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S - spectral decompositions I

By

IOAI\ BACALU

In this paper we study some types of spectral decompositions, residual by some

way, having as main methods the restrictions and quotients of decomposable operators.

The starting point of this was the intention to give an answer to an open problem from

decomposable operators' theory which was formulated in the 6ft chapter of the

monograph belonging to I. ColojoarS and C. Foiag named "Theory of Generalised

Specfral Operatcrs". The restriction and the quotient of a decomposable operator to a

spectral maximal space are they decomposable or not? [n other words, is a decomposable

operator strongly decomposable or not? E. I. Albrecht built up an example of a

decomposable operator that is not strongly decomposable. Still, if the spectrurn of Zhas a

dimension of I (more exactly o(f)e C, see [15] Def. 5) then decomposability implies

strongly decomposability ([5] theorem 6). Generally the restriction and the quotient of a

decomposable operator Z are ,S-decomposable operators (fof a spectral maximal space I

of I),where S is a part of the frontier of o(T lf), S = 5o@ lf)ao(f). The definition

of the S-decomposability is close to the one of the decomposability, only the open

covering of the spectn:m is replacedwith a,S-covering (see [76] or the definition from the

preliminaries). Most of the decomposable operators' properties are also true for the 'S-

decomposable ones, of course in adjusted, specific form. One must notice that the

properties of the commtfers have no correspondent. The paper contains three chapters. In

the first one we study the restrictions and quotients of a decomposable (strongly

decomposable or spectral) operator to an invariant subspace, particularly a spectral

maximal space. We emphasise properties of the (topological) dimension of various parts

of the spectrum, where the sets having a dimersion of 0 play an important role. In the

second chapter we give the properties of S-decomposable operators: structure theorems of

spectral maximal spaces, ,S-decomposability conditions, properties linked to direct sums,

functional calculus with analytic functions, ,S-spectral capacities etc. The third chapter

contains some conclusions on multidimensional spectral theory. We try to generalise for

operators systems some results obtained for a single operator. We study the restrictions

and quotients of spectral and decomposable systems of operators, and in the last

paragraph we define the systems arnlogue of the residual single extendibility.

O. PRELIMINARIES

In this paper we will use several notations and definitions from the specialised

literattne, that will be also remind it here. I-et Xbe a Banach space and let B(X) be the

algebra of all bounded linear operators of X. If f e B(X) and )' is a linear (closed)
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invariant subspace of I(meaning W r_Y), w9 shall denote by f I I the resfriction of Z

to I, and by f theoperatorinducedby Tinthequotientspace X=X lY.lnallthat
follows by subspace ofXwe mean a closed linear variety ofX. We shall also denote by
o'(f) tne spectrum of T, RQ,",T) the resolving of 7 and by C the complex plan.

DsnrNrrroN 0.1. A subspace Y c. X is called spectralmaximal space of T e n(X)

if I' is invariant of Z and for any other subspace Z also invariant of 7 such that'-

"(r I Z)- o(r I r) we Inve Z cY l4sl,[371.
An operato r r e B(X) is decomposable if for any finite open covering {C, }; of

the spectrurn o(f) there exists a slatem of spectral maximal spaces of f {f,}i such that

o(f l4) c G, (i =1,2,...,n) and x =iY, t48l t371. An operator r e n(x) is strongly
i=l

decomposable if Z I I is decomposable for any spectral maximal spce Y of T l2l.

We call that T e n(X) has a single analytic extension if for any anal5tic function

f :a -+ X (where rrl c C is an open set), solution of the equation

(xr -r)f (x)= o,
is by any means identical null [46], [45]. The single analytic extendibility provides the
possibility to attach each elemenf x of space X a set from the complex plan C in which

outside the demeanm of some entities defined by the operator becomes conhollable. A
point l,o is belonging to the local resolving p.(x) of .r e X if inits neighbourhood there

exists a single analytic function .r(1,), which verifies the identity

(xt -r)x(x)= *.
The set o'(r) = C t p. (x) is namod the spectnnn of x regarding l. Obviously we have

"'(r) 
- o(r) 1*n"r e p(r)= C t o(r) is the resolving set of I), hence 

". 
(t) c o(r). One

denotes
xr(r)= {x e X,cr(r).  r} .

Tneonsn,r 0.1. If X,,V) is closed, then it is a spectral maxirnal space of T and

"(r 1x, (r))- r t381.
In order to study the restrictions and quotients of an operator, as also to define and

anallse the properties of ,S-decomposable operators we need several notions from the
residual spectral decompositions theory brought up by F. H. Vasilescu in 1761,1771,1801.

DerrNrrroN 0.2. A family of open sets {G" }, {C, }; of tne complex plan C will be

said to be an ,S-covering of the compact set o c C (,S c C also compact) if
( . , .  \  _

Gr r l  UG,  I  r  ouS and G n,S =A Q =1,2, . . . ,n)1761.
\ i = r  /

DpnNrrroN 0.3. An open set C) c C is of analytical singlene-ss for f e n(X), if for

any open set rrl c C) and any analytic function fo: o -+ X veif;ingthe equation

(t"r -rlo(x)=0,
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it follows that fi(X):0 in a [76]. One shows that for my T e n(X) there exists a

(single) largest open set Q, of analytic singleness [76]. We shall call analytic residuwn

and we shall denote by S. the set Sr = C \ C). . From the definition results that in any of

its points ,S. has either the (topological) dimension2 or dimS. = -l (meaning S, = g;

IntS. = Z implies S, = A). The case Sr = A fits the single analytic extendibility [76].
If xe X, a point l, e S.(.r) if, in a proximity V^ of 1., there exists at least an

analytic tunction "frfu) (called Zassociated with x) such that (pI -f)f-fu)= x for

p eV.  We shal l  put  yr ( r )=C \  d . (x) ,  pr (* )= \ r (x)at2r ,  o(* )= C\  pr (x)=

= rr\)uSn and xr(r)= b. X,or(x)- r).  When S, = A,we have or(*)= rr(x)

and a single analytic function x()"), T-associated with x, for any xeX exists in

Pr(* )= 6rx.

Tueonsru 0.2. If TeA(X), S, +0 and X,r(F) ts closedfor FcC closed,

Fr,S, then Xr(F) is a spectral maximal space of T and o(r1X,'(f)).f (76J,

propositions 2.4., 3.4.).
DernqnroN 0.4.l-et f e B(X) and let S c C compact. We shall say that ?'is S-

decomposable if for any finite open,S-covering of o(Z) {Cr}..r{C,}i ttrere exists the

system of spectral maximal spaces of Z {I, }r.-, {f }i such that:

( i )  o ( T l Y r ) -  G ,  , o ( T l Y , ) c " G ,  ( 1 < i < n ) ;

(i i) x =Ys *tY,
l = l

If condition (ii) is replaced by,

( i i ' )  Z=Zn I ' r + lZo r , ,

where Z is any spectral maximal space of Z, then we shall say that T is strongly S-

decomposable,andwttgl thgljmecondition (ii) is replaced with the weaker one

( i i " )  X  =Ys *8  , ,

we shall say that T is weakly S4ecomposable.
If in the definition of ,S-decomposability, )', is not necessarily a spectral maximal

space of Z and oQ lYr)= G, Qf A cC is bounded we denote V = C\ D-, where D.

is the unbounded component of C \ I ), then we say that Z e D, .

An operator f e A(X) is named (*,5)-decomposable if in the definition of .S-

decomposability we consider the S-covering composed out of exactly llz + I sets, that is

{c" } r {C,} : ,  . I f  m=1,  wenave ( t ,S)-decomposabi l i tyandweshal lprovethata (1, ,S)-

decomposable operator is,S-decomposable.
Since in this paper we use quite much the (topological) dimersion theory, we

shall give several defiriition and examples. We will be interested in the dimensions of the

sets from the complex plan C or C'; we use [13], [65], 1671,166)'



DeprNn1gN 0.5. L,et Xbe a sepmable mekic space. The symbol dim pX means the

dimension of X in the point p. The following three conditions define this condition

through induction:
l )  d imX = - l  means X =A;

2) if X +A , dimX is the superior edge of dimpX for any p e X;

3) dimpX <n-tl if there exist any open neighbourhoods ofp, no matterhow"

small such that their frontiers be of a dimensiur less than or equal to n.

Condition 3) can be composed like this:
3') dim pX t n + I means that in the family of the vicinities ofp there exists an

open one which frontier has a dimension less or equal to n'

By definition, a (nevoid) space has the dimension 0 if for any of its points there

exist neighbourhoods no matter how small having a void frontier. Thus, for example, the

space of the rational numbers on the axis has the dimension 0: each interval with

irrational extremities is a vicinity for the numbers contained within and has a void

frontier (the frontier contains no rational numbers). Same for the set of irrational

numbers, and generally speaking any frontier set of the real axis has the dimension 0. The

space of real numbers have the dimension less or equal to I since the frontier of an

interval is formed out of two points and this set has the dimension 0. Analogously the

plan has a dimension less or equal to 2 (since the circle is of a dimension less or equal to

l) and generally speaking the Cartesian space E' has a dimension less or equal to n.The

proof of the fact that dimE'=n is not elemenhry. The dimension of a space's set is

never bigger than the one of the space itself.

THeonppr 0.3. The necessary and sfficient conditionfor a subset N of R' to have

the dimension n is for N to contain a nevoid open subset in R' ([13], lemma 1.2.),
I l n t N + 4 .

We remind that a space is named totally disconnected if any of its components

reduces to a single point. One proves that a spaceXlocally compact has the dimersion 0
if and only if it is totally disconnected.

The model space having a dimensicn of 0 is Cantor's set (discontinuum). Any

space having a dirnensiur of 0 is topologically contained in Cantor's discontinuum. A

characterisation of the spaces having a dimension of 0 (that sometimes is considered as a
definition [66] XD(, l) will be usefirl to us:

THsoneN,r 0.4. A nevoid space X has a dimension of 0 if to anyfinite open covering
X =Go uGr \-/...eG^ corresponds a closed covering X = Fo u4 u...uF,, suchthat

F,  cG, ,  F,AF,  =A ( i *  j , i ,  j  = \ ,2 , . . . ,m) .  Thesets F,  arethereforec losedopen.

From 0.4 theorem results that the frontier of a set contained in the plan has a
dimension less or equal than 1, and for a set fiom the axis the dimersion is less or equal
to 0.

Being given a compact set I in a plan having a dimension of 1, is the frontier of
any compact subset L, c" L (in the relative topolory of I) of dirnension 0 or not? There

are examples of sets having a dimension I for which the answeris negative. For example
the set f is defined as follows:
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{("''*+) '*'(o'r\= u'
f (o,y) ,-r3 y < t)= r.

We have f =M uF compact, Fc.f compactandthe frontier of F, dF=0M =F,
dimd.F = 1.
Also the "fan" set ([66], XV[I):

|{(r, l - rx),* > 0,1- nx ) 0,n = 1,2,...1= M,
f  , 1 . .  .  / .' ' ' f ( o , y ) o < , y S t ) = 4 ,  '

l ,  =  M,  u Fr , f  o losd OF,  = -  OM, ={ ,  d im{ =1.

For the decomposable operators it seems that not only the compact sets with dimensions
1 (specfum of operators or parts of them) that have a good demearpur as mentioned
above implya great interest.

DcprNrrrroN 0.6. We shall denote by C the class of all compact sets o c C with
dimo ( 1, and moreover meeting the property that for any closed subset ot c o we

have dimdor=0 (do, isthefrontierof o, inthetopoloryof o).

The family C isn't void: any interval or finite reunion of intervals on the real axis
belongs to class C ; any set from the plan that is homomorphic with [O,t] Uetongs to class

C ; finite reunions of sets from C belong to C , the disk Xll=i belongs to C . Let us

remark that the countable reunion of sets from C may not belong to C . Example: the set

;= [o,t]u0{f",rll *.lo,tly=*} do"."'t belong to c . rhe sets r', r,, L are not

locally connexe and probable there exists an association between the sets that do not
belong to C and the sets that are not locally connexe.

Finally we remind the property: if X and Y are two separable metric spaces, then
dim(X*f)< dimX +diml. In the following we will remind a few ideas that will be

necessary in the third chapter of multidimensional spectral tireory.
Let E' be the extemal algebra, generated by the undefined o,=(r'r ,s2,...,s,),

over the body of complex numbers C (187] p. 183). The algebra En is the complex
algebra with the e identity satisfliing the relation ,sr ns/ = -r, A,s; , where by

(s,, 
", )-) 

si n si we denote muitiplication in E' . The E" algebra is gradual and

E' = L@ E; , where Ei n Ei . Ei,*n, E; is generated by the elements
p=0

s. , ,  AJ i ,  n . . .n ,s / , ,  ( l< i ,  S i r3 . . .< io  <z) .  We take EI  =C,  whareelements of  EI

represent identity multiply. Also, E,l -C, the base cf Ei, that is constitute liorn the

single elemerf ,sr n J2 n... n,s, , and E; = (0), p > n .

Let now Xbe a Banach space, a=(a,,a2,...,a,). B(X) a system of commuting

operators, and let A be an operators algebra which centre contains the system



a1,a2t... ,ctn We shall  denote (see [58], chapter I) N(o,X)=ni/)=X@"8;.

l(fo,Xf canbe viewed as a module over any A algebra, having the above property. By

writ ing xk for x@k, xeX, keE' wenotice that Nfo,X],thespaceofal lextemal

forms having ap degree ins and coefficienb fromXis create of elements like

V = 2* , , . . . , r t , ,n  's /2  n " 'n  J . ,o  (* , , , r . , ,  e  X) '
lS l t<  j z< . . .< i  n {n

We have Nlo,Xl= t\'fo,Xl= x and we put Nfo,X]= 0 for p <0 ot p > n.

Through the spectnnn of a system a=(q,,a2,...,a,). B(X) one comprehends,

generally speaking the complemortary in Cn of the set with the elemstts

z:G,22, . . . ,2 , )cC'  wi th theproper ty that thesystem z-Q=(" , -o ,zz-a2, . . . ,2 , -a , )

is not singular on X. From the sense given to the notion of nonsingularity one can obtain

several notions of spectrum. We shall be interested in the spectrurn instituted by Taylor

[70] *rat se€ms to have more benefits against the classical ones.
The nonsingularity of z - o accarding to J. L. Taylor's means the accuracy of a

certain series created using the space and the operators. This series is a variation, adjusted

for more cperators of the elemenbry series

o-+x 'Jx-+o
that - in case of a single operator - shows the property of z - a of being simultaneous

injectiv and surjectiv
There are two types of series used to define the nonsingularity of an operators

system, a complex of Koszul [88] chains or a complex of cochains verymuchresembling
a complex of differential forms. Both can be described in terms of exterior algebra, the
natr"ral duality'existing between the two complexes makes them been simultaneously
exactly and define the same idea of nonsingularity.

The shared spatial base of the two complexes is represented by the spaces

Lnlo,Xl, the two ones make a difference only through the link (frontier) operators,

respectively the coiiontier.
If I < p S n, weshall denote by

5 o = 5 r(tt) : L" lo, xl-) A2-r [o, x]

the operator defined by

5 ,6,r, ,n.. .  n s' / , ,  )= f  (-  r)- 'xrr,  A.. .n i ; ,  n.. .  n s/, ,
; = l

and

^ (  s l  )  - . -  /  \
5 ,l Z',, ,,,si, ^ tr, I = Idn k,, ,,,sr, A "' n t,, )

\ l < r ,  . . . . . r , , <n  )  l < . i 1< . . . < i , , ! n

where the circumflex stroke marks the absence of the letter above there is placed; if
p < 0  o r  P ) n , w e p u t  5 o = 0 .  W e s h a l l a l s o d e n o t e b y

6,, = d'(q): LPfo,xl- /('fo,xl
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the homomorphism that acts upon a form from l(fo,Xl througtr the exterior

multiplication on the left side with aft+...+ensn (when p<0 or p>n we put

6o=0). The fact that the system a=(ova2,,..,o,) is commdative assure the

verification of the relations 6 od o*,= 0 and 6p*'6p :0, p eZ. The chains complex

constitute from modules /(fo,X] and the frontier operators do is named the Koszul_ "

complex associated to the system a=(a,,a2,...,a,) and is noted E(X,a). The complex

of chains represerfed by the modules t\o[o, X] and the cofrontier operatons 5 P , p e Z

will be mark as F\,o). Hence we have

n (x, a) : 0 -+ x = tY fo, xl\ r' fo, xl\ ... \ n' fo, xl\ tt' 1o, xl\ t" fo, x f= x -+ 0
and

r(x,a):0 -+ x = Ao[o,x]ln' lo,xl\n' lo,xf\...u- L^-'fo,xl\ n'fo,xf= x -+0
Generally speaking the two series aren't accurate. The omology modules are marking the
incorrectness

H r(x,a)- Ker(dr*, : Ap*r -) L' )l Im(d r: Ao -+ A'-')

for E(X , a) and the coomolory modules are marking it for F(X , a) ,
H'(x,a) = Ker(do : r\p -+ L'*t)llm(d'-' : L'-' -+ t\').

One can easily verifo that the two complexes E(X,a) and F(X,o) are equal regarding

accuracy [58].
Dnpnrrrou 0.7. The system a = (a,,e2,...,a,) c a(X) is said to be norsingular, if

it is preciselythe complex E(X,a) or equivalent, the complex F(X,a). The set of those

e lemen ts  z= (2 , ,22 , . . . , 2 , )eC"  fo r  wh ich  the  sys tem z -a= ( r , -o , , . . . , 2n -a , )  i s

nonsingular onXis said to be the resolving set of a onXand is denoted by r(a,X). fne

complementary in C' of this set, C" \r(a.X), is said to be the spectrun of a onXand is

denoted by o(a, X).

We shall use the following function spaces defined on an open set U cC' and
taking values in a complex Banach space X:B (U,X) - the space of continuous

functions admitting (regarding distributions) continuous partial derivatives regarded to
21,22,...,2, (l7ll, $2); Bo@,x) - a subspace of B (U,X) consisted of the functions

with a compact support; C '(U. X) - the space of continuous functions admitting partial

derivatives of any rank; Co- @.x) - a subspace of C -(U.x) consisted of the functions

with a compact support; U(U,X) - the space of analytic functions on {J. We will

permanertly use the fact that B (U , X):C * (U , X) 7t21.

If U c C' is open, F is one of the function spaces described above and
o=(s' s2,...,s,) a indeterminate system, then we shall denote by a the operator that

acts upon an exterior form y in the indeterminate o = (s,,sr,...,s,,) with coefficients in

F , ry e hPfo,F l, acconCing to the relation
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@wk)=l(2, - arb, *Q, - arb, +...+(z^ - o,b,l"vQ)
and we shall denoteby a@6 the operator that acts similarly upon the exterior forms

y e /(fov dz,F lin the indeterminates and fr withcoefficienb in F :
- 

-'I

/ /  \  \ . .  l .  \  /  \  /  . .  d  A  I
@ aa\rb= 

| €, - o, ), + Q, - o,\,...+(", - o,\, + 
ta 

+...+ 
fm, )"rA>

Dr.^,r,o,u 0 .8. The resolving annlytic set of xregarding o = (ova2,...,a,) c n(X)"

is the set of those elemenb like z:(2,22,,t2,)eC' so that there exists a closed V

neighbourhood of z and n fi.rnctions analyic on V with values in X, .f,,fr,...,fn,

satisf ing the identity x = (C, - a,)-f,G)* .. .  * ((,  - o,)f,((),  ( .V. The

complementary of this set in C' is said to be the analytic spectrum ofx regarding a. We

shall denote them by p(o,*) respectively o(a,x).

DBnnrroN 0.9. The resolving set of x regarding a=(a,a2,...,an), denoted by

,(a,x), is the reunion of all open sets Vhavng the property that there exists a form

V/ e Ln-'[o w dz,C - 1r, , X)) satisfying the equality

16,  ̂sz  A. . .ns , )=  IQ,  -4 , ) ,  +  . . .+(2,  -  a ,b ,  * *dr ,  * . . . *  $a^ l " rQ)
L OZ, OZ, J

The complementary of this set (in C') is said to be the spectrum of x regarding a,

tp(a,*)= Cn \ ,(a,x).

In order to obtain a global solution y for the equation sr= (aO6)y, it is

necessary that the system satisfies a condition similar to the property of single analyic

extension in the case of a single operator namely
DsprNrnoN 0.10. We shall say that the system a=(q,,a2,...,a,) verifies the

coomologic property (f) it H*tp * (G, X),a @ A) = 0 for any open set G c C'. In this

case  we  deno te :  x  I " l (F )=  { " ,  x  e  x , sp (a ,x )c  F }  (F  cC '  c losed ) ,

xo,t@)= {.r ,"  e x,o(a,x)c r}.

DnprnnroN 0.11. Let Xbea Banach space, let S (X) be the familyof the closed

linear subspaces of X,let ,S c C" be a compact set and let F, be the family of closed

sets F c.C" thathavetheproperty: either Fn,S =A or F:,S.
We shall call S-spectralcapacity anapplication E :F, +S (X) tnatmeets the

properties:
r .e(a)= {o} ,  E(c ' )=  x  t

/ o  \  
" ,

2".Elt"lC l: f lr (q) ro. anyseries {4 },., cF s i
\  i = l  /  i = t

3o. for any open finite ,S-covering {G., }, tC, }',=, of C" we have

x =Ek,! LrFc,)
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A commuting system of operators a=(o,or,..,an)cn(X) is said to be S-

decomposable if there exists a spectral S-capacity such that
4". o F(r)c r (r') ror uty F e F , and for anyT;

5". o(a,E(r))- F for any F €Fr.
In case S = A, the spectral S-capacity is said to be a spectral capacity, and the system is

decomposable. We must notice that for systems of operators having n ) 2, one doesn't "

know whether the definition of the S-decomposability (and of the decomposability) given

for an operator (see [37j) is equivalent with definition 0.I 1. or not.

RESTRTCTIONS AI\D QUOTIENTS OF DECOMPOSABLE OPERATORS

1.1. RESTRTCTTONS AND qJOTIENS OF OPERATORS. RELATIONS BETWEEN
THEIR SPECTRUM

We shall start with a paragraph that contains results regarding the relations

between the spectrum of an operator and the spectrum of the restrictions and quotients

regarding an invariant subspace, the corresponding relations between the local spectrum
and the anal5tic residues as well as some results on particular invariant subspaces.

1.1.1. PnoposrrroN. Let T e n(X\, let Y be an invariant subspace of T and let f be

the operator inducedby Tonthequotient spae X = X lY. Thenwe have:

0 S. c S, w o(r 1r),
(ii) Sr c S. r-, o(r 1r),
(iii) Sny c S, n o(f 1Y),

(iv) y i6). y,(r) - y r(*)v oQ 1 r),
(v) o.iG). o,(x)w o(r lY); o,,.(r) c o,,(t)v 6(r lY) ( x e *).
Proof. Proof of (i) is given in 2.7. 1801. lrt now at c {1, ^ p(f I f) be an open

set and let x(1)'. o -+ X be an analytic function such that for )' e at weltave

(tr -r)"(t")=o
T h e n . f o r l e a , w e h a v e

fu -r),-61=0,
hence ;TD=0, consequently x(2) eY.rtwill follow that (2t -r)-(1)=(LI -rlY)x(r)

and (tt -r lY)'(,zt -r lv)-@)= ,Q.)= 0, hence
S' c ,S, v o(r 1r).

Inclusion (iii) is obvious. We shall verifu (iv). Let .f, :, -+ X be an analytic function

(atc6.,,(") i, an open set) such that (i l-r)-f"(t)=r.rhen Q"I-r)TP)="t with

Tn analytic on &), hence 4G)- 5,Q) and y,.(*).y,Q). In order to verify the

inclusion y , (*). y.,,(*)w o(f lY), let i : o -+ X be an analytic tunction; then, for
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),ea, there exists a neighbourhood a^ of )., otco) and an analytic function

f :at, -> X such that 7@)= i(d for lt e ot" (see t79l lemma 2-1.)- If

)"0 e a c d,.(*)n pQ 1r) and

(u -f)ir@)= *
with lo analytic on a (at open), then there exist the analyticfunctions f,(X) ^d y@)" "

on o)t c at suchthat

(t"t -r]y,Q,)= x+ y(1),

where x e *, 7m= ir(l.) and yQ)e I. By denoting z(t)= (tt -r lY)-' vQ') we

obtain

Qi -rY,f.(t)- z(,t))= x,
hence )"0 e\r(x) and y,(r).y,,(*)wo(rlY). one also obtains or(*) =rr\)v

u,s, c rr|)w s, w o(T lY)= or\)u tQ I r) and or(*)= yr(x)ws. c 7r(i)uS. t '

u o(T 1r)= o,.(*)w o(T I I'), that is (v).

1.1.2. PnoposrrroN. If T . B(X) and Y is an invmiant subspce of T, f,ten we have:

(i) o(r).'(r), o(r1r),

Ql o(f)c o!)u o(r lY),
@t o(r I Y). '(r)w o(f )
Proof, The inclusions result from lemma 1.2. 1701, but we shall furthermore give

an elementaryproof. (i) and (ii) result easily from the equality
o(r) = 

U",0)
([76] corollary l) and from the preceding proposition. We shall verify (iii). Let us take

)" e p(r)a p(f); ir  n(l ,r)eY,thenthereexists lo eY such that

n(5.,r)yo = zo 4Y .

In other words in =(LI _ f)n, =0. Since l. pV), it results that 2, =0 and hence

zoe Y;conhadiction! Consequently n(l, f)f  c I and

o(r 1r). "(r)u 
o(f).

1.1.3. Conor-LARy. Considering the premises from the preceding proposition, by

denoting by D* the unbounded component of p(f) and by D, (neN) the bouruJed

components, we have:

l o ,  D - . . o ( r ) = a ,

2o .  Dn  - t@)

i/' anct onty if' D,, c o(T lY) @eaning i/ and only if there exists ).0 e D,, such that

n(t"o,r)v eY).
Proof.lt results from the preceding proposition and from proposition 4.11. L411.
1.1.4. COROLLARY. Considering the same premises as in proposition 1.1.2. we

havc

1 0



Chapter I - Restrictions and Quotients of Decomposable Operators

f,l r(r)t'(r tr)= o(r)r o(r lY),
(it) o(r)r o(r)= o(r 1r)to(t'),
@i1o(i)to(r)=o(r I r)r '(r).

If we denote o, = o@), o, = oV), ot = o@ lY), then
3 3

|.Jo, = fl("-, tor)
i=l t;t.7

Proof, It results from proposition 1. 1.2.
1.1.5. Remsrk. If ht(o(r)n o(r 1f))=O (or in other words

Oim(r(f)n o(r t4)<1), and Zhas the single valued extension propertythen Z also has
the single valued extension property indeed, by proposition 2.7. [80] we have ,S. c

c o(T I r)u,S. = o(r lv), whence s, c o(T lr)ao(f), meaning rnts, = g '

consequently Sr = O and Z has the single valued extension property.

1.1.6. PnoposrrroN. Let T . B(X) an let Y be an invariant subspace of T. Then the

equality
o@) = '@)u o(r I Y)

is true in eachof thefollowing cas6:

e o(r lY)c o(r),
@ pV) is connected,

@ o(r 1r)ao(i)= z ,
(4) i has the sing/e valued extensian property.
Proof. (1) If o(r lY)c o(T), ther; according to proposition 1.1.2., one obtains

'?)- o(r 1r)w o@)= oQ), hence o(r 1r)v '(f). r(r) and accordingly

t@)uo(r lY)=o(r ) .@ p@) connected, i t resul ts  D*= p@),  D,=A (n e N,  see

4.11. L41l and corollary 11.3.), hence o(r lY). o(r). (3) When o(r 1r)ao(r)=O
we shall have again o(f lY).o(T), because otherwise there will exist a bounded

component D,+0 of p(f) with D, co(f l f)  and accordingto corol lary 1.1.3. we

also have n, . o(i), D, c o(T I f)n t(f)= A , conffadiction. (4) If Sr : CI, from

yi6)= o,(; ')  and, o,(*).y,(*). y,(r)w S, = oL (x) (proposit ion l .1.2.) oneobtains

oV)= U'r(*) -Qo, (")= o(r)
x€A xex

hence'V). o(r),meaning o(r) ='(r), o(r 1v).
1.1.7. Remark. I-et f e n(X) and let Y be an invariant subspace of Z. From the

ones above it follows that if o(rlY)qo(r), then o(r) qo(r) and consequently

S, +A; it results that if Z is decomposable and o(TlY)qoV), then 7 hasn't the

single valued extension property (particularly Z is not decomposable). I{ence we have
the possibility to obtain operators that don't have the single valued extension property

l 1



Chapter I - Restrictions and Quotients of Decomposable Operators

through factorisations with subspaces that are not o-stabile for Z(meaning invariant of Z

and o(r I r) - '(rD.
1.1.8. DerrNnrox. Let T e n(X); a subspace Y c X is said tobe T-absorbing if

for any x eY ,the equation (U -f)y = r has solutionsy onlyin Ifor any leo(f 1f).

We remind tlnt any spectral maximal space Z of T is ?n-absorbing ([76] definition 3.2.

and proposition 3.1.).
1.1.19. PRoposnroN. Let Ten(X) and let Y be an invariant subspace of T, T-

absorbing with o(T I f)- S, (particularly S, = A). Then i , the operator induced by T

on * = X lY has the singlevaluedextensionproperty (Sr =A).

Proof, We have S, c S, c o(T I f) @roposition 1.1.1.) hence it will be suffice to

prove that \fio(T lf)- t)r.Let Gclfio(T lf) be an open set and let iQ) be an

analyic function on G such that ().1 -f)i@= 0 for )" e G. Then there exists an open

set G, c. G and an analytic tunction f@) on Gt so that 7@)= iQ) and

(,et -rf@)= y(l) with y(l)eY ([79] lemma 2.1.). Since I' is Z-absorbing and

). e G, c o(T I I), one obtains i@).Y , iU')= 0 on G,, meaning iQ')= 0; it follows

Sr = CI and i has the single valued extension property.

1.1.10. CoRona,nv. Let T e n(X) with the single valued extension property and

let Y be a spectral maximal space of T. Tlen f has the single valued exterxion property.

The corollary above was observed by $t. Frunz[.
1.1.11. PRoposrroN. Let f eA(X) and let Y be an T-absorbing invaiant

subspace of T. Then Y is o -stabilefor T and
o(r)= o(r 1r)w o(i).

Proof. If D,(n e ff) is a connected component of p@) and ).0 e Dn c t(r lY),

then R(70, f ) f  eY (41) , theorem4.11.) ,hence QoI-T)- 'y=zeY forat leastas ingle

y from )'; but Iis Z-absorbing and hence !=@J -T)z implies zeI; contradiction!

Consequen tly D,, = a , o(T I r) c o(r) and o(r) = o(T 1Y)w o(i).

l.l.l2. Lsnvn. If f eB(X) has the single valued extension property and

X = Y, +Y, +...+Y, where Y, (i =1,2,...,n) are spectral maximal spaces of T, then

o@)=l)oQ lv,)

Proof. We have
o(r) = 

!uo,(,)
and

o(r lY,) = 
*Uro^, 

G)= Uo, (r)

since o,,,, (r) = o, (r) if x e Yt (137J,I, 3.5.), hence

12



Chapter I - Restrictions and Quotients of Decomposable Operators

og)=Uo. (,). U( U,,t,)'l = Uo(, | 4). "Q).xeX i=l \yiel, ) ,=,

1.1.13. LBuue. Let X be a Banach space, and let Xt, X2 two linear closed

subspaces of Xsuchthat X,AXz={O} and X,+X, is closed. If Y, cX, (i=1,2) are

two linear closed subspces, then Y, +Y, is also closed

Proo f , ,  I ndeed ,  i f  y ,eYr+Yr ,  l n ) !  t hen  y ,=y )+y1 , ,  y ' , eY , ,  ( i =1 ,2 ) i

since X, +X, is closed, by the closed g,;aph it  fol lows yi,-+y'eY, ( i=1,2) hence

y  e  Y ,  +Yr .

l.l.L{. CoRot-lenv. If T is decomposable and Yt, Y2 are two invariant subspaces

of T such that
o( r  lY , )noQ lY , )=a

then Y, +Y, is closed.

Proof, We have Y, c xr(oQ lr,)), Y, c Xr(o(r lvr)), X, (o@ t I ))*
+ x,(o(T I r, )) = x,(oQ | 4 )r o(r lY,)) ft+t, 2.3.); the last space being closed, it
follows by the preceding lemma that Y, + )2, is closed.

1.1.15. Remark. Considering the premises of the preceding corollary if we denote
X = X /Y, and g : X -+ X the canonical application, it follows that Y, can be identified

with Y, = q(Y) since Y, and Y, are (topologically) isomorphic, and T lY, and, T li', Ne

similar ad o(i, lir) = o(r I Yr).

1.1.16. Lpvve. Let T e n(X),let Y be an invariant subspace of Tand * = X lY,

where T, q are same as above. t7 2 X an invarianl subspace of f with

t(f 1 2)a o(r I Y) = o , then one can find an invariant subspace of T, Z (topotogically)

isomorphic with 2 = eq).and o(T 1z)= '(i 12).
Proof, Since<p-r lZ)tf : 2 andaccording to proposition 1.1.6. it follows that

o(r l,p-'(t))= '(i 12)u'(r tY)
We also have tp-r  (Z)=Z+I ' ,  where t ( r lz)=o@12),  o(r lY)=o@ l I ' ' ) .  Since I ' '

is a spectral maximal space of Z | <p-' (2) 11511,1.3.10.), it follows that Y c I'. But on the
other hand 

,F re(r,)) . o(r 1Y),
hence r(r 1 ,p(r))n t(r t 2)= a , whenc" ,p(r')= tdl and Y' = Y. our affirmation
follows now from lemma I .l .13. and by the preceding remark.

1.1 .17 . CoRor.L.aRv. If in preceding lemma T is decomposable qnd Z is a spectral
maximnl space of f , then Z is also a spectrd maximnl spacre of T

ProoJ. Let W be an invariant subspace of Z such that o(T lW) - oQ I Z):
:o(r l2) .  Since o(r1W)ao(f  1f)=9, f rom remark 1.1.15. i t  fo l lows that

t(r rc@))= o@ lI4) ,hence q(w). 2 meaning w c z .

l 3
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1.1.18. Remark. (a) trt r e a(x) and let Y, Y, be two invariant subspaces of z

such that
o(r lY')n o(r lYr)= a .

Then we Inve Y, AY, = {O} in each ofthe following cases: 1") Zhas the singfe valued

extension property (particularly Zis decomposable); 2") Y, Y, are Z-absorbing invariant

subspaces of Z (particularly Y, , Y, are spectral maximal spaces for 7);

3\ o@ | ti ) - D'z* and o@ lYr)- 4 , where Di is the unbounded component of the

resolving p(f lY,) (; = 1,2 ). Indeed if Sz = A , wehave

Y, nY, c. x,(oQ | 4 ))^ x, (o@ lYr)) =
= x,(oQ | { )n oQ lY,))= x ,.(a)= {o\

2o) results by the fact that the intersection of two Zabsorting subspaces I{ , Y, is a

TlY,- absorbingsubspace (i=1,2). Indeed, let QI-f lYt)y=* with xe 4^Y, and

yeYl,hence (U-f)y=x; since xeY, andY, is ?n-absorbing, i t fol lows that yeY,

! e Y, aY, and consequently Y, aY, is T I I{ -absorbing. In accordance with 2.19. l2ll,

if )z is a Zabsorbing, invariant subspace of I, then o(f I Y) - oQ) , hence

o(r lY, nY,) c. oQ IY,)n c'(r lYr)= a ,
whence Y,nY, ={O}.For 3') we notice that Y,nI, is an invariant subspace of TlY,

and T lY, andaccording to proposition,5.4.11. [41] we have

o(r 1r, aYr)c. CDi n CDi =6 .
(b) If Z is decomposable and Y,, Y, are two spectral maximal spaces of I such that

Y,nY, ={0}, then dim(o(zl4)n o(rlYr))<l; when t(r) is on a curve, then

dim(o(r | 4 )^ o(T I Y,)) < o . It follows. by lemma [,.4.3. 137 r.
l.l.l9. THEOREM. Let TeB(X) be a decomposable operator, let Y be an

invariant subspace of T, let i be the operator induced by T in the quotient space

X = X lY and let g: X -+ X be the canonical map. Thenfor any closed set F c.C

such that
F = o@ lY)  or  F ao(r  lY)=o,

we can say that ,p(X, (f)) is a spectral maximal space for f . Conversely, tf 2 ts a

spectral maximnl space of i s.uch that
' Q 1 2 ) n s = a  o r o Q l 2 ) = s

(where S = oQ 1f)no(i)1, then there exists a spectral maximal space Z o.f T such that

,p(z)= z
Proof, First of all we asswne that F ) o(T lf). Then Y c. X,,.(.F) and according

to proposition 1.1.1., yiG)c y,.(x)= o,.(r)c o.(*)u 
"-(r lY) and

s, c oQ lr)ao(i),hence
.p(x, (r)) c. x ,(r) c q(x, (r w o(r I r))) = ,p(x, (r)).

1 A
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Chapter I - Restrictions and Quotients of Decomposable Operators

Consequentl1 Xr@) is closed and it is a spectral maximal space of Z (proposition3.4.

176l). r.6 now F ̂ o(T lY)=@. Then oQlxr(r))no'(r lY)=a and by corollary

| .l .14. and remark I . 1 . I 5. it follows ttvt <p(X r(f)) is closed and

o(r)l,p(x,(io') = o(r 1 x,(r)) .
If li isan invariant subspace of I such that

'(i 1 vi) .'(r l,p(x,. (F)))
then, according to lemma 1.1.16., there exists an invariant subspace for T, W with

a|ta = W md t(r lW)= o@ lir), hence W c X,.(io'); 
"onsequently 

li c <p(x,'(r)),

meaning .p(Xr(f)) is a spectral maximal space of f . Conversely, let 2 be a spectral

maximal space of f  .  I f  t( i1|)nS =a (hence t( i1|)..o(r lY)=a), then,

acconcling to corollary I.1,.77., there exists a spectral maximal space of T, Z suchthat

,p(z) = 2 . when olr | 2)- s, we have
,p(x,('V 1 2)w '(r I rD = * ,('@ | 2)w o(r I r))=

= *r(o? | 2))= 2
and for z = x,,.(o(i t 2)u'(r lY)).

LI.20. Conollany. Considering the premises of the preceding theorem, we have

for any closed F > o(T lY) the equality

q(x,(r)= *r(r)
lf S, =A, we also haw the above equality in case F ao(r lY):A.

proof. If .F:l o(f 1f) the equality is verified during the preceding proof. Let

now F ac.(r lY)= A and S, = A .It follows:

,p(x , (F w o(r I r))) = ,p(x. (r))+ ,p(x, (oQ I r))) =
= xr@ v o@ I r))= xr(r)+ xr(o@ 1Y))

(see[4],2.3.)andsince rp(x,( ' (r1r))) =*,(o@ lr))=0 wehave ,p(x,(r)) :x,(F).

L1.21. Remark. From the proof of theorem 1.I .19. and corollary 1 .1.20. one can

see that those stay true if Z is believed to be only two-decomposable.

1.1.22. Conoruny. Let T e n(X) be a spectral (scalar) operator [respectivelyU'

scalar, generalised spectral (scalar)J and let Y be an invarianl subspace of f If 2 it o

spectral maximal space o/'f such that ,
o(f t 2)n o(r 1r) = s .

fhen f l2 is a spectral (scalar) [respectively I'L-scalar, generalised spectral (scalar)l

operator.
Proof. According to theorem 1.1.I9., there exists a spectral maximal space of T, Z

such  tha t  
o@ 1r ) r . . o ( r  1v )=  g ,

2=rp (z )  (q :X  -+X  =X lY  i s thecanon ica lmap)and

o(i 1 2\= o(r I z) .

1 5
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z nY c x,(o(r tz))nx,(o(r lr))= x,(o@ lz)no(r lY))= x,(a)= {0},
the map (J = gl Z is bijective, hence t/ is bicountinuous (according to the closed gaph

theorem). On the other han4 f lZ and f l2 are similar (one can wite T1Z=

=Ut(TtZVl hence f t2 is spectral (scalar) [respectively U-scalar, generalised

spectral (scalar)].

1.2. RESTRICTIONS AND QUOTIENTS OF DECOMPOSABLE OPERATORS

We shall continue with a paragraph that refers to the restrictions and quotients of

a decomposable (strongly decomposable or spectral) operator regarding an invariant

sirbspace, and we shall study particularly the case in which the invariant subspace is a

spectral maximal space for the operator. Thus we try to give answer to an open problem

asserted in [37], 6.5. For operators with spectra belonging to the class C one can prove

that decomposability implies strongly decomposability. We also study the particular case

in which dims = 0, where S = o@ lr)a o(i).

1.2.1. Tnsosev. Let f en(X) be a decomposable operator and let Y be an

invariant subspace for T. Then f , the operator induced by T.iry the quotient space

X = X lY is a S-decomposable operator, where S = o@ lr)aolr).

Proof. Let {Cr}r{c,}l=, be an open finite,S-covering of o(i). If we put

G', = G, v p(f) and Gi = G,v p(f lY) we shall obtain an open finite covering

{c;}u{c;}; of o(r) (since o@).o(r1r)w"?)yrhen there exists a system

{r, }, {r, }i' of rp"ctral maximal spaces of Zsuch that
o( r  lYr )cG' r ,

o( r  lY) -  Gi  ( i  =r ,Z, . . . ,n)

and

But from lemma I.l.l2. it follows that

hence
Y c x,,(o(r I r)). x, (o@ I )',)) = r,.

According to the theorem | .1.19., )', = q(l', ) *d )i' = ,P(f, ) are spectral maximal spaces

of I and wehavethat I,  =rp(X,(o@ lr,))) = Xr(oQ lrr)u oTlY),hence

'g)= o@ lY)r[U'f. f f i
\ i = t  )

and since o(r '1r , )no(r  I  r ) .  Giao(r  lY)=A ( i  =1,2, . . . ,n)  we shal l  obtain

o(r 1r)n o(r). o(r lY,),

l 6



Chapter I - Restrictions and Quotients of Decomposable Operators

o(r t r,). ('(r tr,)v o(r tr))^ o(r)=
=G(, tr,)n'(rNs - ( ! ",'(rNs c G,

and
of l t , )= oQ lY,) .  Gi  c G, ( i  =r ,2, . . . ,n) .

Finally, we also have

* =Y, *ti" ,
hence Z is S-decunposable.

l.2.2.Luuur,. Let f e A(X), and let Y be an invariant subspace of T and tet f be

the operatorindrcedby T in the quotientspace X = XlY.If T and i have the single

valued extension property, then
Y, = x,('(r 1r)r '(t)).r .

Proof,  I f  xeY,,  wehave o, ,G). t@ 1r) to(r)  and o, . (*)cor(r)no(r)-

.(o(r I r)\ o(r)n o(r)= a ,hence i = 0 and consequently x eY .

1.2.3. PnoposrrroN. Let T e B(X) be a decomposable operator, let Y be an

invarianr subspace of T such that S, =A and o = o@1 r)f o(r)* A. Then we hqve

T lY eDr(r), where s = o(r 1r)ao(i).
Proof, I f  o+A,then X,(o)* {O} 1*n"te o is anopenset in o(I) ;see lemma

II.l.2.l37l). Accordingto the corollary 1.1.4. we have
o(r)r oV)=o(r 1 r)t oV)= o

and by the preceding lemmait follows that X,'(o)cY. Let {G.}tr{C,}i be att opett

finite S-covering of o(f lY). By denoting G: = G, A p(i) and Gl = G, v p(f | )') one

obtains an open finite covering {Gl}r{C,}i of o(f). Since lis decomposable, there

exists a system of spectral maximal spaces {r, },, {f }i "f 
Isuch that

o( r1 r r ) .  G l  ,  o (T lY , ) .G i  Q=1 ,2 , . . . , n ) ,

x : Y s * f  t ,

But o(r lY,)c Gi ac:(r)= G, a pQ)ao(r)= G, ao c o, hence Y, c X,(o) c Y

( i  = 1 , 2 , . . . , n ) . I f  x  e Y  , t h e n
x = / s * l r * . . . * ! n

wi th  y ,  eYr ,  l i  e  Y,  ( i  =7,2, . . . ,n) ,  hence !s  = x- (y ,  *  lz  * . . .+  y , , )e  I '  l t  fo l lows that

y  : y l+ t r ,  ,
i - l

where  Y l  =Yrnr  and t ( r lY ; ) .G 'hence T IY enr ( r ) .

1.2.4. CoRolu,ny. Having the same premises as in the preceding proposition, th.e r
restriction T lY is a S-residual decomposable oprator.

l 1
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Proof.It follows by the definition of the class D, (I).

1.2.5. ConoLLARy. If T e n(X) X a decomposable operator and Y is a spectral .

maximal space of T, then both T lY and 'i' are S-decomposable operators, where

S = 0o(T I r)n o'(r), tnts = a and Sr = a @A is thefrortier of A).

Proof,It follows by theorem 1.2.1., by the proof of proposition 1.2.3. (because in .
this case Yl=Yrn)' is a spectral maximal space of T and 

"glY;).Gr) 
and by"

applyng the relation o(r) =;(|JGWI $21, L 4.) as well as the remark 1. 1 .5.

1.2.6. PnoposrrroN. If T e n(X) X a S-decomposable operator and S, =A, then

Xr(p) is closedfor anyF closed such that F = S or F aS = A.

Proof,It is identical with the one of theorem II.1.5. [37] since the demeanour of

the operator in this case is resembhng the one of a two-decomposable operafor.
1.2.7. Remarl<s. (a) Considering the premisesof the preceding proposition, if ,S, is

a separated part of S, then Xr(f) is closed for any F:,S, closed such that

r n (s \ sr) = a .Indeed, xr(F u (s t s')) is closed and we have the equality

x,,.(F u (s t s, ))= x.,.(r)+x.(s \ s,),
whence it follows that X,,,(f) is closed (see [4], 2.3.). (b) If f e B(X) is S-

decomposable and
,S = Sr u S, u... \-r S, ,

where,S,  nS,  =A for  i#  i  ( i , i  =1,2, . . . ,p) , thenincoro l lary  1.2.5.we canchoosethe

S-covering such that
Y, = Yl@ Ys2 @...o rJ

and
r  tYs  =@tv l ) r k t vJ )@. . .@k  tY { ) ,

where the sum is (topologically) direct, and Y;,Y: ,...,Y{ are spectral maximal spaces of

T. Indeed, since ,S, , ,S, ,...,,S, are separated parts, we will be able to choose

G r = G l r u G i u . . . v G !  s u c h  t h a t  G r a G ! = 6 ,  G ) , , G 3 , . . . , G !  o p e n  a n d  ̂ l , c G i

( i  = 7,2, . . . ,  p ) .  Since o(f  1f  r ) .  Gl  u Gl u . . .u G! we have

o ( f  1 f r ) = 6 r u 6 2 \ ) . . . w o o  ( o ,  c  C ; )

oi compact and separated. Our assertion results now by the theorem of decomposition

after the separatedparts ofthe spectrurn ([60], theorem 5.1 1.1.).
1.2.8. DrrrnrrroN. We remind that a topological space W + A has the dimension 0

(or is totally disconnected) if for any finite covering G, u Gru...n G,, =W of W, there

exists a f inite closed covering F,vF, \-/ . . .u F,, =W of W such that F, c.G,, "

I ' . , aF r=A  fo r  i # . i  Q , j=1 ,2 , . . . , n ) .We a l so  rem ind  tha ta  subse tNo f  ,R "has  the

dimension n if and only if lnt N + A in R' (see [67], $20, I and 113] I, theorem 4.4.).
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Chapter I - Restrictions and Quotients of Decomposable Operators

1.2.9. PnoposrrloN. Let T e n(X) be a S4eumposable operator with Sr = A and

let S, be a separated part of S, with dimS. =0. Then T is S'-decomposable, where

S ' = , S \ S r .

Proof. Let {C"}r.r{C,}l be an open finite ,S'-covering of tQ) with

G'n Sr=a. Weput Gi=G,nC,sr.  Since {c,} ;  isacover ingof S, and dimS, =0,.-

there exists an open covering {C,};of S, such that Gic.G, and GiaGi=g

( i  + j  , i ,  j  =1,2, . - - ,n)  ( lemma 6.1.  $6 [13]) .  I f

Gr,  =0G!and G" =Gr, \ rGs,,
i = l

we observe that {G, }, {C, }i is an open S-covering of o(f) andsince ̂ i' and,S, are

separated, we can choose Gs,, Gs, such that Gr, AGr, = A.I'et {r"}r{f,'}i Ue ttre

corresponding system of spectral maximal spaces swh that
o ( r  lY , ) c  Gs ,

o(r I Y,) c. Gi Q = 1,2,...,n)
and 

n

X =Ys *Zr: .

We also have I, =Xr(ollfr)) and Yi=Xr(o(Tl4)).ert, according to remark

1.2.7 . we can write
Y, = xr(o ' )+ xr(o,)* . . .*  xr(o,) ,

w h e r e  o '  ) o ,  : A ,  6 i  A o  i  = A  Q  *  i , i , i  = 1 , 2 , . . . , n )  a n d

o( r  l r r ) :  o 'w  or \ )  ' . .w  on

with o' c Gs,, o, c Gi. Consequently

x = x,,. (o') + fx, (o,) * ... * x,' (o,)]+ fY,' * -.. + v ;1.
Bydenoting Yr, = X.,(o'), Y, = XrIo@|Y,)uo,] on"obtains

o( r  1 r r , ) .  Gr , ,  o (T  lY , ) .  G,  ( l  <  i  <  n )

and

X = Ys, *Er, ,

hence Z is ^l' -decomposable.

1,2.10. THsonna. Let r e n(x) be a s-decomposable operator such that

dim,S = 0. Then T is decomposable.
Proof.In the preceding proposition we take Sr =.1, hence S'=,S \ S, = A and T

is A -decnmposable, meaning that it is a decomposable operator.

l.2.ll. Conoru,Ry. If T e A(X) ts decomposable and Y is an invariant,rubspace

for T such tha

t 9



dim(o(r ; r)n o(r)= o,
then f is decomposable. When Y is a spectral tuaximal space of T, both T lY and 'i are

decomposable operdors
Proof,It follows by the preceding theorem ard corollary 1.2.5.

1.2.12. DeprunloN. We shall denote by C the class of all closed sets cr c C with

dimo < I and having moreover the properly that for any open subset ot c o we havs 
'

dimdo, <0 (do, isthefrontierof o, intherelativetopoloryof o).

1.2.13. Tusonpu. Let T e A(X) be a decomposable operatorwith o(f)eC . Then

T is strongly decomposable.
Proof, The case dimo(f)= 0 is contained in [37]. Hence we only have to analyse

the case dimo(r) = l. I-nt Y be aspectral maximal space of T and S = Oo(T 1Y) a t(i).

Since o(f) eC it follows that dim1o(T I f)= 0. But from the formula

o(r)=;@F;Wn it follows that oQ lr)ao(i)= aoT lr)ao(r), and corollary
1.2.I1. yields that T I I is decomposable, hence Zis strongly decomposable.

1.2.14. CoRor-mny. Let T be a decomposable operator with o(f)eC . Then T. is

a strongly duomposable oprator.

Proof.It follows from the preceding theorem and from the corollary 3.3. [75].

1.2.15. Conolu.Ry. If T is a decomposable operator with a real spectrum (or

having its spectrwn on a curve), then T is sfr'ongly deomposable.

Remark. Corollary 1.2.15. was previouslyobserved by C. Foiaq and C. Apostol.

I.2.16. CoRou.nnv. Let T e A(X) be a decomposable operatorwith oQ)eC and

Y a spectral maximal space ofT. Then t' is strongly decomposable.

Proof, Since T is strongly decomposable, by theorem 1.8.l2l it follows that Z is

strongly decomposable.

1.2.17. CoRolr-e,nv. Let T e A(X) be a 2-decomposable operator with o(T) eC .

Then T, Tr , T** , ... are strongly decomposable. If X is reflexive then T. is strongly

decomposable f and only if f is 2-decomposable.

Proo.f If Z is 2-decompsable and o'(f)e C , then by the proof of proposition

1.2.9. there follows that Z is strongly 2-decomposable, meaning it is strongly

decomposable. From theorem 1.2.13 it results that T" , T** , are strongly

decomposable.

1.2.18. CoRor-mRv. Let T.B8) a decomposable operator and let Y be a

subspace invuiant to T such that

d i m o ( I l r ) = 0

Then f is decomposable.
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Proof. There follows by corollary l.2.ll ., since we tnve dim(o(r I r)n 
"(r) 

= O .

1.2.19. PRoposrrroN. Let T e n(X) be a deconposable operator and let Y be an

invariant subspacefor T such that

aim(o(r 1r)no(r)= o.
Then T I Y admits the foltowing spectral decomposition: for any open covering {C,}i "f" 

"

o(f 1 f) with simple connected sets, there exist the subspaces {f,}i , tnvartant-for T, such

thar oQlY,) .G, and X =fY,.
i=l

Proof. Let {G,}i be a finite open covering of o(Z I f) with simple connected sets.

Let us set G',=G,.lp(f); then {C)i is a covering of 
"(r1f)tS 

(where

,s = o'(z 1 r)n <r(r)1. Since {q }l t also a covering of ,S and dim S = 0, there exists an

opencover ing kt} ,  of  Ssuchthat G! cG,,  G,f  . ' ,  Gl  =A for i* i  ( i , i=1,2, . . . ,n)

(see lemma6.l., [13]). Byputting UC,f =G,it is obvious that {G.r}r{G,}l is a,S-
t = l

covering of o(Z I f). Bv proposition 1.2.3. andremark 7.2.7. we obtain

Y = (Y, +Y, +...+ Y,)+(r! +rl +...+ r{),
where Y, (i=1,2,...,n) are spectral maximal spaces for Z (hence for T l)' also) with

o(f 14)c Gi Q=1,2,...,n), and Yl (t:1,2,...,n) areonlyinvariantsubspaces for Iand

"ktr ;)-G; 
(rJ c Y). Intusset

x, = x,(o(r 1 I )u o{r 1 r; )
and let us notice that X, are spectral maximal spaces foi f and c(f 1 X ,) c. Giw G, c. C, ,
Y,  c:  X, ,  Yl  .  X,  ( i  =1,2, . . . ,n) .  Since

r= t (4  * rJF l " ,  oY cY
l = l  l = l

and o'((r lY)l X, aY)c G, ,our proof is over.

1.2.20, Conormnv. Let T e n(X) be a decomposable operator and let Y be a

T-absorbing subspace invariantfor T, so that Oim(o(f lf)no(f)= 0; then TIY is

decomposable.

Proof, It follows fiom the preceding proposition, since in this case we can

consider the covering {G, }i of o(f I f) with open arbitrary sets (not necessarily simple

connected) and by the fact the intersection of two Z-absorbing subspaces invariant for 7',

Yt , Yz, is Z I Ij -absorbing (see remark I .1. 18.); we also use the result from [24], where

one proves that in the definition of decomposability the spectral maximal spaces can be

replaced with Z-absorbing subspaces (also see 2.4.11.).
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Chapter I - Restrictions and Quotients

1.3. SPECTRUM-SETS. TFIE SPECTRUM'S DECOMPOSITION AFTER ITS PARTS

During this paragraph we shall define the spectnun-sets for an Z operator, which

are in some way generalisatiors of sets-spectra; they are not separated parts of the. -

spectrurn any more but compact subsets of it, which are the spectrum of some restrictions

of the operator. We shall further emphasise the subsets of the spectrum of a

decomposable operator having size of 2 or I, and we shall study the restrictions and

quotients related to the corresponding subspaces.

1.3.1. Deenunou. lrt f en(X) andlet o-o'(f) beacompactset. o is asef-

spectrum for Z if there exists a invariant subspace )'for Z such that
o(r 1 r)= o.

1.3.2. PnoposrrroN. Let T e n(X) be a decomposable operator and c c. oQ) such

that o =lnto- (inthetopologtof 
"(fD 

Then o and o' =ff)\o aresets-spectraforT

and

"(r 1 x. (")) = o , o(z I x. (o')) = o' .
Proof, According to theorem 1.3.S. [37] we have o(f 1Xr ("))c o-. It will suffice

to prove that o(Z I X, (")) :r Int o (the interior is considered in the relative topology of

"(r)). 
Let l .oe Into; then there exists a disk S={}" ' l l ,- f ,ol.o) such that

S n o'(f) c Into. We shall put

oo = {^: l i" - l,ol . 1o},
l ' t )

(  s l
", 

= 
tt: lr 

- ),ol .;oi
G , a d , = O . I f  Y o ,  Y lConsequently Grw G, = o(T),

maximal spaces of Zsuchthat

then from the equality

are the corresponding spectral

and since o(f 14)n 4 =A, wehave

d, c o(T I rr). C, n o(r)c 6 n o(r) - Into c o

, ,={r:  i"  e o'(r) lr .- t ,1.;},

6(r lYr)= Gs, 6(r  lY,)c G1, x =Yo +Y,,

o(r)= o(r 1r,)u"(r  l I )

It will follow
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Chapter I - Restrictions and Quotients of Decomposable Operators

Yo = xr(o(T lrr)). x,(o),

consequently ),0 e d,c o(r lrr). o(r I xr(o')), meaning o c o(r txr(")). Since

o' = Iit? @ o(r)1 we shall also have c(r 1 xr(o'))= o'.

1.3.3. ConoLARRy. Let T e f(X) be a decomposable operator and let Y be a

spectral nnximal space of T. Then there exists a spectrd mqximal space Y, of T suchthah '

"(r 1r,)= "(z)
where f ts the operator induced by f iry { : X lY .

Proof, From the equality 
"(Z)=;CZIGQ-ZD Lzl and by the preceding

proposition it follows that o="(f) is a set-spectrum of Z, hence Yr=X.(o) and

o = o(z I x, (")).
1.3.4. Remarks (a)From proposition 1.3.2. results that an operator f e B(X) is

decomposable if and only if for any open and finite coveri"g {G,}l of o(f), where

G,co(T), G, is open in o(Z), there exists a systemof spectralmaximal spaces of T

fi )i such that

o( r lY , )=G, ,  x= I r l
I = l

Indeed, if {G')i is a open covering of o(r), then G-- : q;;O is a set-spectrun for Z

and Y, = X, @,) (Z is supposed to be decomposable). C,onversely, it is obvious. (u) ret

W be an arbitrary subset of X and

o'=,![o,'(",r);

then o is a set-spectrum for Z if Z is decomposable. Indeed, we have o'(f 1 X,(o')). o

and

"(r 1 r, (o)) = U ",0): [J o, (x) = o .
xeX r\o ) xel4l

If T is a spectral operator and o =.lnto (in the topologr of 
"(f)), 

then

"(r 1 n(")x)= o, where E is the spectral measure of Z; also, if o = Uil"] we have
xeW

o(r 1 n(o)x)= o, where W is anarbitrary subset ofx.

1.3.5. DeerNrrroN. Let Y, Y, be two invariant subspaces of I eBIX). { will be

said to be the spectral complemenr (related to 7) of Y if oQ I { )= ;fflG(f m . Y, Y,

will be said to be spectrally conjugated (relatedto T), if each is the spectral complemeirt

of the other.
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1.3.6. PnoposrrroN. If T e n(X) X decgmposable, then any Y subspace invariutt

-fo, T admits a spectral complement Y, (related to T); there exists a single spectral

complement Y, of Y (related to I) which is moreover a spectral rmximal spae of T.

Proof , , I " .e t  o=oF)\o(r1T) . I f  o= A then {  ={o} .When o+A,weshal lput

y, = Xr("). Since o is aset-spectrun for zand o(r)t"(r1r) is openin o(r), wehavs'"

I * {o} and o'(Z I Il): o'. Obviously, I! is the only spectral complement of l(related to

I) which is also a spectral maximal space of Z.

1.3.7. Remark I-et f e A(X) be a decomposable operator and let Ybe a invariant

subspaceforZsothat o, =;(ZJGFTT) +O and, o, =o@)\o,;then Y,=Xr(o,) and

Y, = Xr(or) are spectral$ conjugated (related to !. When l/is a spectral maximal space

of r and Irtdrl-7) = o@ | r) (in the topolory or o{r);, then we l:r,ve Y = Yz.

1.3.8. PnoposrrroN. Zel f e A(X) be a decomposable operator having the

following property

o, = o(7)\ Into'@)e c

and le tuspu t  o= ln to€J ,  Y  =Xr (a ) ,Y ,=Xr (o , ) ,  X  =X  lY ,  X  =X  lY ,  anddeno te

by f , 7 the operators induced by T in X, X . Then T lY, 7 are the decomposable

operators, and T lY,, T are strongly decomposable; we also have

"(r 1r)= "(r) and a(r trl)= "k).
Proof. o and or are spectrurn-sets for T and we have 

"(f 1 f)= o = o(i),

o(TlY,)= =o, =o(r)  (see corol lary 1.3.3.  and[2] ,1.4.) .  we have o'A6r =d(o'uo,)

in the topology of  o,  s ince d(o'no,)= (ono,)nGJG, n")= (o 'no,)n@\o')=

= (o, n 
")n 

("@)n c" n Go")= (o, n o)n ("(r)n co)n 8o)= (o, n o)n 6Cz)\ o)=
= 6r A o (we used the definition of the frontier in the relative topology of o, and the

fact that if I is open then 7-7 = A,'t X; (see [68], ex. 1, g8). Since o, e C , it follows

that
dim(o ̂  o, ) = dimd(o n o, ) = I

hence from corol laries 1.2.20. and 1.3.3. we obtains that TlY, TIY,, 7, f  are

decomposable; but 6(f lY,)= o(f)e C and according to theorem 1.2.13., TlY, and, f

are sfongly decomposable operators.

1.3.9. ConoLLAR\'. With the same conditiony as in the preceding proposition, if'Y is
a spectral maximnl space of T such that 6(T lf)- Into(f) @articularly y = X,,(F)

with F: Into(r) closed) and Y,= X, (o-F)G(|T)), thun, by using the symbots lixed

1 A
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Chapter I - Restrictions and Quotients of Decomposable Operators

above, we have that T lY , f are decomposable and T lY, f are strongly

decomposable.

Proof, Let o=IntoT) and o,=;(-fn;.rc F>lnto(Z), rco(r) ctosod,
then X,(o) c. xr(F) and,

o = o'(z I x.(")) - o(r I x,(F)).
If o(r I r)= Into'(r), we have once again

aim(o(r 1r)n o(r)= aim(o(z lI)^ o(r))= o
(since o c o{r I r) and the frontier of -(7[o'@]7)= o(r | 4) ttus dimension 0 in the

topolory of o, ) and the proof is the same with the one of the proposition above.

1.3.10. Leuu.q. Let f e n(X) be a decomposable operator such that

o, = o(Z)\ tnto@)eC and let Y be a spectral maximal space of T. Then Z I i/ is a S-

decomposable operator, where

s = o(z I r)n tnto'(F).

Proof. We shall put o = Int;(f) and X,(o(T I r)u o) = Z .If o(r lY)c o', then
,S = o(I I r) and our affirmation is obvious. Let now 

"(r I r) e o and {G, }, {C li ^

bounded and open,S-covering of o(f ly). "Q lf)uo is a set-spectrurn for Z (see

proposition I.3.2. andremark 1.3.4.) hence

"(r I 
z)= o@ | r)u o'

I f  we take G', =Grt,,  p(f lY) and Gi=G,o[o ( i  =1,2,.. . ,n ) then {C;}r{C;}; is a

bounded and open covering of o(f I Z) . According to corollary 1 .3 .9., the operator T I Z

is decomposable. Let {Zr}u{2,\i Ae the corresponding system of spectral maximal

spaces ofTlZ suchthat

6(r I  z r)  c G'r,  
"(r  I  

z,)  c Gi Q = 1,2,. . . ,n),

z = Z s * i z .

since 
"(r lz,)c(qrr[o)n(o(r lr)uo) 

."(r1r),  one obtains Z, cy

( i  =  1,2, . . . ,n) .  I f  x  e  I ,  then

x = I s * l r * l z * . . . * ! ,

w h e r e  l s  e Z s ,  l t e Z ,  c . Y  ( i = 1 , 2 , . . . , n )  h e n c e  l s = x - ( y , + . . . + y , , ) e Y ;

consequently

y = z s n r + 2 2 , ,
l : l

o(r 12, aY) c. Gj n o'(r I r)c G, ,

"(r I Z,). G, n Co' c G,
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hence Z I I is an S-decomposable operator.

1.3. 1 1. THsonpv . Let T . B(X) be a decomposable operator having the following

property: o, = o(Z)\ tnto@)e C Then T r's strongly S4ecomposable where

.t = Int;(f).

Proof, Let {cr}u{c,}; be a bounded open S-covering of o(r) and lot"

{Hr}r{H,}l be another open S-covering of o'(I) such that Hrc.G, H,cG,

(i = 1,2,...,n). If {fs }, {f }; is tne corresponding system of spectral maximal spaces of Z

such that
o ( r 1 r r ) c H r c G *

"( r  
lY, )c .  H,  c .  G,  ( i  =1,2, . . . ,n) ,

X =y, *tr,,

then  we have z r=xr@r) -Y,  z ,=x ,G, ) -Y , ,  a ( r12 . )cH,  oQ1z, )cn ,
( i=1,2,.. . ,n). But TIY is,S,-decomposable (where S, = Sno(f l f)) for any spectral

maximal space I of Z, according to the preceding lemma Since {H-. } u {H ,}i is also a S-

covering for o(r I I,), let {A }t {x,}; Ae the corresponding system of spectral maximal

spaces of T lY. From the inclusions

"k I x, )- "(r lY)a H,,

"(r 1x,)c o'(r lY)a H,,
one obtains

xr, Y,r(o@ lx,,)) c x.,.(o(r tr)n tr") - x,(n,)= Zs,
X, = Y,t @(r 1 x,)) c. Z, (i = 1,2,..., n).

Consequent ly  X.  cY aZ. \ ,  X icY aZ, ,so f rom theequal i ty

,  -  Xs , * fX ,

it follows

y  = y  a z r * t y a z ,  ,

meaning that Iis sfongly ̂ l-decomposable.

1.3.12. Pnopostltott . With the same conditions as in proposition L3.8. if we denote
by 'i. anrJ 7. the operators incluced hy Tr in X. = Xr lYr and rt* = X* /Y,L we shall

have: (") f- ctnd T. lY,L are decomposable; (U) T* and T. lYt are strongly

decomposable.
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Proof,,If 7is decomposable, then T' isZ-decomposable ([54] theorem2.3) hence
decomposable[86],  andsince X* /YL =Y*,  X' lYr=Yrt ,  (Xty)-  =YL, (Xtfr) '  =y, t

(see [45], 1,2.4.18) it follows easily that f. and fi are similar (Tr =T lY ,Tr, =T lY,);

also, I'*lIt with (rl , f. with {i and T.lljr with (i). f--theproposition 1.3.8.

and the corollary 1.3.9 it follows now our assertion.
1.3.13. PRoposrrroN. Let T e A(X) be a strongly decomposable operator and Y a

subspace invuiant to T. Then f is strongly S4ecomposable where,s = o(Z I f)n o(f).

Proof, Since Z is ,S-decomposable (according to theorem 1.2.1.) we have left to

prove the equality
2 = 2nr,  + 2 a i ' ,  +. . .+ 2 at ,

for any spectral maximal spaoe 2 of f . But from the proof of theorem 1.2.1., keeping
the symbols, it follows that Y,t,,...,i, are the images of the spectral maximal spaces of

T,Ys,Yt,...,{ through the canonical map. Tbeingstrongly decomposable we have

Z = Z n f r + Z a Y r + . . . + Z n Y ^

for any spectral maximal space Z of Z. We may suppose that G,ao(TlY)=A

( i  = I ,2 , . . . , n ) .  Ln t

z, = x,(o(i lz)v oQ lY)),
Theorem 1.1.19. andcorol lary l . l .2}.yieldthat 2,= X,(o(i l2)woQ 1f)) is aspectral

maximal space of i  and 
"(r12,)."(r l2)wo(r lr) (see [76], proposit ion 2.4. and

3.4.). Since
Z, = Z, n I,  + Z, AY, +...+ Z, aY,

we shall have
z,  =  2,n r ,  +  2 ,  nY,  +. . .+  2 ,  aY, , .

But Z c Z, and from the inclusions o@ 12, n 4 ). "V 1 2,)^ 
"k t rl )-

( " ( r12) . " ( r1r ) )n  G,  co( i l2)  n fo l tows 2, , ' ty ,  -2  1 i=r ,2 , . . . ,n) . r r  2  e2, then
2 = * r + * ,  + . . . * * n  w i t h * r e  I ' ,  a n d  * , e Y , o Z  ( i = 1 , 2 , . . . , n  ) ( s i n c e  Y , n 2 ,  = Y , a Z )

hence
* r = 2 - ( * ,  *  * r * . . . + i , , ) e  2 ,

whence it follows that
2 = 2^ r ,  +  Z oY,  +. . .+  2  aY, , .

1.3.14. ConolmRv. Considering the circumstarrces.from the preceding

proposition, if Z is a spectral maximal space of T , then i l2 ls Sr-decomposable,

where
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s,  =sno(r1r) .
proof,, We have Sno(r t7)="(rg)ao(i12) and from the preceding

proposition it results that f 12 is Sr-decomposable.

1.3.15. Leunaa. Let T e n(X) be a strongly S4ecomposable operator and let Y be

a spectral rmximal spa@ of T. Then T lY is S,-decomposable, where S' = S n o'(f lY)." "

Proof. r"t {G' }, {g}i ue utt operl bounded ,S, -covering of o'(r I r); bv putting

Gr=Gr,upQlY), it follows that {Gr}.r{C}i is a" open S-covering of o(f). ff

{y,li u {f, } is the corresponding system of spectral maximal spaces of Z, then

y = y r - t r r * f y n Y , ,
, ^

6(r lYn r,) c o(r I r)n (cr, p(r lY))- Gs,,

6(r lY n {).  o(r 1 r)n G, c G, ( i  =1,2,. . . ,n),

therefore T lY is ,S, -decomposable.

1.3.16. THsoReu. Let T e n(X) be a strongly S-decomposable operator such that

d imS =  0 .

Then T is strongly decornposable.

Proof, I-et Ybe a spectral maximal space of L According to the preceding lemma

therefol lowsthat II IZ is S,-decomposablewhere Sr =Sno(f l) ' ) .  Hence dimS, =6

and according to theorem 1.2.10., f lY is decomposable, hence Z is strongly

decomposable.

1.3.17. ConoLLARy. Let T e n(X) be a strongly decomposable operator and let Y

be an invu'iant subspcefor T so that 
/. \\

d im(o ' ( r  lY)ao\r ) )=0

v,here i' ts the operator induced by T in the quotient space X = X lY . Then f ts a

s trongly decompos ab le oprator.

Proof,, It easily follows from the preceding proposition and from proposition

1 .2 .13 .

1.3.18. CoRor-mny. Let T e n(X) be a strongly decomposable operator and let Y

be an invu"iant subspce to T so that

dimo(Z I r)= o.

T'hen i is strongly decomposable.

Proof It easily follows from the preceding corollary.
'1.3.19. 

Pnoposrrroru. Let H be a Hilbert space and let f en(U) be a strongly

rlecomposable operator. If Y rs an invariant subspace for T and Tr , and

28



Chapter I - Restrictions and Quotients of Decomposable Operators

aim(o(rlr)n"klr')= 0 @specialfu dimo(rlY)=U, then TIY and TIYL are

s tr ong ly deco mp os ab le.

Proof,,It follows from corollary 1.3.17.

1.4. RESIDUAL SPECTRAL MEAST]RES

In this paragaph we shall introduce a spectral m€asure, residual in some

sense, and we shall demonstrate that the restrictions and quotients of spectral operators

admit such a spectral measure (spectral ̂ 9-meauue). We shall furlher emphasise some

properties of the operators that admit residual spectral measurcs.

1.4.1. DerrNnrou. Let X be a Banach space, and let n(X) the algebra of all linear

bounded operators onX, let P 
" 

be the set of the projectors of X and B , be the family of

all Borelian sets .B of the complex plan C that have the property that B n,S = A ot

,B: .9 ,  whereSis a compact  setof  C;anappl icat ion Er :Br-+Pr wi l lbe sa id to  bea

g- spectral measure if'.
lo. Er(a, a Br)= Er(n,)Er(nr), (4,-8, e B, ),

/ *  \  *
2 " .  E r l  U  B , l * = Z g r ( n , b , ( B , e B  5 , B , A B , = a , n * m ) ,

\  r=r ) i=l

3". rr(c)= l ,

a". suplla (B)l . * .
8 6 s

An operator f e n(X) will be said to be S-spectral if there exists a ,S-spectral measure

such that rn,(n) = Er(BY and o'(r 1 nr(n)x) c E 1n.B r).

1.4.2. Remqrk. A I operator is ^l-spectral if and only if it is a direct sum

T =Tr@Tn where T, is spectral and o(Zr)c.9. Indeed, if f is ,S-spectral, then one

easily verifies that the map E:B +P" (where B =Ba) defined by

n(n)=fr(AnUS) is a spechal m@sure for Tt=T I l-s(C^S)X (Be B ), hence

T:Tr@f where T, =T lE"(S)X and o'(f tE(S)X)c,S. Conversely, i f  f ,  e n(X,) is

spectral, and Tr.BV) with oQ)1"(4), T, not spectral, by putting S=o(4),

X=Xr@Xz,  T=7 ,@T> the  map  Er ,B r+Pr  de f i ned  by  the  equa l i t i es

n , (n )= r ( r ) o0  i r  Bas=o  ana  a ( r )=n (n )a t ,  i f  B : : s  (BeBr )  i s  a , s -

spectral measure of T (E is the spectral measure of 7,, and, I, is the identical operator

inXr).
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1.4.3. PnoposrrroN. Let T e n(X) a spectral (scatar) operator having the spectral

measure E, let Y be a linear, closed invariqnt to T subspcu, f is the operator induced

by T in X = X lY and g: X -+ * the catnnical application. Then f =f,@tr, where

i, = i 1 <p(r(o')x) r,s spectral (scalar), f, = f I <p(r(o)x), o = o. (r lr),
o'= o(f)to(r 1r) ond 

"(i,).s 
= o(r lr).^,o'(r).

Proof. The operator Tln(o')X is spectral (scalar) ([45], m, XV, 16) and since

r c E(o)x = xr(o), we have r n n(o')x = {0}. But n(o')x +r = E(a')X @Y

1n(a')x +Ibeing closed; see lemma 1.1.13.) so o(r'(o')x)can be identified with

n(a')X , and T, with T I A(a')X, meaning { is spectral (scalar). There is easy to verify

that rp(xr(o) = x.(") = x,(s) (corollary r.r.20.) consequenttv 
"(z 1 9(x.(o)))- s.

L4.4. PnoposrrroN. Let T e A(X) be spectral (scalar) and let Y be an invariutt

subspace to Twith xr(o)cY (where o =o(rIr)ro(r)f. bt also,s=o(z1r)no(r)

and Ty =T lY . Then r, I E(o)r and r,lEtrq are spectral (scalar), and

r, =(r,E(a)r)oQ,;r'(s)r) where "(4 1r(s)r)c sn 
"(r,)

Proof, o being open in 
"(f), 

there exists a growing series of open sets (o,),"*

with o = lJo, ; from the continuity of the measures n(.)* it results that
reN

E(o)= lg r(",), therefore a(o,)x = X,,(o,)c x'(o) Q4ll, V, 1.9.) implies

n(o)x -x.@cl'. The subspaces a(o)x and xrfr) are invariant to Zand the

spectral measure E, so frlE(o)f and fylEl@ are spectral (scalar). From

Y c x,.(oQ I r)) = n("@ | Y))x it follows that Y = E(oQ I Y))Y = t(o)r + n(s)r ;
hence I' is invariant to r(") and r(S); consequently a(o')l f and f'(S); f are

projectors in Y, E(a)Y_arylE(S! are closed, and Y = n(o)r + r(S)r. We also obtain

that o(r, 1 r(s)r) c o(r 1 r(s)x)n "(r 1r). . ,3 n "(r I r) .
1.4.5. THso*ervr. Let f e B(X) be a spectral operator and let Y be a subspace

invariant-for T such rhat X,(")cY (where o=o(I l f)\o'(f) and S=3, wl,ere

s = o(z 1 r)n o(r). Then T lY and 'i are S-spectral operators.

Proof, There follows by the preceding propositions.

1.4.6. ConoLLARy. Let T e n(X) be a spechal (scalar) operator and let Y be an

invariant subspace forT so that dim(o,(f 1f)nci(f)=0. Then TIY and i arespectral

(scalar).

Proof. From dim(o'Qt1-r"(f):O it  fol lows that Sr=Q (remrk 1.1.5.),

X,(6(f 1f)f o(f)c Y and according the preceding proposition, we have Y =Y,@Y2,

where Y, = E(o)X = n(")Y and Y, = n(S)y (o = cr(I I r)\o(r),.t : o(Z 1 r)no'(r)1
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Obviously, { is invariant to the specfral measure E But o(f 1fr).o(f I f(S)X) c S

(since C.S is connected and ̂ S = i ) therefore I, is also invariant to E and according to

theorem V.4.4. 14\ f I I and f arespectral (scatar).

1.4.7. ConoLLARy. Let H be a Hilbert spae and f e A(n) q nornwl operator. If Y

is an invariant subspace to T so that dims =0, where S=o(Z1f)no(f), then TlY"

and T I H@Y are normal.

Proof, From the preceding corollary it results that Y is invariant to the spectral

measure E of T,hence lis also invariant to T* .

Remark. Corollary 1.4.6. is a generalisation of the result obtained in [aa] which

states that the restriction T lY of a spectral operator to an invariant subspace Y to T is a

spectral operatorif o(f ; r) is totallydisconnected (meaning o(r ; r)= O;.

1.4.8. PnoposrnoN. Let T e n(x) be a subscalar operator nry. 
,f 7 

n(fr) tne
t t u  I

minimal scalar extension of T. Then T is S-scalar, where S = o(Z)n 
"V J, f being the

operator induced by T in the qudient space X = X I X .

Proof,,It is known that a subscalar operator is the restriction of a scalar operator to

an inVariant subspace for the operator. The assertiur follows by proposition 1.4.4.

1.4.9. PnopostrroN. Let H be a Hilbert space and T e n(A) a subnormal operator;

i,f we denote by 7 . 8(X) the minimal extension of T, then T =Tt@T, where T, is

normat, o(4). o(r)\"(fI 
"(4)c 

o@)n"(t), f being the operator indrced by r in

the quotient space fr = fr t n.

Proof, Same as for proposition 1.4.4.

1.4.10. Remark L,et f e n(X) (or f e n(n)1 be a subscalar operator

(respectively subnormal) ana 
1,,1" 

r"?3il minimal extension of Z (respectively a scalar

extension of I such.that dim(o(I)n o\z/= 0., where z is the operator induced by z in

the quotient space ft = X lX (respectively fi = Ft tU). Then Zis scalar (respectively

normal). It results from propositions 1.4.8.,1.4.9. and corollaries 1.4.6,, 1,4.7.

1.4.11. PRoposrrroN. Let T e A(X) be a S-spectral operator. Then T is a strongly

S-decomposable S, c. S.

Proof It follows from the fact that a spectral operator is strongly decomposable

and from remark 1.4.2.

1.4.12. Remark. If T ef(X) is S-spectral it will be enough to take S c o(f).

I ndeod ,by remark I .4 ,2 ' j t f o l l ows tha tT=T |@T, ,where " ( r ' ) - .S ,and { i sspec t ra l .

We have o(f) = 
"(4 )u o@r), hence o(rr). o(r) and o@r). o(r)n J = ,S' . But the
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direct sum of a spechal operator { with another operator f is an operator' T =Tt@72,

,S, -spectral where S, = 
"(4) 

= o(f 1 f(S)X)c S n o(f).

1.4.13. PnoposnroN . Let T e n(X) be S-spectral; then the support of tha spectral

#-*"or*" of T is o(T) , and r', (o(r)) = r.
' 

Proof. AccorCing to remark I.4.2. wehave T = T, @ T, where Tt = T 1 f, (CS)X is "

spectral, and Tr=f lES(S)X with o(f)cS. Let { =E'(!S)X, Yr=fr(S),Y; we

obviously have X=Y,@Y, and T=Tt@{. Since { is spechal with the spectral

measure E defined by the equality n(n)=nr(AntS) for ffiy BcC boreliaq the

support of the spectral measure A is o(4). But Er(S)= t is the identical operator in Y,

(we have Er(s)y=r ' r (s)Er(s)"= ErG)*=y for any !eEs(s)x),  hence

I = Es(c)= r'r(cs)+ rr(s) = n(o@))o l, = 1, @ I, = E s("(q )t., S)= Er("(r),

consequently the support of E, is o(f). One can also verify directly, as in proof of

proposition 1.5. [41]. Accordingly suppEs = (f).

1.4.14. Pnoposrrroru. Let Ten(X) be a S-spectraloperator, let E, be one of its

i-spectralmeasures andw apropervalueof T. If F cC ls a closedsetfromB, and

w e. S w F , then for any proper vedor x corresponding to w, wq have
n,(r)r=0, Er({r})*=*,

w h e n w e S , t h e n
nr ( rh=0,  Er ( { r )x=x

foranyF, F,  c losedsuchthat F nS=O, Fr=5.

Proof. One proceeds as for spectral operators. For the first case, since
* e o(r 1nr(r)x) we have

s,(eh = R(w,r t n,(r)x)- (w - r)n r(r)x =
= R(*,r I E,(FV)E,@) (* -r\ = o.

By putting

p, = {x,6- rl r 1},
'  n ) '

and from Er(F,b =0 (for n= K bigenoughsuchthat 4 - S) itfollows

I - E,(,D = r,(o \ {"}} = u,(l)r,'J, = m* @,b = o,
\,=r ) '

hence nr({rl)* = x. One verifies the same in the second case, when w e ̂ S .

Remark. From the preceding proposition it results again very easy that Sr. . S .

1.4.15. THaonEna. Let T . B8) be a S-spectral operator and let E, be one of its

r,*spectral measures. Thenfor any closed F c. C such that .F ) ,S we have
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r,(r)x = x,(F)
Proof. Since o(Z t Er(r)x) c F we evidentlyhave

n,(r)x c x,(r).
Let us verifu the inverse inclusion. I-et xeXr(f), hence p.(r)=C\F. Let o be

closed (compact), onF =A.I-et us prove that E(o)x=0. We consider a admissiblg'

system f of simple Jordan curves that contains in "the exterior" o' and leaves in "the

interior" the set f', hence f c C \ F c pr(x). If x(1,) is the analytic function defined on

p.(x) such that x = QLI -r!(l), tfren

['(1,)ai" 
= o.

Hence we shall be allowed to write:
t -

E, ("> = - '- t' , R(r,r)4, (o'!al. =
znl  1 ' l l * l

1 r= =l |", , n0, r I n,(o)x)n(o]ar. =

=: ln0, r I n,(o)x)n(olar" =
2ni {

1 n= 
*l E GX6 ,r I E,(o)xlar' =

l n l= *l a G!6)u)" = EsG*J "(r')or' = o.
Theset C\,F beingopenwehave C\F=lJo, with o, closed (tn c(tu+r (o',  canbe

replaced with the compact sets on n o(f);, consequently

I -8,(rD=8,(c\ Fb=r,l U", J"=113+(",\=a
hence x= Es(r)". tr(r)x, whence

x ,,(r) c" n,(r)x .
1.4.16. CoRor-mnv. Let T 

" 
B(X) be a S-spectral operator and let E, be one of

its spectral capacities. Then the mapE definedby the equality
e (r)= r,(r)x for F eF ,

is the sprctral S-capacity of the strongly S-decomposable operator T.

Proof T is strongly S-decomposable hence it admits a spectral S-capacity E

, which is unique (see theorem 2.5.5.); from the preceding theorern there follows that

nr(r)x = x,(F) if F ),S and nr(r)x =Y,, if Fn,S =o, where Er(r uS)x =

= nr(n)x o r'r(s)x = x,.(F u s) = 11. @ x, (s). In theorem 2.5.5. and corollary 2.5.6.

there is proved that the spectral ̂ l-capacity of a strongly ,S-decomposable operator is

a a
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givenbythe equalitiese(f) =Xr(F) for F >,S and e(f)=I" for F n,S =A,whsre

I/o is grven by Xr(F ^ S) = fF @ &(S)

1.4.I7. Remarks. a). From the preceding theorem and corollary it follows thatif T

is ^S-spectral then nr(f)X is a spectral maximal space for Zhence a subspace of X, .

ultrainvariant to Z for any F e F, . b). Considering the conditions and the probf of the. -

preceding corollary it results that for Fc.C closed such that FnS=A wehave

E.(F)X =Y* where YF is the spectral maximal space given by the equality

4(rr s)x = x,@vs)= rr @xr(s) and o'(r lYr) c F .
1.4.18. Pnoposnrou. Int T. B(X) be a S-spectral operator and let E, be one of

its S-spectral meosures. Then for any operator A e n(X) tnterchangeable with T we

have
'lf'(a)= nr(n)e

for  any.B eB r .

Proof,. The standard procedure is applied, observing that it is enough to verify
onlyfor BeB' B>,S, s ince T,=T lE(C\s)x isspectral(remark 1.4.2.) .  Let  o 'be

closed, o e B 
" 
. Because n(o)X is an ultrainvariant subspace to T it follows that

AEr(o)= rr(o),arr(o')

Let F and FreB, closed, Fn Fr =A, F ),S. So, using the preceding equality, we

obtain
n, (r) a n(r,) = s, (r a 4),tn, (r,) = s, (a),qr, (4 ) = 0 .

The set C \ F being open, there exists a growing series of sets (o,),.* closed such that

C \ F = [ J o , , . H e n c e
u eN 

n -@)an "(c\ r) 
= 

l,g ,, (,c),ar" (o, ) = o

whence
n, (r),n = E, (r),q n (c) = n, (r).a t, (r) + n, (r),a n, (c \ r) =

= n, (r)ar, (r) ='qs, (r)q.".4.
l.4.Ig. THeonpna. Any S-spectral operator T e n(X) nas a single spectral S-

measurc Er.

Proof, Lrlt Es, E', be two spectral S-measures of Z. From the exchange of E,

and E', with Z, it follows that

s,(n)= E!,@)E(n)
for any B,B, eBr. W" also have Es@)X = Xr(F)= n'r(f) for F close d, F )S and 

';

n t ( r , )x-Yo=E"(Fr)x  for  4  c losed,  4ns =a,where r "  isg ivenbytheequal i ty

5t+



Chapter I * Restrictions and Quotients of Decomposable Operators

yr,@&(s)=xr(F,us) (remark 1.4.17.). one knows that if P,QeB(x) are two

projectors, frren QP = P is equivalent with PX c QX (I-emma 1.12. $ll).

Consequently
z,(r)a;(r) = r'; (r), z;(r)a,(r) = a, (r)

and similarly for .{, hence nr(f)=E'r(F) for any closed FeBr. According to th.p

regularity of the measures (rr0r,r-) ana (z';Qx,r-) it results that Er(B)= f!(r) for

any B €B r .

1.4.20. CoRor-ranv. If T e n(X) X a S-spectral operator, then T can be written

uniqotely as follows
T  = 7 , @ 7 ,

where Tt = T I Er(c \ s)x, and rr= z I Es(s)x has the spectrumo(zr) c s.

Proof. There follows by the preceding theorem and by remark 1.4.2.

1.4.21. PRoposrrrou. Let T e n(X) be a S-spectral operator srch that

dim,S = 0.

Then T is a ll-scalar operator; if, moreover, T is the restriction to a subspace invariant

to a spectral operator, then T itself is spectral.

Proof,It results from the fact that an operator Zwith dimo(f)=0 is U-scalar,

also a spectral operator is U-scalar [37]. The second assertion results from 4.13. [4i].

3 5
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