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FINITE FILTRATIONS OF MODULES AND SHELLABLE
MULTICOMPLEXES

JURGEN HERZOG AND DORIN POPESCU

Assrnncr. We introduce pretty clean modules, extending the notion of clean
modules by Dress, and show that pretty clean modules are sequentially Cohen-
Macaulay. We also extend a theorem of Dress on shellable simplicial complexes
to multicomplexes.

INrRooucrroN

Let ,R be a Noetherian ring, and M a finitely generated R-module. A basic fact in

commutative algebra (see [10, Theorem 6.4]) says that there exists a finite filtration

F: 0 : Mo C Mt C "' C M,-r C M, : 114

with cyclic quotients M,lMn-, = RlPt. and Pi e Supp(M). We cali any such

filtration of M a prtme filtrati,on. The set of prime ideals {&, . . . , P"} which define

the cyclic quotients of f will be denoted by Supp(f). Another basic fact [10,
Theorem 6.51 savs that

Ass(M) c Supp(f) c Supp(M).

Let Min(M) clenote the set of minimal prime ideals. Dress [4] calls a prime filtration

Fo f  A r l  c l ean , i f  Supp( -F )  cM in (M) .  Themodu leMisca l l ed  c lean , i f  Madmi t s

a clean filtration. It is clear that {br a clean filtration f of M one has

\rI in(M): Ass(M) : SuPP(f).

Cleanness is the algebraic counterpart of shellability for simplicial complexes.

Ildeed, let A be a simplicial complex and K a field. Dress [4] showed that A

is (non-pure) shellable in the sense of Bjorner and Wachs [2], if and only if ttre

Sl,anley-Reisner ring 1{[A] is clean.
On the other hand Stanley [15] showed that if A is shellable, then 1([A] is se-

quentiaily Cohen-Macaulay. In this paper we show more generally that any clean

nodule over a Cohen-Macaulay ring which admits a canonical module is sequen-

tially Cohen-Macaulay if all factors in the clean filtration are Cohen-Macaulay. In

fact, we prove this result (Theorem 4.1) for an even larger class of modules which

we call pretty clean. These modules are defined by the property that they have a
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prime fiItration as above, and such that for all z < 7 for which Pi C Pi it follows

that 4 : Pi.
We now dlscribe the content of this paper in more detail. In Section 1'we recall the

concept of dimension filtrations introduced by Schenzel [13], and note (Proposition

1.1) that the dimension filtration of a module is characterized by the associated

prime ideals of its factors. In the next section we discuss some basic properties of

sequentially Cohen-Macaulay modules. Such modules were introduced by Schenzel

[13] and Sianley [tf]. It was Schenzel who observed that a module is sequentially

boir"n-Mucaulay if and only the non-zero factors of the dimension filtration are

Cohen-Macaulay.
The following section is devoted to introduce clean and pretty clean modules. We

show that a pretty clean filtration f of a module M satisfies supp(f) : Ass(M),

and we give an example of a module M which admits a prime filtration f with

supp(f) : Ass(M) but which is not pretty clean. We also observe that that all

pretty clean filtrations of a module have the same length'

In Section 4 we show (Theorem 4.1) that under ihe mild assumptions, mentioned

above, pretty clean modules are sequentially Cohen-Macauiay, and we show in Corol-

lary 4,.2 that under the same assumptions a module is pretty clean if and only if the

factors in its dimension fiitration are ali clean.

11 Section 5 we give an interesting class of pretty clean rings, namely of rings

whose defining ideal is of Borel type. This generalizes a result in [6] where it is

shown that such rings are sequentially Cohen-Macaulay.

In the following section we consider graded and multigraded pretty clean rings and

rnodules. Of particular interest is the case that R: SII where S is a polynomial

ring and I c S a rnonomial ideai. Using a result of Nagel and Romer [11, Theorem

3.1] wc show that in this case the length of each multigraded pretty clean filtrations

ot' S I I is equals to the arithmetic degree of S I I .

Iri ;fO] Starrley conjectured that the depth of SII is a lower bound for the'size' of"

tlre summands in any Stanley decomposition of SlI. We show in Theorem 6.5 that

Stanley's conjecture holds if R is a multigraded pretty clean ring.

In Section 7 we show that for a given prime filtration f :0: Mo C M1 C "' C

M,-r C M,: M of ArI with factors MnlMo:: RlPr there exists irreducible sub-

moclules Pi-prrmar! submodules { of M such thaf, Mi: )trrn{ fori :0,. . . , r. It

turns out, as demonstrated in the next and the following sections, that this presen-

tation of the modules M, rs the algebraic interpretation of sheilability for clean and

pretty clean filtrations. This becomes obvious in the next section where we recall

ttre theorern of Dress and show that the shelling numbers of a simplicial compiex

can be recovered from the graded clean filtration, see Proposition 8.2.
In Section 9 we introduce multicomplexes. These are subsets f c NS which are

closed under limits of sequence a; e f with at 4 a+r (componentwise), and have

theproper ty thatwhenever  o € land[ ,  (  a  (componentwise) ,  thenb e f .  Here

N-: NU{oo}. We show that i f  I  is arnult iconrplex and o € f,  then there exists

a rnaximal element m, e I with a { rn. Here we need that I is closed with respect

to limits of non-decrcasing sequences. Then we define the facets of f to be those



, ' l i : i) l i '  i

', '

elements o € f withthe propertythat i f  almandmis maximal in f,  thenthe
infinite part of a coincides with the infinite part of rn, which means that the eth
.ornpo.r"nt of a is infinite if and oniy if the zth component of nz is infinite, We show
that each multicomplex has only a finite number of facets

Multicomplexes in N! correspond to monomial ideals in ^9 : Klrr,. . . ,2,,1. The
monomial ideal l defined by a multicomplex f is the ideal spdnned by all monomials
whose exponents belong to N'\ f . Our definition of the facets of f is partly justified

by the fact, shown in Lemma 9.L4, that there is a bijection between the set of facets
of f and the standard pairs of 1 as defined by Sturmfels, Tbung and Vogel in [17].
However the main justification of the definition is given by Proposition 10.i where
we show that a pretty clean filtration of S I I determines uniquely the facets of
f. This result finally leads us to the definition of shellable multicomplexes. In

Proposition 10.3 we show that our definition of shellable multicomplexes extends

the corresponding notion known for simplicial complexes. However the main result

of the final section is Theorem 10.5 which asserts that for a monomial ideal / the
ring S I I is multigraded pretty clean if and only if the corresponding multicomplex
is sheilable.

1. THn DTMtrNSIoN FILTRATIoN

Let M be an ,B-moduie of dimension d. In [13] Schenzei introduced the di.mensi,on

filtratton

f :  0  c  Do(M) c  D{M) c  .  "  c  Da- ' (M) c  D6(M) :  M

of 14, which is defined by the property thaN D;(M) is the largest submodule of Il[

with dirn Do(M) ( i  for i  -- 0,.. . ,d. I t  is convenient to set D-1(M) : (0).

F o r a l i z w e s e t A s s ' ( M )  : { P  e  A s s ( M ) :  d i m R l P :  z } .  T h e f o l l o w i n g c h a r a c -
terization of a dimension filtration will be useful for us:

Proposit ion 1.1. Let f:  0 C Ms C MtC . ' .  C Ma: C Ma: M be a f i l trat i 'on of

M. The follow'ing cond'iti,ons are equiualent:

(a) Ass(M, lMu-): Ass'(M) for alL i ' ;

b) f r,s the dimens'ion filtrati,on of M.

Proo.f , That the dimension filtration satisfies condition (a) has been shown by Schen-

zelrn [13, Corol lary 2.3 (c)].
For the converse we show that if -F satisfies condition (a), then it is uniquely

determined. Since the dimension filtration satisfies this condition, it follows then

that F must be the dimension filtration of M.
The integers'l for which Mt: M;t are exactly those for which Ass'(M) : fl, and

hence this set is uniquely determined.
Thus it remains to show, rt Mt l M+t,then Mi is uniquely determined. To this

end, consider the multipiicatively closed set

S : R \  U  P ,
i )€Ass( ,44) ,

r l im l i . /P) i {1

3



and let [/ be the kernel of the natural map M n Ms.We claim that Mt: U' This

will imply the uniqueness of the filtration.

we nrit notice that' (M1lM1)s: 0 for j < i. Indeed, rf (MjlMj-)q10, then

PRs eAss6"  (Mj l I , t j - )5" for iome P e Asss($ lM1) 'Bv (u) ,  d imRlP {  i ,  and

lr"rlce P n i"i A",'a cont,radiction. We conclude that (Mo)s: 0, and hence Mt C U.

Condition (a) implies that

Ass(M lM) c

Tlrerefore all elements of ,S are non-zerodivisors on Mf Mi, and hence the natural

map M f M6 -, (M lM)s is injective. This implies that U C Mt' !

It follows from condition (a) of Proposition 1.1 that if MolM;t f 0, then MolMn-t

is equidimeusional of dimension i and has no embedded prime ideals'

The arguments in the proof of the previous proposition yield the following de-

scription of the dimension filtration.

Corollary 1.2 (Schenzel). Let )i':rQn be a pri'mary decompos'iti,on of (0) r'n M,

utlrere Q; is Pa-Prr'm,arY. Then

Dn(M) :  n  Q i ,
din R/ Pi>iII

f o r z : 1 , . . . , d i m A [ .

2. SnQuBTvTIALLY CospN-MACAULAY MoDULtrs

Let (1?, m) be a locai Noetherian ring, or a standard graded /{-algebra with graded

rnaximal ideal m. AII modules considered will be finitely generated, and graded if

R is gradcd.
Tlie followilg definiticirr is due to Stanley [15, Section II,3.9], and Sc]renzel [13].

Definition 2.I. Let AI be a finitely generated (graded) -R-module. A finite filtration

0 : M o C M T C M z C ' . . C  M , : M

of Arl by (grricleci) submodules of M ts called a CM-f,ltratr,on, if each quotient

A,{ilA,fi-1is Cohen-Macaulay (CM for short), and

dim(M1 lMo) < dim(M2lM1) < .. .  < dim(,41' lM,-).
'lhc modtrlc ,41 is called scqrcntr,ally Cohen-Macaulay if ,4l adrnits a CM-filtratiou.

We. recall a few basic facts whose proof in the graded case call be found in i7l'
but which are proved word by word in the same way in the local case.

Proposition 2.2. Let R. be Cohen,-Macaulay o.f dzmensr,onn wr,th canontcaL rnodrtle

a17. Suppose that AI is sequenti,aLLy CM wi,th, a CM-filtrati,on as in 2.7, art,d asstt'me

,ftr,rtlr,er thrt,l; d';: diut AIif Mi-l .for i : 7, . . . ,1". Th,en,

(a,) Extl i" '  (M,r,,) !  I lxl ] .  " '  lAtln 1 Morr,an.) ;

l l  P
\-i

P€Ass(11) ,
d im R/  P) i * I



(b) Ext*"do(M,rn) i,s CM of di,mensr,on da fori: L,. . .,r i
( c )  Ex t t^ (M,an)  :0  I ' f  j  /  { "  -  d r , . . . ,n  -  d , } ;
(c l )  Ext f i -d ' ( t rxt" ; -d ' (M,rn),r*)  = MrlM,:  for  i :  r , . . . , r .

Corollary 2.3. Wzth the assumpti,ons and notati,on'introduced i,n Proposi,ti,on 2.2
we haue

Ass (Ext-*^ oo (M,, n)) : Ass(M i I M i_) .

Proof. Let x : fr7,...,frn-tt.i be a maximal regular sequence in Ann(M, f M;-1), and

set S : Rl(.x). Then (a) implies that Extp*oo(M,r*) = Homs(M6f M;t,r..,s), and
that AI;f NIi-r may be viewed a maximal CM module over,9. It follows that

Ass(Ext-[*o'(M,r*)) : Supp(M;lM;-1) n Ass(c,,'s) : Supp (MolM;) n Min(.9).

Since I,Iif A[i4 is a maximal C\tI module over ,S, we have

Ass(Ma I Mi-r) : Min(M; I M;-r) : Supp(Mil Mi-1) n Hitin(S).

This proves the assertion. n

It fbllorvs fiorn Proposition 2.2 that if M is sequentially CM, then the non-zero
rnoclules among the Ext-[-'(A,I up) are CM of dimension z. Peskine noticed that this
propert], characterizes sequentially CM modules, Indeed one has

Theorem 2.4. The followzng two condi,t'ions are equzuaLent:

(a) 11 zs sequent'iallg CM;
(b) .for aLli , ,  the mod"uLes Ext; i(M,rn) are ei,ther0 or CM of di,mensi 'oni ' .

We conclucle this section with a result due to Schenzei [13, Corollary 2.3].

Proposition 2.5. Let A,t be sequenti,aLLy CM utr,th a CM-filtrati,on as aboue. Then

Ass(n.r i / , l ,r i  r) :  Ass'r '(A' l) . f 'or att, i .  In partr,cular, Ass(M) : [JoAss(M, lMo-r)

Proof. Since A,'tilA,li,-l is CM of dimension d;, it follows that dim Rf P : dr for all

P e Ass(i tilA'ti-1). Therefore it suffices to show tirat Ass(M) : Un Ass(lv[ilM;-).

Using the fact that for an exact sequence 0 -- U '- V - W ---+ 0 of R-modules

ouc hzrs that Ass(I,/) c Ass(U) U Ass(l4z), on. easily concludes by induction on the

lengtlr r of tlre filtration, that Ass(M) c Un Ass(MilM;-1).
Conversel5,, Iet, P e Ass(lVt;l\[r-r). Then (MilMi)p : 0 for all j < i, since

d inA I l f  l t 1 -1  (  d im  R lP .Th is  imp l i es  tha t  (Mo- r )p :0 ,  so  tha l  (M i lM6- r )u :
(A[n.)r. Thus PRp € Ass6,, (Mo)p, and hence P e Ass(M,) c Ass(M). n

Qorrrb i r r iug Proposi t ion 2.5 wiL l r  Coro l lary  2.3 we obta i l r

Corol lary 2.6. Let ful be sequentr,al ly CM, then Ass(Ext' [ i(M,ro)) :  Ass'(M)

for all i,.

The following charncterization of sequentially Cohen-Macattlay modules, due to

Schenzel [13, Proposit ion 4.3], is rr conseqrrencc of Proposit ion 1.1 and Proposit ion

l.rruffrrt, 2.7. A rrrorltr,lr: M zs sr:qrten,t'ialL4l CM, l,f o,nrL onl'y'i'.f thct.f'actors i,rt' the

rl,i,'nt,e.rntort ft,l,trn"tzon, o.f '\l o,rz: r:i,the:r 0 or 
,CM.



3. Cr,peN AND PRETTY cLtrAN MoDULES

Let R be a Noetherian ring, and. M a finitely generated R-module. Recall from

the introduction that according to Dress [4] a prime filtration f of M is called

cleantfsupp(f) : Min(M), and that M itself is called cleanif M admits aclean

filtration.

Lemma J.L. Let f be a prime filtrati,on of M. The followi'ng condi,ti,ons are equ'iu-

aLenl,:
(a) f i,s a clean filtrat'ion of M;
(b )  Fo r  a l l  P ,Q  e  Supp(F )  w i , t h  P  cQ onehas  P :Q '

P roo f .  (u )  +  (b )  i s t r i v i a l .  Conve rse l y  suppose  f  : 0 -  MoC Mr  C  " 'C  M, :

M wilh MnlMo: : RlPt and let P e Supp(f). Since there are no non-trivial

inclusions between the prime ideals in Supp(f) it follows that' Mp has a filtration

(0) : (M0) p c (Mt)p c " '  c (M,)p - Mp such that

(A,ti)pl(M, ,)p : { t,o' 
'o'' 

ii F r'i,'
I lerrce we see that Ass6 o$[p): {PRo}, and so P e Ass(M). I t  fol lows that

Supp(f) : Ass(.4,1). Applying again assumption (b), we conclude that Ass(M) :

\4 iu(M).  n

Corol lary 3.2 '  LetT:  MoC Mt c " '  c  M,- tC M,:  M be a c leanf i l t rat i 'on of
M .  Then for aLL i '  :0,  .  .  .  ,7 '

0:  A' t i lMt.  C M,+t lMt C . . .C M,-r lMt,  c M, ' f  A/ [ i ,

a,nd,
0 : M o C M r  C . . . C  M i q C M i ,

are. clean filtratzons. In' partr'cuLar, Mi and Mf Mi are clean.

A weakening of condition (b) of Lemma 3.1 leads to

Definit ion 3.3. A priure f i l trat ion f: 0 : Mo C Mt C ...  C M,*t C M, : M of

AI with Mr.lMn.-r: RlPt is called pretty clean, if for all i. < j for which PiC Pj it

f o l l o w s t h a t S : P j .
In other words, a proper inclusion Pi c P1 is only possible If i > 7. The rnodule

,4/ is callecl trtrr:tty cLeo,n, if it itas a prettv clean filtration. A ring is called prettv

ciea.u if it is a, lrretty cieau tnocluie, viewed as a, rnodule over itself.

Remark  3 ,4 .  Le t  f  : 0 :  Mo  C  A , t1  C  . . .C  M, - r  C  M, :  M  be  a  p re t t y  c lean
filtration of M. It follows immediately from the definition that for all z the filtrations

0 : A'ft lA[t,  C Mi+rf A[i ,C .. '  C M,:lMr. C M,'fMi,

r i l r r l

0  :  A4o  C  A ' I IC  . . .  C  M iq  C  I \ [ i

i l . l  ( )  l ) l  o { , 1 . \ /  r ' l r t : t l t .  
t :



L e m m a  3 . 5 .  L e t  f  : 0 :  M o  C  M r  C . . .  C  M , - r  C  M , :  M  b e  a  p r e t t y  c L e a n

fi,Ltrati,on of M, Then Pi e Ass(M,) for all i,.

Proof. We use the sarne argument as in the proof of Lemma 3.1: set P: Pt.Then
0:  (Mo)p C (Mt)p C . . .  C (Mn-r )p C (Mo)p is  a f in i te f i l t ra t ion of  the Rp-module
(lvLt)p. Let j < z. Since f is pretty clean we get

(M)nlwi- i )p:  {  
nelea' '  i l  P i :  P '

t o ,  i f  P i l P

This implies that PRp e Assp,,((1\,1,)p). Therefore P e Ass(M,). !

Corol lary 3.6. Let T be a pretty clean f i l tratr 'on of fu[. ThenSupp(f): Ass(M).

Proof. For all z we have Pt e Ass(Mr) c Ass(M). Therefore Supp("F) C Ass(M).
The other inclusion holds for any pritne filtration. X

Corollary 3.7. Let NI be apretty cLeanmodule. The.foLlowi,ng condztr.ons are equiu-
uLent:

(a) M i,s cLcan,
(b)  Ass(M) :  1 \ l in(M).

Examples 3.8. Let S : Klt:,3y] be the polynomial ling over the fieid 1'(, I c S
tlre ideal I  :  (r2,ry) and R: SlL Then.R is pretty clean but not clean. Indeed,

0 c (r) C 1? is a, pretty clearr f i l trat ion of R with (r) :  R,l@,g), so that P1: (r,?l)

ancl P2: @) .R is not clean since Ass(/?) I Min(n).
Note /?has adi f ferent  pr i rnef i l t ra t ion,  namelv,  8 ' .0  c  (y)  c  ( : r ,y)  c  Rwi th

ft ictors ( 'y) :  Rl@) and (r, y)l(a): Rl@,g). Heuce this f i l trat ion is not pretty

clcan, even though Supp(9) : Ass(,421). On the other haud, irr the next section we
give an example of a rnodule which adrnits a prime filtration f with slrpp(f) :

Ass(Iz[), but which is not pretty clean.

We conclude this section by showing that all pretty clean filtrations have the same
lcngt,h. For p e Spec(R) the nttmber

rnulr r r (p)  :  ( (HlW;) ,

is called the length rnuLtipLi,ci,tg of p with respect to At[ . Obviously, one has multy(p) >

0, i{'1n{ only if p € Ass(M). Lociilizing a pletty cli:zrtr filt,r'a.tiort of IVI u,e irnuredia,teiy
gcL

Lemrna 3.9. Let A,[ be a pretl:g clean modnle. Then, al,L pretty ckn,n filtratittns oJ

A,[ ha,ue the sarne lertqth,, narrt,r:ly t/r,r:'ir cornrn,ort Lerr,gtlt, equals lp6nss(iv1) rnultna(p).

Assunre now that (R,m) is local. R,ecall that the urr,th,meti,c degreeof AI ts defined

to be Domultn,(p)deg(R/p) whelc deg(n/p) is 1,he unrlt ipl ici l ,y of the associi t tccl

gra,<lccl ring of R,f p. 'lbe preccdrng lcmma shows that tire length of a prel,ty clean

fi l t ,r 'a{; io1 is }rorrurlclr l  alrovc by 1,hc ari l ,hntct i i :  clegrc:e of t ,ho moclt i lc, a,rtcl oqtta,ls 1,hr:

a,r i t ,hrncticr r lcglee if 'arrr l  onl1, i f  degll lp; t  lbr al l  p e Ass(nz[)



4. PnBrry CLtrAN M9DULES ARE SEQUENTIALLY COUpN-MACAULAY

The purpose of this section is to show

Theorem 4.L. Let R be a locaL or standard graded CM ri,ng admi,tt'ing a canoni'cal

morlu,le ris4, and let M be an R-module wi,th prettg clean filtrati'on f such that RIP i's

Coherr,-Macaulay .for att P e Supp( f). Furtherrnore suppose that M i,s graded i'f R is

grarled,. Then M r,s sequenti,ally cohen-Macaulay. Moreouer, z/ dim RIP : dim M

.for all P e Supp(F), then M 'is clean and Cohen-MacauLay.

Proof. Let, n : dim R. We may assume that E is local. In the graded case the

a,rguments are the safre.
For all z we show: the module Ext;*t(M,.la) is either 0 or Cohen-Macauiay of

dimension z. We show this by induction on the length r of the pretty clean filtration

f  : 0 :  MoC Mr  C . . .C  M, - t  C  M, . :  M  o f  M .  S ince ,  aS  we  a l ready  no t i ced '  t he

rrrodtrle (J : M,-t is prettv clean with a pretty clean fiitration of length r - 1, we

nlay assume by induction that U is sequentiaily Cohen-Macauiay.
Lr,t A[ll,l : RlP.By hypotiresis, R/P is Cohen-Ma,caulay, say of dimension rJ.

The short exact sequence

0 ------+ (l ----+ l\[ ---"-+ RIP ---- 0

gives rise to the loug exact sequel]ce

. . .  trxtf l- t- '((] ,rn) - '  trxtf i*t( Rl P, ' ,p) -- Ext;- i( M,un) -- Extf- i((J," la) r ,

Sinr:e

trxt'i{'(RlP,an) :

it follows tfra,t Ext-[-'(Art,wp) - Ext'il'(U,ap) for alli, I d,d+ 1. Thus for such z
ner haver trxt,i{'Qtl,r,,,,,j) is Cohen-\,{acaulay of dirnension r, if not the zero module.

\4olcovel we itave tlie cxact sequence

0 --+ Ext[-d-1 (M,rn) -- Ext'is-d-'(u,r*) -- trxtft-d( Rf P,up)

,-+ trrtT{d(M,",R) ---) trxt';*d((},cun) -- 0.

Sriplrose t,he map Extiid-l (U,rn) -- Extfd(RlP,u]t) 4 aR/p LS not the zer<r
rrir.p. T'lren its ima,ge C c aplp is not zero. Since RIP is dornain, aplp rrtav be
identified with an ideal in RlP, see [3, Proposition 3.3.18]. Hence also C may be
iderrtified witir a,n ideal in Rl P. Again using t,hat Rl P is a domain, we conclude
tlvxt CR,p *0. k, foilows 1,hat, Extli"-t([J,rn.)p * 0, ancl so t]re set

Assylo (Extl i ' r- 1 (U,, n) p) : {Q R.p : Q e Ass71(Extp- o-t (U, r n)), Q c P}

is rrot ernpty. Thus there exists Q e Ass77(Ext[*d-1 (U,rn)) with Q c P. By
Coroliary 2.6 we know that Assa(trxt,'i1'L-1((J,uR)) c Ass'// 1(U). Therefore, since
r)itn R,f P : d, the inclusiorr Q c P rnust trc proper. But t,his contradicts the fact
tltat, f is a prettv clcan filtralion of At[.

I1, Ibllows now that,

a1

8

[  ,^ /o ,  i f  i :  d ,

I  0, i f  i ,+ ,1,,

I ixl , | i  " 
t  (A,[,, . ,p) I lxti i  d-r((J,rt,),



and that the sequence

(1) 0 4 aR/p --- Ext;*d( M,.:n) --- Extn*o(U,r*) ----+ 0

is exact. Using the induction hypothesis we conclude that Ext[*o-'(M,a,,6) is either

Colren-Macaulay of dimension d* 1or the zero module, and that Ext6*o(M,ap) is
Cohen-Macaulay of dimension d.

If dim RIP : dimM for all P e Supp(f), then the pretty clean filtration f
is necessarily ciean, and M is unmixed. Since any unmixed sequentially Cohen-
Macaulay module is Cohen-Macaulay, all assertions are proved. n

As a consequence of the previous theorem we get

Corollary 4.2. Let M be an R-module. If the nln-zero factors of the dzmenszon

.filtrati,on of M are clean, then M i,s pretty cLean.
Conuersely assurne that R rs a locaL or standard graded CM ri,ng uti,th canonzcaL

module ap, arld, that M ad'mi,ts a pretty clean filtratr'on f suclt' that RIP i,s CM for
att P e Srrpp(-F) . Furthermore assume that M zs graded i'f R r,s graded. Then the
non-zero .factors of the dimensr,on fiLtration oJ M a're clean.

Proo.f. Suppose all factors Di(M) I Dt-r(M) irr the dimension filtration of M ate

clean. Then it is obvious that the dimension filtration cau be refined to yield a
pretty clean filtration of ,4y'.

We prove the second statement of the corollary by induction on the iength r of

tlre filtratiott f . The claim is obvious if r :1. Now let z' > 1, and set [/ : M,*r.

We obtain the exact sequence 0 -- IJ --> M --+ RIP --+ 0 with P e Spec(fi)'
Let, cl,: dirn RlP. Theu, as we ha,ve seen in tiie proof of Theorem 4.1, one has

trxt';;i (lVI ,, o) o- Extlii ((J, , n) for ail i, + d, as well as the exact sequence

0 --+ (t)ltlr, -) Ext,';;'LQ/t,rn.) - h',xt';;-d((J,,.,n) ----- 0.

Since 1121 is sequentially C\4 bv the prcvious theolem, these isornorphisms together

witlr PropositiorL 2.2(d) ancl Corollary 2.7 imply that

Dt(M) I  D. t , r (M) . !  Di (U)  I  Dn-r (U)

for i, I d. Hence, sincc the factors DJU) I D*r (U) are clean by induction irypothesis,

1,lre s:r,rne is t,ruc fbr the factors Dt(A,{) I Dt-t(M) wit'h i' I r1'.

Applying the functor' trxtff-d(-, up) to the above exact sequence and using Propo-

sition 2.2(d) again wer obtain the exact sequellce

0 ------ D,1(u)1D,1-, (U) -- D/M)lDu,,(A't) ------. R]P -+ 0.

Since all modules in this exact sequence are of dimensiorr d, and since Da(U) I Da-r(U)

is clean, it foliows t,hat, Da(M)lDa,t(M) is clean as well. n

Coro l l a ry  4 .3 .  Le t  S :  I { I r t , . . . , r , , f  he  a th ,epo lynomza l , r ' zng  and  I  C  S  amono-

rn,i,aL i,deal. Then the .foll,outr,n,g condi,t'ion^9 are equ,i,uaLen,t:

(a) Sll is prettu cl,ea,rt;
(lt) Slf i,s seqtrcrttiottyl CM, o,n,rl lJt,e n,on,-zero Jucl;ors i,n, th,c tl,i,rrtensi,ort,,[i,l,lt'o,ti'on'

o.f ,9 I I u,r'e r:l,ttr,rt: 
(l



(c) the non-zero factors r.n the dr,mens'ion f"ltration of slI are clean.

proof. (a) + (b): Since the associated prime ideals of SII are all generated by'

5.rbr.ts'oi {rr, . . .  ,x,,},  al l  hypotheses Theorem 4.1and Corollaty 4.2 are satisf ied,

so that the assertions fbllow.
(b) + (c) is tr ivial.

i.j r (a): The refinement of the dirnension filtration by the clean filtrations of

the non-zero factors gives us the desired pretty clean filtration of ,9//. n

Example 4.4.  Let  S :  K l r ,z , 'L t ' ,u f ,  and consider  the ideals  L:  (u ,u,z) ,  Qt  :

(r,  
" ') i  Q,, :  (r, ts2 ,z3) ancl 

-I  
:  L ) Qt ) Qz. We claim that the module M : Ll I

is not pretty cleau, but that M has a pritne filtration f with Supp(f) : Ass(M)'

Note that (L n Q) n (r n Q2) modulo 1 is an irredundant primary decomposition

of (0) in AI. Hence since 0 I Ass(LlLaQ,i,) c Ass(S/Qn): {Pn} with P1 : (r,z)

and, P2: (x,u, z) we see that Ass(/21) : {P1, P2}.

I t  fo l lows f rom coro l larv  1.2 that  D1(M):  (LaQl) l I  and that  Dr(M) -  M.

we show that, D2(AI)l  Dr(M) : Ll Lt^l Q1 is not clean. Indeed' suppose Ll L a Q1

is  c lean.  Then,  s ince Ass( I  lLaQr) :  {e} ,  th is  module has a f i i t ra t ion wi th  a l l

firctors isoruorphic to S f P1. zr,nd the munberr of these factors equals the length of the

S7, , - rnoc l t t le  (L lLOQt)p, :  St , , lQtSpr .  This  iength is  obv ious ly  2.  On the other

lrair<I, since Lf L O Q1 is genclatetrl by 3 elements, it c.annot have a filtration with

two {'actors. both of them being c)'clic.
Knowing now that D2(M)lDl(,l\ ) is not clean, we conclude from Corollary 4.2

that, A'[ is not ]rrettt' cleau.
Finally rvc const,nrct a plime filtration f of AI with supp(F) : Ass(M). The

filt,ratioir f will be the followirrg refirietnent of the dimension filtration. Denote

l r r ,  o ,  11r .  resrc lue c lass of  au e lemeut  o,  €  L in  LIL)Qt . :  D2(M) lDt(M).  Then

(0)  c  ( , : )  c  (z .u)  c  ( t .u .u)  :  Dz$ ' I ) lD, (n/ )  is  a  f i l t ra t ior r  o f  D2(M) lD.(M) wiLh

( r )  :  ,S lP t . ( z ,a ) lQ) : ,91h  anc l  (2 ,  t t , u ' ) f  ( 2 ,D ) :51p r .  f i r t r t he r rno le ,  deno te  thc

residue class of an elcmeut a e S in SII by a. The' DJM): L)Q1lI is generated

by 22, a,ncl so Dl(A,l) =- sf (r:,z,rs2). It is clear tha,t this fiitration can be further

refined so that all factors are isomolphic to S I Pr.

5. Ct,assps oF PRD't"fY ct, l tAN RINGS

Lct S - I{1rt,. . . , ir , , ]  be the polyrrornial r ing over a f ield K. In this sectiou we

lrrcscn1 a <rla,ss ol rrrorurnrial idcals lor whi<;h SII is pretty cleau. ()uite generally we

Ir i rvr '

Proposition 5.1. Le.l, I C S be a rnnnnrn,'iaL 'ideal, and supytose that Ass(,9/1) zs
totaLly ordered by rncl,u.sr,oru Th,en S I I i,s pretty cLean.

Proof .  Let  Ass(Sl t )  :  {Pr , . . . ,P, }  t rnd s t tpposo that  I \  - t  P2 )  " '  )  P, ' ,  and
set, di :  dim SlPi tor zl :  1,.. .  )?'.  

' fhe ideal 1 c:rn be written as an intersectiou
I : )'l_, Qi wliere cach Qi is a, f,-primary monomial ideal. There exist sttbsets
,l ;clnl srrch 1,Lra,t P; is gcncra,tecl ir lr  r,  wit,h : i  e , l i . l t  fbl lows f i 'out oula,ssurnption
l  l uu l ,  . / 1  - ;  . 1 ,  ->  . "  )  , 1 ,  

, )



Set t/, : )iroQi. Then according to Corollary 1.2 we have Uif I : Ddr(SlD.
By Corollary a.3(c) it suffices to show rhatUilQroU; is clean for all z. We have

A I Ass(Uil&aUo) C Ass(S/Qn) : {Pt}.Let S'be the polynomial r ing over K in
the variables ni with 7 € J6, andset Pl : n)^9'. Then P/ is the graded maximal
ideal of ,S' and Pr : PlS. Similarly, since,,Ir C Ji for k ) i, we have Qu : Q'rS and
U* : tll,.S where Q'r" : Qt ?, S' and Ul, : Un) ^9'. The S'-module Uila'rnU! is a
clean since it is of finite length. By base change, UolQo)Uo = (UilA'raU) 8s, S
is a clean S-module. n

In Grobner basis theory, Borel fixed ideals play an important role as they are just

tire generic initial ideals of graded ideals in a polynomial ring. By a theorem of Bayer
anci Sti l lman (see [5, Proposit ionIS.24l) a Borel f ixed ideal 1c,S : K[rt, . . . ,n,f
is a monomial ideal with the property that

( 2 )  I : r f  :  I :  ( r 1 , . . . , r j ) *

for all j : L,. . . tn. In 16], any monomial ideal satisfying condition (2) is cailed an
ideal of Boreltype, and it is shown that SII is sequentially Cohen-Macaulay if 1is

of Borei type.
Here we sirow the following slightly stronger

Proposition 5.2. Let I C S be an i,deal of Boreltype, Then SII t's pretty clean.

Proof. Let P e Ass(,S/I), and let 7 be the largest integer such that rj e P- There

exists a mottornialu € s such that (I,u)l I  = slP' since riu e 1it fol lows that

u  €  I  :  n f  ,  a n d  h e n c e  u €  I  :  ( u , , . . , r j ) * . T h e r e f o r e  u ( r t , . . . , t i ) k  C  l  f o r  s o m e

integer k > O,and hence (rr,. .  . ,r i)r C P. Since P is prime ideal we conclude that
( r r , . . .  , r )  C P.  By the def in i t ion of  7 ,  i t  fo l lows then that  P :  ( r t , .  .  .  , r i ) .

Thus the associated prime ideal of S f I are totally ordered and the assertion follows

from Proposit ion 5.1. n

6. GnaopD PRETTY cLtrAN MoDULtrs

Let K be a field and fi a standard graded K-algebra, and let M be a graded

/?-module. A prime filtration of M

'F:  (0)  -  A[oC Mt C M,- tC M,  -  M.

is called graded, lf all Mi of M are graded submodules of M , and if there are graded

isonrorphisms Arlif M6q = RlPr.(-oo) with some ai €. Z and some graded prime

ideals P6.
'fhe nrodule AI is called a graded (pretty) clean module, if it, admits a (prettv)

clean filtration which is a graded prime filtration.
Similarly we define multigraded filtrations and multigraded (pretty) clean tnod-

ulcs.
We clenote bV (l/)o the zth gracled component of a graded R-moclule ly', and bv

H i lb ( l i  )  :  t d im i l (N ) , ro  e  7Z I t , L - r l

i l , l i  H i l l )cr ' f , -sr r r ies.  
l l



By the additivity of the Hilbert-series, one obtains for a module with a graded

prime fiitration as above the Hilbert-series
T

Hilb(M) : t HrIb(RlPi)t"".
1, :L

We now consider a more sPecific case

Proposi t ion 6.1.  Let  S :  K l r t , . . . , rn l  be the polynomi,a l  r r ,ng,  and I  C S a

monomi,al i,d,eal. Assume that S I I is a graded pretty clean rzng whose graded pretty

c lean f i , l t ra t ' ion has the factors $f  M1;> SlPi?oi )  for  j  :1 , . . . ,  r ,  a i  €  N and

Pi e Ass(S/ I).  For al l  k and i set

hk t :  l { i  t  o i :  k ,  d im  S lP j  :  i } l

Th,en

Hitb(s/r) :Lr,ft) uith Hn(t) : P+ where Q,(t) :Lhr,tr.
i  ( 1  - ' ) "  

k

Proof. We have

Hilb(s/1) : \-
/J

1,

H:]lb(s I Pi)t"j

: fr 5- f'\l(l - t)'
L \  /  .  "  / t  \ '

o 
ot,r, i'7 ,'r:o

'flre l:rst equality holds, since all associated prime ideals of SII are generated by

slltsets of the variables. Finally the desired formula foliows, if we combine in the

surLr f r, <iiur.9/p1:i t", all powers of f with tlte same exponent. n

Thc atterrtive reader u,iil notice the simiiarity of fortnula 6.1 with the formuia of

l\{c\4ulien and Walkup for shellable simpiicial complexes, see [3, Coroliary 5.1.14].

The precise relationship will become apparent in Section 8 where the numbers a7

are interplcl,ed a,s shelling numbers.
We now derive simiiar formttlas for the modules Ext's(M,c,.rs) when M ts a graded

pletty clean moclule. Suppose dirn,S : n. Using the graded version of the exacl,

sequence (1) in the proof of Theorem 4.1, and induction on the length of the pretty

clea,Lr filtration it fbllows easily that

Hi lb( t rx t ' i . (  At I , . ,  s ) )  :  f  Ht lb(as1p,) t - " i  for  i  :  0 , . . . ,d inM.

< t i n t  S / L i = n  i

In particular we have

Proposition 6.2. Wi,th the a,ssu"rnptions a,nrl noto,tr,on, o.f 6.I, orte has

I { i l l r ( t rx l , l r (SI I , ,J(_- /1) ) )  :  ( t  h1, , - i t ; " - i - ' ) I0-  t )n-o:  ( -1)"  'H, , -o( t - t ) .

t .

\-
,/---J

j

<l im S/ Pi-- i

l 2



Proof. The
dinSf Pt :

equality, we
f"-i and get

first equality follows from the fact that as1p, : SIPiG(n - l.)) 1f
tu - i, so that Hilb(us1p,) : t"-ol(I - t)n-t'. To obtain the second

divide numerator and denominator of (Dr hk,n-rtn-i-r)10 - t)"-o by

( \ ,hr , , , -ot"- t -*) f  (7 *  t )* t :  ( t  h*, , , -ot-k) l ( t* t  -  1)n* '  :  ( - r )"- 'H,-o(t- t ) .

Let ,9 : Klrr,.  . . ,rnf and M be a graded ,S-module. We set

by : mil{A:: Extrr(M, S(-r))* + 0}

Then the regularity of M is given by

r e g ( M ) :  m a x { n  -  J  - b . i :  i : 0 , . . . , } ,

cf. [5, Section 20.5].

Corol lary 6.3. Let S : K[rt, . . . ,rn) be the polynomi,aL ri ,n'g, and I C S a mo'no-

rn,r.al r,deal. Assume that SII r,s a graded pretty clean rr,rLg wi,th, f,ltratton as i,n 6.I.
The'n

(a)  reg-(S/1)  :  rnax{k:  h 'm l0  for  sontrc  z} :  I r lax{e j :  . i  :0 ,  "  ' ' ' } ;
(b) Hilb(, JS I I) I DF'61 t)) : Ho(t) for att i '.

Proo.f. (a) the first eqLrality follows immediately frorn Proposition 6.2 and the defi-

nil,ion of rcg(S//). The second equality results from the definition of the numbers

l L t , .

(b) Bv Proposit ion 2.2 we havc

DtGI I )  I  Dn- ' (S l l )  " ,  Ext : { - i (ExL?- i (S l  I ,a ,s) , 'us) .

'flrrrs the assertion follows from Proposition 6.2 and [3, T]reorern 4.a.5(a)1. !

We denote by e(Att) the rnultiplicitv of a graded module.

Corollary 6.4. Lett, and k be r,ntegers, Then the number of factors SIP(-b) i,n

a, rtru,d,ed pretttl cLean .filtrat'ion of S I I sati,sfyr,ng dtm '9 f P : i, i,s zndependent of th'e

chosen filtro,ti,on. In partr,cuLrt'r, all grrt,ded pretty clean.fiLtrati,ons of Sf I haue the

same Lengtlt, namely !i!oe(Ext,\(Slt,S)), and, tltis nu,rnber erlu,als the ari,thm,etic

dr:gree of SII

ProoJ. The number in question equals lrpi, the k-th coefficient of the h-vcctol of

D,(SlI) lDo-r(SlI).Hence this number only depends on SlI.  Moreover, i t  fol lows

tlrat the length of a graded pretty clean fiitration of S/1 equals D]:oQtQ) As

a consequence of Proposition 6.2 and [3, Proposition 4.1.9] we have that Qa(1) :

r:(trxt ir(Sfl, ,S)). In [11, Thcorern 3.11] NzLgel and R.cinrer have shown that the

a,ri1,lp1e1,iq degree of a, sequentially Coheu-\4aczlulay .B-module M equals the nutnber

ff ' , ,c(I lxl : , i t?(A,{,r, . ,p)). Sincc lr1"l '1,, 'ntetn 4.1, SII is scqtrcrtt ia, l lv Cl '4, a, l l :rsscrt iot is
trlol low

l 3



We would like to remark that the fact that the length of all pretty clean filtrations

of S I I have length equal to the arithmetic degree of S I I also follows from Lemma

3.9.

Strppose that I C ,S is a monomial ideal, and that F is a multigraded prime filtration

ot-i1f with factors (SlP6)(-at), i  :  1,..  . ,  r,  where o; € N'. Then this f i l trat ion

decomposes slI as a multigraded K-vectorspace, that is, we have

r

slI o @ s1r'1-'S
x : L

Each module M; in the filtration f is of the form I6f I where I; is a monomial

ideal. The monomials not belonging to Ii form a K-basis of (s I I) I M; : S I I;, and

so SII : (SlI)lMc@ Mt, decomposes naturally as a K-vectorspace. Identifying

Slpn(-ao): Mo,lMo:r C Sf I*t with its image in S, we gef SlPi(-o'n): uaKlZ:l

where ut:lI7:rrl"\r) and Zr: {ri: j  / Pi). Thus
T

Slt : @u;Klzl
Z : I

Anv decomposition of SII as a direct sum of K-vectorspaces of the form uKlzl

wlrere Z is a subset of X : {rr,. . . ,rn) and u is a tnonomial of K[X) is cal led a

StanLey clecompos,iteon. Stanley decompositions have been studied in various combi-

rratorial and algebraic contexts, see [1], [B], and [9]. Not all Stanley decompositions

alise from prime filtrations, see [9].
Stanley [16] conjectured that there always exists a Stanley decomposition Sf I:

@i! r,uiKfzl such rhar I z,l > depth slI. In [t] Apel studied cases in which Stan-

ley's conjecture holds.
We conclude this section by showing

Theorem 6.5. Let I c S a monom'ial ideal, and suppose th,at SII i's a multi'graded

ytretty clean ri,ng. Then Stanley's conjecture holds for SIL

Proo,f. Stanley's conjecture follows if we can show that there exist a multigraded

prirne filtration F of SII with factors SlP6(-a;) such that depth SlPo2 depth,S//.

Since S I I is rnultigraded pretty clean, it fcrliows from Corollarv 4.3 that all nonzero

fa,ctors DtG l I) I Do ,(S I D of the dimension filtration are clean. \4oreover, since S/f

is scquentiaily Cohen-Macaulay, it follows from Proposition 2.2 that depth Sf I : t

w l rcrc  f  :  min{z:  D1(Sl I ) lDA(Sl I )  +  0} .  S ince DISI I ) lDn- t (Sl I )  is  c lean,  we

obtain a pretty clean filtration of SII as a refinement of the dimension filtration by
the clean f i l trat ions of the factors D{SlI) lDn-t(SlI).Thus in this prime f i l trat ion

each factor SIP belongs to Ass(Da(SlI) lDF1(SIID for some z. I t  fol lows that

depttr SIP > t, as desired.

7. Pnlvn FIL'TRAT'IoNs AND PRIMARY

Lr this sectiort we give anothcr chara,cterization of

ol prirnary decotnposit,iotts.
t 4

n

DECOMPOSIT IONS

pretty clea,n rnodules in terurs



PropositionT.L. Let IVI be an R-module, and suppose M adm'its the prime filtratr.on
f : (0) : Mo C Mt c "' C M,t C M, - M wi,th MifMi: -- RlP, for alli,.
Then for j : I,. . . ,r there erzst i,rreduci,ble P1-pri,rnary submodules Ni of M such
t h a t  M i :  ) ' i : o N 1  . f o r  i : 0 , . . .  ) r .

In the proof of this result we shall need the following

Lemma 7.2. LetU c V c M be submodules of M such thatVlU = RIP for
some P e Spec(R) . Then there eri,sts an zrreduc'ible submodule W of M such that

U : V ) W .

Proo.f. By Noetherian induction there exists a rnaximal submodule W of M such
Ihat U : V ) W. We claim that W is an irreducible submodule of M. Indeed,

suppose  tha tW :Wt )Wz .Then  U  :  (VnWt )n (ynW2)  i s  adecompos i t i on  o f  U

in 7. However, IJ is irreducible in 7 sinceVf U = RlP. It  fol lows that,V )Wt: ry
or V )W2 : U. Since W was chosen to be rnaximal with this intersection property,

we see that W - Wt or W - Wz. Thus IzZ is irreducible, as desired. n

Proof o! 7.1. (a) + (b): Let f be a prime filtration as given in (a)' We show

b y d e c r e a s i n g i n d u c t i o n o n i , < r t l i t r l , f o r j : i + l , . . . , r t h e r e e x i s t i r r e d u c i b l e
P1-plinrary submodules -V; of M such that M, : )tr:n*, Ni.

Fol r l  :  ?'wo may choose N.,.:  AI,_ r, since A[f M,4= RlP,.. Now let 1 < I q 7-,

aird assurne that Mo : )[:n*, { where { is an irreducible Py-primary submodrile

of A,t for j  : ' i ,+I," '  i ' t" .  Since 1' ' [ , f  Mi4 = RlPt, i t  fol lows by Lemma 7.2 that

1lrere exists an irreducible submodule 1/, of M such that' Mi4: Mt n N,. Since

R,l Po = A[if Mi-1 : IvLlMr, n N, c M lNo, it follows that {P,} : Ass(Mt,lMn-t) c
Ass(A.[ lN). Howevel Ass(NI lN) has only one e]erneut, therefore Ass(M lNn) :

{P , } n

8. Cr,naN FILTITA'fIoNS AND sl{trLLINGS

In this section we recall the main result of the paper of Dress [a] (see also [14]),
zr.rrd providc sonre extra infbrrra.tion. Let A bc a simpliciai complex on the vertex set

[rr] :  {1,.. . ,n}. R.i:cal l  that A ts shellabLe, i f  the facets of A can be given a l inear

orc ler  Ft , . . . ,  f , ,  such that  for  a l l  i , , . i ,7  < i ,  < . i  1m' ,  there ex is ts  some u e 4 \  Ft

and some k < zl with 4 \ ts* : {o}.
Notc tha1, we clo ruol insist 1,ha,t, A is pure, that is, that ali facets of A have the

sirnre dimension. Sornetirues such a shelling is called a norl-f)ure shellt'ng.

Let, K be a, fiel<l. Tlte Sta,nleq-R.ezsner ri,nq of 1{[A] of A is the factor ring

of ,9 : K[r;1,...,:r;,,.) nrc-rdulo ther ideal 14 gerlerated by ali squarefree monornials

l l ) i rL i r '  "  t r ik  such that  { '1r , . . . ,  j1 , }  is  no i ,  a  face of  A.
Ottc l t irs

Theorem 8.1 (Drcss). Ttte si,rn,ytlzr:i,a,l, contpl,en L i,s shellable i'f arr'd only i'.f KIL] ts

o. cl,ut,n, r'ing.

i , i r l  a  sr rbsc l ;  o f  I 'a ,< ' t 's  Gt , . . . , ( ) , .  o f  A wt t  c le t to l ,e  l ty  (Ci1, . . . ,G, . ) ,  t l ic ,  srna,1 lcs1,

srrbcornplcx of A corrtuirr irrg 1,lr l  fh,ces Gr,., ; . ,  G,.. With this notation, the sirel labi l i tv



of A can aiso be charactertzed as follows: A is shellable if and only if the facets of A

can  be  o rde red  F r , .  .  . , 4 .  such  tha t  f o | i : 2 , .  . .  ) rn  the  face ts  o f  (F1 ,  .  . . ,  F r_ l )n (4 )

are maximal proper faces of (F,)
For z ) 2 we denote by a; the number of facets of (Fr, . . ., Fo_) n (4)' and set

o , r : 0 .  Weca l l t hen1  , .  , a ,  t hesequenceo f  she l l i , ngnumberso f  t heg ivenshe l l i ng

of  A.
set Pa : ({" i} ie, ).  Then In : ) i :rP4. Therefore, i f  Fr,. .  . ,4 is a shell ing

of A, then fot z :2, .  .  .  ,r we have

i - r

l Po, 1 Pr, - PF, + (/,)
j : 1

Herc fi: llrz4, where the product is taken over those k e il such that 4 \ {,k}
is a facet o?]p,, . . . ,F..t) n (4). In part icular i t  fol lows that deg/a equals the ith

shelling uumber a;.
We obtain the following isonorpirisms of graded S-modules

t - I  i  i - l

( l  po, l l()nrl '1 ( l  pr, * Pr,) lPn : (Pp, * (f i l lpe
j : t  j : I  1 : 1

.1  ( i l I ( fn)Pt  o  ? SI  Pp,( -oo) .

Tlre isomorphism (Ppo + u)) I Pp, = @ l@Pp. resuits from the fact that (f ) n

PF, -- (fn)Pr, since the set of variables dividing Ji and the set of variables generating

P7,1, hzr,ve uo elemcut in comtnon. Thus we have shown

Proposition 8.2. Let A he a sheLlabLe si,'mpli,czaL compler wi,th shelli,ng Fr,. . .' F,'

ar t rL  shr : lLrnq nu,mbeys Q' r , . . . ,a , . .  Then (0)  :  Mo C Mt C M, r  C M, :  KIL)

urtth,

Pri u,nrl MolM,.-t ? slPr,,.,o+r(*,r, o+'.)

T
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9. Mt. i t l ' tcoMPLEXtrs

The aim of this and the next section is to extend the result of Dress to multicom-

p lexes .  S tan ley  [15 ]  ca l l sasubse t  f  c  N 'amu l t i comp lex i f  f o ra l l o€  f  anda l l

b € N" with b { cr,, it follows l,hat b € I'. T}ie elements of f are called faces.
Whnt alc 1,hc lacet;s of f? Wc dofinc on N'' the partial order given by

( o ( 1 ) ,  . . , o ( n , ) )  <  ( 1 , ( 1 ) ,  . . . , b ( r ' ) )  i f  a ( t )  !  b ( i ' )  f o r  a l i  i '

An element, m, € f is called maximal if there exists no a, € f with a > m. We denote
bv M(f ) thc set of maxirna,l elerncnts of f . Onc would expect t,hat M(f ) is the set
of fa,r:ets of f. Howevcr: ,A,{(f ) nLay l-le the ernpty set, for example for | : N'. To
rcrnedy 1;his defect we wili considcr "closed" sttbsets f in N[, where N- : NU{oo}.

Lcl, n, € ['. T]ten
irrfp{, a, :  { i . : ,  a(Z) = oo}

Iv[t

zs a clean .fiLtrati,on,

7  - - ?

- t l
t l
, ;  - 1

of sl



is called the infini,te part of a. We first notice that

Lemma 9.1. Let f c N[. Then M(f) zs f i ,ni, te.

P roo f .  Le t  F  c  [n ] ,  andse t  l p :  {a€ f  :  i n fp ta :  F } . I t  i sc lea r tha t  i f  ae  fp  i s
maxirnal in I then a is maximal in fp. Since there are only finitely many subsets
F of ln), it suffices to show that fp has only finitely many maximal elements. Let

[ " ]  \ f  :  { i l , . . . , i , t " }  w i t h  z r  l - t ' 2 {  " ' . - i n . F o r  e a c h  a e  l p  w e  l e t  a ' €  N k  b e  t h e

integer vector with o'(7) : a(ii) for j : 1,. . ., k. Now if a and b are two maximal

elements in fp with a f b,then a'and b' are incomparable vectors, that ts, a' {b'
and, b' { a'. This implies that the set of monomials {2"': a € fp, a rnaximal} is

a nrinimal set of generators of the monomial ideal they generate in Klry,.. . ,r*).

Hence this set is finite. Thus the set of maximal elemeuts fp is finite for ali F c ln],
and M(l\ is finite.

We say that a sequence of natural numbers a(z) has limit lim a(i,) : oo, if for all

integers b there exists an integer 7 such that a(i) ) b for aIl i' > j. Of course any

1o1-riecreasing sequence in N has a. lirnit cither i1, is eventuzrlly coristant, and this

constant is its iirnit, or the limit is oo.
As usual we set a ( oo fbr all o € N. and extend the partial orcier on N" natttrally

t o N [ .  B y w h a t w e j u s t s a i d i t f o l l o w s t h a t a n y s e q L r e n c e  a i , ' i : I , 2 , . . . o f  e l e m e n i , s

in N[ with a; 1 a,+r has a, limit -_ the liurit being taken conlponentwise.

Let I C Nt. The seb I of all rz € N$ which are limits of_ascending sequeuces iu

f  i sca l l ed  th .e  t l osu reo { ' f .  I t  i sc lea r  Lha t  f  C  f  and t l raL  l :  f .

Definition 9.2. A subset f c Nii is called a m'u'ltzcomplcrtf

(1) for al l  a € f and al l  b e N[ with b { a' i t  fol lows that b e f;
(2) |  :  I l .

The elenrents of a, rnulticoniplcx zlre callecl fac:es. The ricxt result shows that, each

f'ace of a rnulticornplex is bourrded by a face in ,Al(f).

Lemma 9.3. Let I c N$ be a set sat'isfyi,ng property (t) of mu,ltr,compleres. Then'

the foLLowr,ng condztions are equiualent:

( a )  l :  l ;
(b) for each a, e I there eni'sts ?n € M(l) with a l nr'.

proof" (n) + (b): we proceecl by induction on n, - l infptal. I l  r t .  - l infptal :  0,

t, lrr;rr a(r,) :  oo fot 'al l  i . .  a.ncl heuce o, e M(l). Suppose now that n - l infptal > 0

a.rrcl 1,h1,t there is no nr. € M(l) with a ( rn. Then there exists a strictly ascenclittg

scquence a : &r I a,2 { . . .  irr l- .  Since f :  f  i t  fol iows that b : l im4, € l .

Olrviously one has n - l infpt bl < n - l infptal. Hence by induction hvpothesis,

l,here exists rn € M(l) with b ( nz, and thus a < m,.
(b) =+ (a): Let, a;,, 'i : L,2,. . . L>e an a,scending seqrtellce in I-. Bv zrssumption,

t,lrglr: crxist, 'ttt,i € M(l-) with a,i j-r't'ti.. Sincc M(f) is finite (see Lernrna 9.1), there

lxist,s ,111 silr{tlt t,lrii,t rir; : Tt-t,;.,, f6r'iLil i,) i,o. It lbllows thal, ai I'tt't,i,u for: rr,ll tl. i-Itlncc
n

I 7
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Combining Lemma 9.3 with Lemma 9.1 we get

Corollary g.4. Let f c NS . Tlten I r,s a multicompler i,f and onlg i,f there erist

fini,tety many elements rt'Lr, . . . ,n7,' € N\ such that

|  :  { a  €  N t ' .  a  1  m t  f o r  s o m e ' i  :  1 , . . . , r } '

We have

femma 

g.5. Suppose f C N" sofrsfes property (t) of multi,compleres, then' so does

Proof .  The statemeut  isc lear i f  a  € f .  Supposenowthat  a  € f ,  and le t  a t  € |

be a non-descending sequence with lim ai : a. Let bi(i) : min{ot(j),,b(j)} for

j : I , . . . , n .  T h e n  b i :  ( b i ( l ) , .  . , b n ( n ) )  l  a i f o r  a i l i ,  a n d  h e n c e  b r  e  I  f o r  a l l  z l .

Moreover, b: l imb; and so b e f.  X

The lernma shows that if f C N" is a rnulticomplex in the sense of Stanley, then

I a ryl is a, multicornplex in our sense. Moreover f n N" : f . Thus the assignment

f r,' f establishes a bijection between these different concepts of multicomplexes.

11 the followilg we will use the term muiticomplex only in our sense) that is, we

rvi l l  aiways assttt, t lc t , lrat f  :  f .

Note rhat A(f) : {infpt u: a, e l} is a sirnplicial cornplex on the vertex set

lr, ]  :  {1,.. . ,n}. I t  is cal led the sirnplicial complex associated to the mult icomplex

I-
Thc nurnber clin ,7, : I infpt o,l - | is called the dimensi,on of a. The d'imensr'on of

I' is dclirreci to lte
d i r r r l  -  l ) r r l x { d i r n a :  o  €  f } .

Olrviousll ,  orte l tas dim l :  ditnA(f)

An clcntcnt o € l- is callccl a, .fdcet of I if for a]l rn. e M(l) with rt I m one has

iLrfpta: infptnz. ' fhe set of facets of f  wil l  be denoted by f( l).  I t  is clear tha,t

M(l) C -F(l).  The facets in,{/(f) are cal led mari 'maLfacets.
Consicler for example the multicomplex f e Nf with faces

{ u :  t t  1 ( 0 ,  o o )  o r  a  (  ( 2 , 0 ) }

' f l r cn  M( I ) :  { (0 ,  c ) c ) , (2 ,0 ) }  anc l  f ( I ' )  :  { (0 ,  * ) ,  ( 2 ,0 ) ,  (1 ,0 ) } .  Bes ides  i t s  f ace ts ,

I' a,drnits t,he infinitelv tnany faces (0, z) with z e N.

Lemnta 9.6. Ila,r:lr" ntultr,corn,pler ltct,s a.fi,n,i,te n,umbc:r of .facets.

ProoJ'. Lct f be the given multicomplex. Given m, € M(l). By 9.1 it rerrains tcr
show blral l , l rc sct

{a, e f : o, 1 mand infpt a : tnfptm,}

is finitc. But t,his is obviously tho case since for each i / infptm, tlrerc ilre only
rn ( i , ) - t  I  numbcrs .7  €Nwi l , h .7  <n r , ( i , ) .  n

Lernrna 9.7. An arbitro.r'y i,n,ter',sr:ction, ond a,.fitr,i,te. urLion o,f m,u,Ltzcontpl,et;r:s is aqairt
, r  t r t t t , l , { i , r t r t t l t l t . t .  

l d



Proof. Let (11);61 be a family of multicomplexes, and set f : 0o.r fi._ If a € f
and b ( a, then obviously b e l. Thus it remains to show that f : f. Let ai,
j  :7 ,2, . . .be an ascending sequence in  f .  S ince lo :  fo  for  a l l  i  €  I ,  i t  fo l lows
tlrat lim ai €li for ali z, and hence limoa € l, as desired.

On the other  hand,  suppose J:  { I , . . . ,k }  and le t  f  :  Uf : , f ; .  Then f  sat is f ies
obviously condition (1) of a muiticomplex.

By Lemma 9.1 the sets "&4(f;) are finite, and [Jf:rf; is the set of alla€ N[ for
whiclr there exists -? € -/ and m € M(11) such that a { rn. Thus it follows from
Corollary 9.4 the f is a multicomplex. tr

Corollary 9.8. Let,4 c N[ be an arbi,trary subset o/N;: Then there ensts a
un'ique smalLest muLtzcompler l(A) conta'inin'g A.

Let  f  be a mul t icomplex,  and le t  1( f )  be the K-subspace in ,S:  K[ t r , . . . , rn ]
spanned by all monomials r" such tirat a / f. Note that if a € N"' and b € N'\ l,
then a +b € N" \ f, that is, rf r" e 1(f) then norb € /(f) for aII rb € ^9. In other
words, 1(f) is a monomial ideal. In particulal, the tnonomials r" with a € f form
a K-basis of S//(f)

For exarnple for t ire above unrlt icomplex | :  {a: a 1(0, oo) or o ( (2,0)} in Nf
we have 1(f) :  (r l ,rp2).

Conversely, given an arbitra,ry monomial ideal I c S , there is a unique muiticom-
plex f  wi th , I :1( f ) .  Indeed,  Ie t  A:  {4 ,  e  N" :  r "  /  1} ;  then f  :  f ( ,4) .

The monornial ideal of a multicomplex behaves with respect to intersections and

unions of multicornplexes as follows:

Lemma 9.9. Letli, j e J be a famil'y oJ rnuLti,c:om'pLr:nes. Tlten'

(u)  I ( [ l i . " , f r )  :  D, r . ,1( f i ) ,
(b) z.f J i ,s f,ni, te, then I( l),rr l ,) :  )1rt l( l i ) .

Next we describe the relationship betweerr sirnplicial cornplexes and multicomplexes.
Let A be a simplicial cornplex on the vertex set [z]. To each facet F € A we associate
tire elernettt ap € N[ with

, . \  f  * ,  i i  i e  F
a r , , ( z / : 1 0 ,  i l  i / l r .

Then {ap: F e A} is the set of facets of a, rnult icornplex l(A), and /(f(A)) :1^,

where 1a is the Stanley-Reisner ideal of A. Moreover one has dim f : dirn A(f)

l.-or a rnulticompiex f and a € I' wc let Po be tlrc plirne ideal generated by all z1

with z / infpt o. Thus Po is genel'ated by ail r; with a(z) e N.

Lemma 9.10. Letl be a rnull;'i,contpler. The.follounng statements are eqttzualent:

(u) f has .ju,st on,e rna,r'imal Jacet a;
(b) 1(f) i,s an i,rreducible ideaL.

Il'tltr: cqrthtoJen,t cortd,i,trons ltoLd, l;hr:rr,I(f) ls qc:nc:rrtttxlh'u {r;iU)'rt . i, e [n'l\infpta].
Irr, pu"r'ticrtlar', I(l) 'i,s u. P,,-7tri,rn,rLrg1 i'tlut'L

1 9



Proo.f. If a is the unique maximal facet of f then

/( f )  :  ( rb  :  b€ N' ,  b( i )  >  a( i ' )  forsome z)  :  (v" ( i )+ t  :  i '  e  [n) \  in fpto) '

Copversely, if 1(l) is irreducible, then accordingto [18, Theorem 5.1.16] there exists

a subset  A C { i , . . . ,n}and for  each z l  €  A aninteger  ar  }  }such that  I ( l )  :  ( r i '  :

i € A , o , r > 0 ) . s e t o ( z ) -  a i - r f ' o r i ' e A a n d a ( i ' ) : o o f o r i ' / A ' T h e n a i s t h e
unique facet of f. !

Corollary 9.11. Letl C N& be a mult'icompler wi'th just one facet a. Then 1(f) :

Po

Proof. Suppose a,( i) + 0 forsome i,/ infpta. Then a-e; is afacet, dif ferent from

0,. i"r" 
"n 

is the canonical ith unique vector. Thus we see that a(i') e {0,oo} for
' i :  I , . . . , f r ,  so  tha t  / ( f )  :  1 ( f ( r z ) )  :  P , , -  l l

The next result describes how the maximal facets of a rnulticomplex I are related

to the irreducible components of /(f).

Proposi t ion 9.L2.  Let l  c  NL be a mul t i ,complen,  and a1, . . . ,a t . ' i ts  m,ar imal

.facets. Then 
,

1(f) : [-] r1r1a,))
J : l

is the un,ique r,rced"u"nclant i ,rred,u,czble decomposi,tzon of t( l) ' in s: Klrt, . . . ,rn].

Cortuersely, let I C S be a mon,omr,al zdeal, I : )tr:t Ii the un'ique 'irretlundant

iTrecluczble rLecomposr,tzon of I in S, and let I be the mnl,t'icompler wi'th 1(l) : 7.

Then, I has r m,o,nimal .facets Qr, . . . , a,. wh'ich can be labelled such that

I( l(a,1)) :  11 ,for . i  :  I ,  '  " i ' t"

Proof. Since | : Ul':, f (o,), it follows from Lemma 9.9 that 1(f) : ['l]:t /(f(oi)).

That each l(f(a;)) is irreducible, we have seeu in Lemma 9.10.
Conversely, let 1 : 0r1:, ,I, be the uniqr.re irredundant irreducible decomposition

of /, and let l, be the unique multicompiex with /(fr) : Ii. By Lemma 9.10, eaclr

f7 lrir.s exactly one uraximal facet, sa! oi. Hence 11 : f(4,7) for j : I, _..,r.
Let I be the unique rnult icomplex with l(f  ) :  1. Then since 1(f) :  | l - t  1((f (a;)),

i l ,  fo l lows f rorn Lemma 9.9 that  1( f )  :  I ( l (ar , . . . ,4" ) ) ,  and hencc that  | :

I-(a,, , . . . , a,). Each of the ai is a, rnaxirnal facet of l, becausc if there would be

a.rr irrclusiolt arnong tirem, then there would also be au inclusi<tn among the Li,

contradicting the rninirnaiitS' of the decomposition. n

Corollary 9.13. Letl be a mu,ltr,compler. Then,dimS/I(f) :  dimf + 1.

Proo,f. By the preceding proposition it suffices to plove the assertion in case thal,

I' has just one maximal facet, sily a. Suppose that dim f : d - 1. We may, thett

a,i isurre tha,t a,(t) :  oc for 7 ) n - d+ 1. Then 1(f) :  @i()+t,.  ,r ' : ,( : ; ' )*t),  o,td
ndiLn S/1( l )  :  d



Finaily we will show that the facets of a multicomplex I correspond to the standard
pairs of 1 : 1(f) introduced by Sturmfels, Trung and Vogel [17]: let ube amonomial
o f  S :  K [ r r , . . . , r n f .  Thenwese tsupp(u )  :  { "0 :  ra  d i v ides  u } .  Apa i r (2 ,  Z )where
u is a monomial and Z is a subset of the set of variables X : {rr,. . . ,rn} is cal led
adm'isstble if no ri € Z divides z, that is, if supp(u) n Z : 0. The set of admissible
pairs is partially ordered as follows:

(u, Z) I (u' , Z') <==+ u divides z' and supp(u'f u) U Z' c Z.

An adrnissible pair (u, Z) is called standard with respect to I, it uKlzl n 1 : {0},
and (u, Z) is minimal with this property. The set of standard pairs with respect to
1 is denoted by sLd(/).

For  a monomial  u  € S,  wi th  z  :  l l ] : rn lo  we set  logu:  (o t , . . . ,an) ,  and for  a
subset Z c X we let c(Z) e NS the element with

c(z)(t) :  {  : ,  i l  "o 11,
I 0 ,  i f  , o / 2 .

With this notation we have

Lemma 9.L4. Let I C S be a rnonomzal i,deal, andl the multi,compLen assoctatecl
with I . Then, the standard pazrs wi,th respect to I correspond b'iject'iuely to the facets
of T. The bijection, is establi,shed by the foll,owi'no ass'ignment:

std(I) ---. -F(f), (u, Z) r-- log u + c(Z).

Proof. Let A be the set of admissible pairs. Since supp?/ ) Z : A for (u, Z) e Ait
follows tirat tire map

.4 ---- NL, @, Z) r- log u + c(Z)

is irr.jectivc. \4orcover, fbr each (u, Z) € "4 we have

uKlz lo  I  :  {0}  <+ iogu *  c(Z)  e  l .

Nou,  le t  (u ,Z)  € s td( / ) ,  and set  o :  logu+c(Z) .  Let  m € M( l )  wi th  a (  zr i , .

Suppose that infpt a I infptnz. Then there exists i sucir that a(i,) < m(i,): co. Let
' ,  :  u l r i? ' )  and W :  Z u { rn} .  Then ( r ,W) I  (u ,Z)  and u '  K[W])  I  :  {0} ,  o

t:onl ladict iorr. Thcreforc, o C 'F(f).

Conversel) ' let a € j tr(f).  Scl,Tr,: f l ;gr,,rpt1o)r7\") avrd Z: {ro.: e e infpto}. Thcn

(u , .2 )  e  ,4nnc l  a :  l ogu+c (Z ) .  S ince  r i  €  f  i t  f o l l ows  tha t ,u  K l z ln1 :  {0 } .
Srrppose tlrat (2,, Z) is not minirral witli this property. Then there exists (tt,W) e A

wit lr u . I{ lWl O 1: { 0} and (u,W) < (r,,  Z), and we have

( 1 )  l r : l o g o * c ( I M ) e t ;
(2) u divides u;
(3 )  supp(u l r )o  Z  cW.

The properties (2) and (3) irnpiv that o,(i) : b(i,) for all i such that, b(i) < oo.

Tllrrrs a. ( b, ancl a: b i f  a,nd only i f  infpta: infptlr.  However since a+b, wr: ha,vtl

irr lpl,a l infpt,b. By propertv (1) t,here exists m€ M(l) with b ( nz' Then rt '<1 nt,

arrrl inl1rt b C irrfptttt,. Iri p:rrticu1a,r, infpta I inty>t,rn. It follows thri,t a / f (l), a

r :o t t t t  a , t l ic t , io t t .
21
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10. PNPTTY CLEAN FILTRATIONS AND SHELLABLE MULTICOMPLEXES

in this section we introduce shellable multicomplexes and show how this concept is

related to clean filtrations. Our concept of shellability is a translation of Corollary ??

into the language of multicomplexes. In that corollary we charactenzed pretty clean

filtrations in terms of primary decompositions. Here we need a refined multigraded

version of this result.

Proposi t ion 10.1.  Let  S :  Kf r r , . . . ,nn)  be the polynom' ia l  r ' ing,  and I  C s  a

monomi,al i,cleal. The followi'ng condi'tzons are equ'iualent:

(a) SII ad,mr,ts a mtt'Ittgrad,ed pri,me filtration F : (0) : M9 C Mt C "' C

M,: C A,[, : Sf I such that M6f A[it o Sl Po(-a;) for aLI i';
( b \  t h e r e e p , s t s  a  c h a , i n o f  m o n o m r a l i , d , e a l s  I :  I o C  1 1  C  " ' c  I , :  s  a n d

monomi'als ui of muLtzd,egree a,; such that Ii: (I;r,u;) and Ii4 : ui: Pti

If the equ,iyalent cond,r,tzons holcl, then there erist i,rreducr,ble monomi,al i'deals Jt, . . ' J,

such that  Io :  ) t r :+rJ i  . for  i :0 , . . . , r .  Moreouer ,  i , f  the pr ime f i l t ra t ' ion ' is  pret ty

cleart, then thzs iet of i,rred"ucible i,cleals {Jr,. . ., J,} i's unzquelg determr,ned" In fact,

thi,s set coryesponcls bi,jecti,uely to the set of facets of the multi,compler assoc'iated wzth

I .

ProoJ. The staternents (a) and (b) are obviously equivalent, while the existence of

of the irred.ucibie ideals -Ir is iust the multigraded version of Proposition 7'1'

Now we assurne that the prirne filtration f is pretty clean. Since .I; is an irre-

drrcible monomia,l ide:il, it follows t'hat, ,J'i: f(a;) for some a; € N$, see Lemma

9 . 1 0 .  W e c l a i m t h a t , 4 : { a t , . . . , a , ' l  i s t h e s e t o f  f a c e t s o f  t h e u n i q u e m u l t i c o m p l e x

I  w i t h  l :  1 ( f ) .
We first show that aII o,i are facets of f. Note that M(t) C A. Indeed, by

I)r'opositiorr 9.12 tlr: hii,ve 1;ltat

. / ( f )  :  f l  1(f(a))
a€M( l \

is the unique irreclundant ciecomposition of 1(f) into irreducible ideals. Since from

any reciundant such deconrpositiorr, like the decomposition I : )tr:rJi, we obtain

iln irr.edunclant by omitting reclundant components we obtain the desired inclusion.

We also sei: that fbl each Jl lhere exists a maximal facet a of f such that 1(f (a)) c

.1.1, that, is, for cach aT e ,4 there exists a maximal facet a of f such that a1 ( a. We

cii i inr 1,hat infptaj: infpta, in other wcirds, t ,hat P": Pi. In fact, since a € Aas

wc lra,ve.just, sccu, t l terel exists an integcr r. such that a: ol, &i ld hence l(t(a)):.1,;

is P;-primary, and Pi C Pi. Strppose t,hat Pi I Pi Then, since f is pretty clean,

we conclude that  i>  j . I t  fo l lows 'chat  [ - ] , r ,  J t : ) t> i { ,  contradic t ing (b) .

Thus we have shown that all elenrents oi "4 are facets of l. Next we prove that

r '  :  l f( t ' )1. This l , l ien imJrl ics that A: f( l) ,  and that the elements of "4 a,re
pl. i lwisc r l ist irrct.

Wo know florn Colollarv 6.4 that r crluais the arithrnetic degree of SlI. On the

ol,hr:r ' l ra,url we harre sholrar in Lernrna 9.14 that the facets of f  correspond to the

s1;a,tida,rrl lra,irs of 1. Jrr f l7, Lolrnrla, r.r].,,1t, is showu that the nrtrnber of standard



pairs of 1is equal to the arithmetic degree of SII as well. Thus lf(l)l : 
", 

ut
desired. n

in Section 6 we have considered the Stanley decomposition of S I I into subspaces
of t lre forn uKlZ] where u is a tnonomial in the variables X : {rr,. . . ,r,} and
Z c X. We call ^9 c N[ a Stanley sef if there exists a € N" and m € N[ with
m( i , )  e  {0,* }  such that  S:  a*S*,  where,S. :  f ( rn)  .  The dt 'mensi 'on of  S is

defined to be dim l(*) Obviously Stanley sets correspond to subspaces of the form
uKlzl

Definition LO.z. A multicomplex I rs shellable if the facets of I can be ordered
a r , .  .  . ,  o "  such  tha t

(1 )  S ,  :  f ( a ; )  \  f ( o t ,  . . . , a r - t )  i s  a  S tan ley  se t  f o r , i  :  L , " ' , r ,  and
(2)  whenever .9 l  c .9 j ,  then^9i :  S;  or  i ,>  j .

Any order of the facets satisfying (1) and (2) is called a shelli'ng of f

The next result shows that our definition of shellabilit}, ol multicomplexes extends

the classical concept of shellability qg simplicial complexes.

Proposit ion 10.3. Let A, be a si 'mpli,cr,al complerw'i , th facets Ft,.. . ,F,, andI be

t l temuLt i ,complerwr , t l t ,  facets  aFt , . . . ,aFn, .  Then Ft , . . . ,F , r ' is  a  sheLLi 'ng of  A '  i , f  and

on,ly i,f aFt, . . . , ct p,. 'is a shelli'ng of l.

Proof. We clenote b5' el the zth standard unit vector in N", and set fr : f(cn).

Then

i -1

f ( ny . ' , )  \  f ( o r ,  , . . . , ap .  , )  :  
[ - l ( f ( o , ' , )  \  f ( ou l , ) )
j : r

i - l

A r  I  I  ( c r + f , ) )j:l'*.Ho
We notice that

Tl r r rs
l ( a e r )  \  l ( o r i  , . . . , a F , , r )  :  

U  k r  + l r , ) ,
LeL

where

L  - -  
{ { k t , . . . ,  k o - r }  :  k ,  €  4  \  4  f o t '  j  : 1 , . . . ,  i , -  I }

a,nrl wlrere ,rt --Dir,,ei for each L e L.
lhe urtiott

[J {", + rn;
,,r, ,r,

( e r + l , , ) n ( e , + f r )  : [ " u * l o '  i f  k : l '
' -  

I  . r * ,  l e L * l t ,  i f  k + 1 ,



is a stanley set if and only if there exists L e Lsuch that er' *lt c eL +f; for all

L ,  € L , a n d t h i s i s t h e c a s e i f  a n d o n l y i f  t h e r e e x i s t s  L e  L s u c h t h a t  L c L '  f o r a l l
f I r f

We claim that the last condition is equivalent to the condition that all facets of

(4) n (fr, . . . , Ft-tl are maximal proper subfaces of (4)'

Suppose first that there is a set Lo € L which is minimal under inclusion. We may

assume tha1 Lo : lm]. Let k € [rn] and assume that all sets ,fl \ F, which contain k

have more than one element. Then for each such set we can pick fu € 4 \ F, with

ki I k, and hence there exists L e L which does not contain k, a conttadiction,

since k e Lo C ;,. Thus for each k e Ls there exists an integer in e [r- 1] such that

4 \4 *  :  { k } .Now le t  i  € l i '  -  1 l  be  a rb i t ra ry .  I f  14 \  F i l : 1 ,  t hen  bv  de f i n i t i on

of the"iets L, the set fl \ 4 ir a subset of each tr, and in particular of Lo. Thtts we

see that the subfaces of (F,) n (F1, ..., Fo_) of codimension 1 are exactly the faces

4 \ { k }  f o r k : 1 , . . . , m .  S u p p o s e n o w t h e r e e x i s t s  j €  [ r - 1 ]  f o r w h i c h  F i ) F i

is not contained in any of these codirnension 1 subfaces of 4 (in which case not all

facets of (F',) n (fr, . . . , Ft-1) would be maximal proper subfaces of (4) ) Then

k  /  F o \ f ,  f o t  k : 1 , . . . i r n ,  a n d  h e n c e  ( F . , \ 4 )  a L o : 0 .  f n t  a c o n t r a d i c t i o n ,

since any L c L contains an element of 4 \ 4
Converseiy, suppose that all facets of (f,) n (F1, . .. , F,,_r) are maximal proper

subfaces of  (4) .  Then there ex is t  i t , . . . ,  j , , ,  €  [ i  *  1 ]  such that  14 \  Fr- l  :  1 '  and

for any .j € li- 1] there exists k e fm]such that f, \ 4- C F, \ {. For simplicity

w e  t n a y  a s s u n l e t i r a t  4 \ 4 r :  { k }  f o r  k : 7 , . . . , r 7 . T h e n o b v i o u s i y  L o €  L a n d

Lo c L for auy other L e L. n

R.emark 1O.4. Condition (2) in the definition of shellability is superfluous in case

I is the multicomplex corresponding to a simplicial complex, because in this case

tirc sets Sf correspond to the minimal prime ideals of 1(f), aud hence there is no

inclusion among them.

As an extensiou of the theorem of Dress we now show

Theorem 10.5. The multtcomplerl i ,s shellabLei,f  and only Lf SII(f) ' is amuLti '
qradcd, pre.tty clean ring.

P roo . f .  Le ta1 , .  , o , , .  be the face tso f  f ,  and  \e t  J i :  f ( a i ) f o r  i  : 7 , . . . ) r '  Then . f  i s

an irreclucible mouotnial ideal, and 1(f(41 ,.. ,  'er)): [ l ] :r  J1. Weset 1, :  ) ' i :nJt , / i

a n c l  A / [ , :  I , t l I  f o r r , : 0 , . . . , r ,  I : 1 ( f ) .  T h e n  F :  ( 0 )  -  M o c  A / h  c  " ' C  M , :

SII is a mriltigraded filtraiionof Sf I.
S i r r c e  l ( a n )  \  f ( n 1 , .  . . , a t _ t )  :  l ( a r  , . . . , a r )  \  f ( a t ,  . . . , a i - 7 ) ,  w e  s e e  t h a t  b  e

I ' (oo)  \  f (o , , .  . . ,a t - r )  i f  and only  rb € n; : i  iJ j \ ) i r : rJ j  In  other  worc is ,  the

rnonorniais eb with b e l(r4) \ f(ot, . . . ,a;t) form K-basis of the factor module
It l I ;r :  M,i lM;t.

Tlre discussion at the end of Section 6 shows that f is a prirne filtration if and
only if MolMo-t as monomial vectorspace is isomorphic to uKIZ] for some monomiil.l
u, € S and sorne subset Z c {r1,.. . , fr, ,}.  Consequently, f  is a prime f i l trat ion i f

a r rd  o r i l y  f (n ; ) \ l ( a ,1  , . . . , a i -1 )  i s  aS tan ley  se t  f o r  a l l  i , :  I , . . .  i ' t ' .  Hencc  the  theo rem
nfol lows frour Proposit; ion 10.1.



Let K be field, and let S : Klrt,. . .,r,l be the polynomial ring. We call
mtrlticomplex I C Nt Cohen-Macaulay or sequentr,aLly Cohen-Macaulay ouer K
S I I (l) has the corresponding property.

I is sirnply cailed Cohen-Macaulay, or sequentially Cohen-Macaulay, it SII(t)
has the corresponding property over any field.

Corollary 10.6. Let I be a shellable mult'icompler. Then | 'is sequenti,aLly Cohen-
MacauLay. If moreouer, all facets of I haue the same d'imens'ion, then | 'is Cohen'
Macaulay.

Proof. Theorem 10.5 implies that SII(l) is pretty clean. Hence the assertions follow
fronr Theorem 4.1. !

Corollary IO.7. A rnulticomplerl zs shellabl,e i,f and only i,f there ensts an order
e l , . . . , a , . o f t h e f a c e t s s u c h t h a t , f o r i : 1 , . . . , r t h e s e t s , S , : l ( a r )  \ f ( o t , . . . , a ; t )
are Stanle.r l  sets wi,th dim,91 ) dim Sz2 ...  > dimS'..

Proof. Suppose the conditions of the corollary are satisfied, and that ,91 c ,Sl for

sorne i < 7. Then, since dimS, ) Si, it follows that Sj : Sl. Thus I is sheilable.

Conversei5r) suppose hat I is shellabie. Then SII is pretty clean. Ttrus by Corol-
Iarl' 4.3 the non-zero factors of the dimension filtration are clean. Refining the

dimeusion filtration b5' the clean filtrations of the factors we obtain a pretty clean
filtration with dim Sl ) dim,S, > . . ) dim S,'. n
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