = R.
The following result extends [JST| where one used a week Parusiriski type inequality |Pal.

Theorem 3.5. Let Fi(x) = F(x,t) be an analytic deformation of Fy such that the map
germ F : (R" x R,0) — (R™,0) is 0-Thom regular. If F satisfies the condition

For anyy € F;'(0) N Sing Fy \ {0} there is
(3.10) a constant c(y) > 0 for which the following inequality holds:
15 (@ 0] < c(y)vr(x) when (z,8) = (y,0), (2,t) ¢ SingF

then the associated map germ F is 9-Thom reqular.

Proof. According to Definition 2.2, what we have to show amounts to proving the existence
of a Whitney (a)-regular stratification of F~1(0,0)NSing F \ {(0,0)} in some ball B’ such

that it is Thom (az)-regular with respect to the stratum B’ \ - ( (B'N SlngF)) Let
us first observe the equalities of set germs at the origin:

Lemma 3.6.
F=1(0,0) N Sing F \ {0} = £, (0) N Sing Fy \ {0} = F~(0) N Sing F N {t = 0} \ {0}.

Proof. The first equality, as well as the inclusion “2” in place of the second equality are
direct consequences of the respective definitions of the singular sets.

To show the reciprocal inclusion “C” in place of the second equality, we will use the
condition (3.10) at the point (y,0) € F; ' (0) N Sing Fy, where y # 0.

We still use the notation F(z,t) = (fi(z,t),..., fm(x,t)). Firstly, we observe that there
is some linear combination )" | a; grad, fz( v, ) equal to 0 since the gradients are linearly
dependent at the singular point (y,0) € F, '(0) N Sing Fy \ {0}, and thus Definition (3.4)
tells that vg (y) = 0.
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Secondly, using the same fixed coefficients a;, we have

hm Zalgrad fl l’t Zalgrad fl<y7 )7

t—=0,x—y 4

by the continuity of the gradient functions. By the Definition (3.4) as a “minimum” we
get v, (z) < || D7, a; grad, f;(z,t)]], and since the right hand side is equal to 0, it follows
that limg 0,y vk (2) = 0. It is at this moment that we apply the condition (3.10) to
deduce, by continuity, that BF <7 (y,0) = 0. This shows that the last column in the Jacobian
matrix of F' at (y,0) is zero, thus we get (y,0) € F~1(0) N Sing FF N {t =0} \ {0}, which
ends the proof of our lemma. O

By our hypothesis, there is a semi-analytic Whitney (a)-regular stratification S of a ball
B C R" xR which is Thom (ag)-regular, and such that F'~*(0)NSing F is a union of strata.
Let (y,0) € B, y # 0, be a point on some stratum V € S, where V' .C F~1(0) N Sing F.

Let (x,t) — (y,0) be a continuous path such that (z¢,t) & SingF. Let T(y, o F " (s¢)
denote the tangent space at some smooth point (z;,t) of the fibre over s, :== F(xy,t). The
assumed 0-Thom (ap)-regularity condition at (y,0) amounts to the following property:
for any choice of the path (z;,t) — (y,0) as above, we have the inclusion:

(3.11) T .= (wt,tl)ii?(y,o) Ty F(51) D Ty )V,
whenever the limit exists in the appropriate Grassmannian, in which case we have dimT" =
n—m-+ 1.

We next consider the slice of the stratification & by {t = 0}, consisting of the sets
V' .=V n{t =0} forall V € S. There exists the roughest semi-analytic Whitney
(a)-regular stratification S of the central fibre F~1(0,0) = F;(0) which refines this slice
stratification, in particular the sets V'’ are unions of strata of S'.

Lemma 3.7. Under the hypotheses of Theorem 3.5, one has T ¢ R™ x {0}, equivalently:
T is transversal to R™ x {0} at (y,0)

Proof. The normal space to the tangent space T(, ) F ~!(s;) is spanned by the gradient
vectors grad f;(z,t), for i« = 1,m. We consider paths y(t) := (x4,t) € B C R* x R
depending on the parameter ¢ in some small neighbourhood of the origin 0 € R. As
shown in the proof of Lemma 3.4, the limit cotangent space T™ is the set of the scalar
multiples of all the limits when ¢ — 0 of the linear combinations Y ;" o4 grad f;(z,t)
with [|a,|| = 1.

By absurd, let us suppose that 7" C R™ x {0}. This is equivalent to 7% 5 (0,...,0,1).
Using the inequality (3.10), we find that, for any path (x,t), the (n + 1)-dimensional
vector:

lim ——— Z o grad fi(wy, t)

t—0 I/F ,Z't

has on the first n entries the coordmates a vector of modulus bounded from below by 1
whereas the last entry is bounded from above by a positive constant. This tells that no
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such vector can be of the form (0,...,0,\), with A # 0, thus this cannot be a vector in
T*, hence we get a contradiction. U

In order to show that &' is a 0-Thom stratification for the map F (cf Definition 2.2) we
need to prove the 0-Thom (az)-regularity condition at some point (y,0). This amounts
to showing that for any choice of a sequence (z,t) — (y,0) such that (z;,t) € Sing F' and
s := Fy(x;), we must have the inclusion (where again we assume without loss of generality
that the limit exists in the appropriate Grassmannian):

(3.12) T':= lim T (F ' (s0) x {t}) D TV,
(zt,t)—(y,0)

where V" is the stratum of &’ which contains (y,0), in particular one has T(, o)V D T{,0)V".

Both sides of (3.12) are included in R"x {0} by construction, and also in 7', thus they are
included in the intersection TNR"™ x {0}, which by Lemma 3.7 is a transversal intersection,
and hence of dimension n —m. But since 77 C T NR" x {0} and dim7" = n —m, it
follows that we have equality: 7" =T NR"™ x {0}. Consequently T{, 0V’ C 1", and this
ends our proof. O

REMARK 3.8. One may be tempted to say that Theorem 3.5 implies Theorem 3.1. This
turns out to be true in case of function germs, see Remark 3.10 below, but it is not true
in the setting of map germs, as we will show in the following.

Let us consider the map germ F(z,y,2,t) = (v, g(x,y, 2,t)) = (z, (y(z* + y* + 2?))® +
22 (y(x® + y* + 22)) + tz*) with k > 5, as deformation of Fy := (x,g(x,y,2,0)). Then
SingFF = V(F) = {# = y = 0}. By considering paths ¢(s) = (s,0, 2p,0) such that
limg_,o ¢(s) = (0,0, 29,0) € SingFy \ {0}, we have ordsvg (¢(s)) = 2 and ordsz(s) = 1,
and therefore F' does not satisfy the inequality (3.5).

On the other hand, for any analytic path ¢(s) = (x(s),y(s), z(s),t(s)) such that
£%¢(s) = (0,0, 20,0) € Sing Fy \ {0}, we have ord,vp,4(s)) < 2-ord,z(s). Since k > 5, we

get: ordy||9|| = & - ord,x(s) > ord,v,(¢(s)), which implies that condition (3.10) holds,
and therefore, by Theorem 3.5, F' = (F,t) is 0-Thom regular.

In case of deformations of function germs, the above theorem extends the setting of
function germ deformations:

Corollary 3.9. [JST| Let Fi(z) = F(x,t) be a C'-family of analytic function germs
F, : (R",0) — (R, 0) which satisfies the condition:

For any y € SingFy \ {0}, there is c(y) > 0 such that for (x,t) & SingF :

3.13
(3.13) 9 (2,1)] < c(y)Hg—i(a:,t), L gx—i(x,t)H when (x,t) = (y,0).
Then the deformation F is 9-Thom reqular. O

REMARK 3.10. By applying the classical L.ojasiewicz inequality to the function germ
F(x,t) over some neighbourhood U of 0 € R" x R, we get the existence of 0 < § < 1 and
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C > 0 such that the inequality:
oF OF OF
3.14 F(z,t)| < C|| = (), —(2,t), ..., — (2, t
(3.14) Pl < €| ) 5t (a0)|
holds over U. From (3.10) and (3.13) we then deduce:
For any zg € Sing Fy \ {0}, there is k(zp) > 0 such that :

| F(z, 1) < l{;(azo)Ha—F(m,t),... OF (1)

ox1 ? Ozq

(3.15)

‘ when (z,t) — (0, 0).

While this shows the implication (3.13) = (3.15), let us observe that the stronger condition
(3.13) has the advantage upon (3.15) that it is easier to test. Remark that the converse
implication is not true, see Example 3.11. For map germs, even the direct implication is
not true, as seen in Remark 3.8.

In [AG] one considers the condition (3.15) for deformations of function germs F' under
the restriction that the associated map F has an isolated critical value at 0. Let us
therefore point out that our Theorem 3.1 represents a far-reaching extension of the main
result [AG, Theorem 3.5| since it works for deformations of map germs F', and without

any special assumption on the singular locus of F.

EXAMPLE 3.11. Let F : (R® x R,0) — (R,0) be the deformation F(z,y,2,t) := (z*
y?2?)(z — t) + t2x, of parameter t € R. When t = 0, we have Fy(z,y,z) = z(z!
y?2?) and SingFy(z,y,2) = {r = y = 0} U{z = 2z = 0}. For the paths ¢(s)
(z(s),y(s),2(s),t(s)) = (s,s% 20,ks®) with zg # 0 and k > 1, making s — 0 we see
that there is no ¢(z9) > 0 such that condition (3.13) holds. Nevertheless, it appears that
the condition (3.15) holds for some < 6 < 1. Thus (3.15) does not imply (3.13), however

F is 9-Thom by Corollary 3.9.

I+ +

4. CONSERVATION OF THE 0-THOM REGULARITY IN COMPOSITIONS OF
DEFORMATIONS

The existence of the Milnor-Hamm tube fibration for the composition of map germs
is treated in the recent paper [CJT| with criteria involving the p-regularity condition.
In case of the composition of deformations of function germs, in the aim of insuring the
existence of the Milnor-Hamm tube fibration, the authors of [AG| consider the property
(3.15) of Remark 3.10 within the class of deformations of function germs ) such that Q
has isolated singular value. They leave open the question whether or not this condition
is preserved by the composition of such deformation maps.

As the 0-Thom regularity is a sufficient condition which insures the existence of the
Milnor-Hamm tube fibration for the composition of deformations of function germs, our
answer to the dilemma is as follows: instead of the property (3.15), which might not be
preserved by compositions, one should consider the property “F s 0-Thom regular”.

Our next result shows that the property “0-Thom regularity” of G and F' is indeed
preserved by the composition H = G o F'. Moreover, unlike [AG|, we do not need to

assume that G has an isolated critical value. Such a result turns out to hold under more
general conditions for compositions of map germs.
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Theorem 4.1. ]fF and G are 0-Thom regular, and sz has an isolated singular value,
then the composed map H=GoF isd-Thom reqular.

Proof. The proof reduces to the case SingH NH ~1(0) has positive dimension as a set germ
at 0 € R™ x R, since otherwise H is 9-Thom regular by definition.

Since F' is O-Thom regular, there exists a stratification W of the open ball B. C R" xR,
for some € > 0 small enough, which verifies the conditions of Definition 2.2.

Consider a sequence {z;}ien C B. \ H™(Disc(H)) such that z; — y € V(H).

Let first y € V(ﬁ) We denote by W € W the stratum such that y € W. Remark that

x; are regular points of I’ by the assumption that F has an isolated singular value.
Assuming (without loss of generality) that the limits exist in the appropriate Grass-
mannians, and using the Thom (az)-regularity, we get the first inclusion in:

T,W C lim T, F~"(F(z;)) C lim T, H™"(H(x;)),
1—00 1—00

whereas the second inclusion is due to the inclusion of nonsingular fibres F *1(ﬁ (x;)) C
H~Y(H(x;)), for any i. This shows that the pair (B2 \ f]il(Disc(FI)), W) satisfies Thom
(ag)-condition.

If now y € V(H H)\ V(F F), then y is a regular point of F. Since H(z;) ¢ Disc(H), we
also have H(z;) ¢ Disc(G).

Since G is -Thom regular by our hypothesis, we may consider an open ball Bs C R? xR
together with a stratification S which satisfy Definition 2.2 for G instead of F. Therefore
the point F(y) C V(G) belongs to a positive dimensional stratum S C S. The assumed
(ag)-regularity of the pair (35 \ G~1(Disc(G)), S) yields:

(4.1) »o C lim T

~ =
H(x:
P )G (H (),
where we may again tacitly assume that the limit exist in the appropriate Grassmannian.
The map F is a submersion in some neighbourhood of y. By applying to (4.1) the

7

inverse map (T*ﬁ )71, which commutes with the limit “lim; .., we get the equalities

T,F~Y(S) = (T,F)™(Tf,,S) and

(T, F) 7 (lim Tp, G (H(:))) = lim (T, F) " (G (H (1)),

1— 00 1—00

therefore we obtain the inclusion:

(4.2) T,F1(S) € lim (T, F) (G (H (@) = lim (T, H) ™ (H(x)).
This shows that the pair (B \ H! (Disc(ﬁ)) ﬁ_l(S)) is Thom (az)-regular, and this
holds for all strata S € & which are inside V(G) \ {0}.

We have now a stratification of V (H) which consists of the newly defined strata F~1(S)
forall S € 8, S c V(G)\ {0}, and all the strata W € W/, W C V(F). What we have
proved up to now is that the pair consisting of B. \ H(Disc(H)) and any of the above
enumerated strata in V (H) satisfies the Thom (az)-regularity condition.
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There is still one more thing to check: the Whitney (a)-regularity of the appropriate

couples of strata. Since F' is a submersion on V(H) \ V(F), the inverse image by F
preserves the Whitney (a)-regularity of every pair (S’, S”) of strata of S which are inside
V(G) \ {0}, and such that S” C 5. But since the Whitney (a)-regularity may not be
satisfied with respect to the strata of W' inside V(ﬁ ), we need to refine the stratification
W' into a Whitney (a)-regular stratification WW” such that the pairs (S, W) are Whitney
(a)-regular, for any S € S and W € W”, and such that W C S.
Then the germ at 0 € R™ x R of the stratification Q := S| |W" is a 0-Thom stratifi-
cation for H. This ends our proof.
U

ExAMPLE 4.2. (after [AG]) Consider the maps germs F : (R30) — (R,0), where
F(y,z,t) = y(y* + 22 + t?), and G : (R*0) — (R,0), where G(y,t) = 3> + t?y. It
turns out that F' satisfies the condition (3.15) in a neighbourhood of the origin, whereas
G has a single singularity at the origin thus satisfies (3.15) in a trivial manner. (One can
also check easily that condition (3.13) is satisfied too.)

Then both F and G are §-Thom regular, by Theorem 3.1. Since F has an isolated
critical value, we may now directly apply our Theorem 4.1 to conclude that H = G o F'
is 0-Thom regular, and therefore H has a Milnor-Hamm fibration by Corollary 2.6. We
observe that Theorem 4.1 provides a shortcut and we do not need to verify again the
condition (3.15) for the composition H = G o F' as done in [AG, Example 3.7 in order to
obtain a Milnor-Hamm fibration.
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