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We consider local homeomorphisms between domains from R™ satisfying condition
(N) and having local ACL™ inverses. For such mappings we generalize soine basic
facts from the theory of quasiregular mappings as the modular inequality of Poleckii
and estimates of the modulus of spherical rings from [15}, [18] and [19], and we use

these facts to extend Zoric’s theorem and to calculate the radius of injectivity for this

class of mappings.
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1 Introduction

Throughout this paper D will be a domain in R™ and we consider maps f:D—R",
where D C R™ is a domain. Such a map is said to be of finite distortion if:

1) fe wii(D,R™).

oc

2) The Jacobian determinant is locally integrable.

3) There exists K : D — [0, 00] measurable and finite a.e. such that I (@)™ <
A’(l‘) g .]f(.’ll).

Notice that when K € L*°(D) we obtain the known class of quasiregular mappings
and we refer the reader to [22] and [23] for the basic monographs dedicated to this
subject. If the distortion map K € L} (D) for somep >n~—1and f € wh™(D,R"),
it is shown in [6] that f is open, discrete. In general, for mappings [ : ) — R”
ae. differeutiable with Jy(z) # 0 ae., we can define the outer dilatation Kol(f),
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the jnner dilatation K;(f) and the linear dilatation K; by Ko(f)(z) = "1%,’, o

Ki(f)(2) = gH5)k and K (z) = 4 in the points = € D where f is differentisble
with Jy(xz) # 0 and we see that Ki(f) € Ko(f)*! ae.

If Q € BMO(D) and maz{Ko(f)(z), Ki(f)(z)} € Q(z) a.e. in D, we say as in
[18] that f is & Q-map. In [18] for Q-homeomorphism the following modular estimates
are established:

1) M(f(T)) £ Mg, (5(D)-
2) My,(sy» +(A(B(z,),CB(z, R), B(z, R)\B(z,r)) = 0 whenr — O and R >0
is kept fixed and B(z, R) € D.

Tt must be mentioned that the modular inequalities 1) and 2), although are sys-
tematically used, appear in [18], [19], [24], [25], [26] in & nonexplicit form. Also, in
[19], [24], [25] are considered non-injective maps for which 1) and 2) holds. How-
ever, these maps are ACL™ maps and in the class of local homeomorphisms satisfying
condition (N) and having local ACL" inverses our results are stronger. The meth-
ods and the technique of the modular estimates 1) and 2) developed in [24], [25],
[26] were also later considered in [15], [9], (13]. [14], [4], [5] for mappings of finite
distortion and satisfying condition (A). Such maps f : D — R™ arc maps of finitc
distortion for which there exists A : [0, 00) — [0, 00) smooth, strictly increasing, with

o0«
A(0) =0, lim A(t) = oo, exp(A o Ko(f)) € BL DY § ﬁ#ldt = 00 and there exists

to > 0 such that A'(t)t incrcascs to infinity for ¢ > fo. In [13] it is shown that such
non-constant maps are open, discrete and in [15] are proved the modular estimates 1)
and 2) for this class of mappings. Zoric’s type theorems and eliminability results are
considered in [9], [14], [4], [5] for such mappings. A local homeomorphism which is a
map of finite distortion and satisfying condition (A) also satisfies condition (N ) and
has local ACL™ inverses (see [8], [15]), hence our extensions will be sharp. We prove
the following generalization of a well known theorem of Poleckii from the theory of
quaisregular mappings:

Theorem 1. Let n > 2, f : D — R™ be a local homeomorphism satisfying
condition (N) and having local ACL™ inverses and lel T be a palh [amily [rom D.
Then M(f(T')) < Mk, ()(T)-

We also give estimates of the modulus of the spherical ring.

Theorem 2. Let n > 2,z € D,0 < § < a such that B(z,a) Cc Dif z €
IntD,Casap = {2 € D 6 < llz=2]| <a},Tzéan = {7:[0.1] = Cyz,D Path |7
joins S(x,d) with S(z,¢) in Cy,6,a, p} and let w : D — [0, 00| be wcasurable aud finite
a.e. Suppose that one of the following conditions hold:

1) [ exp(Aow)(z)dz < oo for some Orlicz map A.
B(z,0) N D

9) There exists M > 0 and 0 < @ < n — 1 such that [ w(z)dz < M-
B(z,r)N\ D

pn(B(x,7)) - (In(2))* for 0 <7 < a.
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3) n >3 and there exists 0 < a <n—2,M >0,Q € L'(DN B(z,a)) with w < Q
suchthat f |Q(2) — QB(z,nnpldz < M-(In(£))* forevery0<r<aand zisa
B(zr)0D
00 -
¢ point of D, with ¢ : (0, 2) — (0, 00) decreasing and such that I = Y 2% A < oo
k=1
4) n = 2 and there exists Q € L*(D N B(z,a)) with w < Q and M > 0 such that
f  1Q(2) = Qb(znpldz < M for 0 < r < a and z is a ¢ point of 1), with ¢ = c.
B(z,r)ND

Then lim M, (T's,5,8,0) = 0.

o0
If condition 2) holds and /; = Y. ==, then
k=1

M-l V,-e”
My(lpgap) < bt in 2
( ’6) 1D) (ln hl _‘léﬁ)n
If condition 3) holds, Qo = f Q(z)dzandl; = § —El;, then
k=1

B(z,a)nD

M-ll'Vn-e"+wn_1~Qo-13 4 wno1 - M-Iy
(Inln &)™ '

Mw (F."r_d-,a, D) S

If condition 4) holds, then

Mo(Tasap) < mo Mol e 4+2r-Qo-ls+2n-M-C-(Inln(§) —1)~
1555 (Inln %8)2

We extend some results of Dairbekov [6] and Rajala [20] concerning the eliminabil-
ity of the sets of null capacity of local homeomorphisms for quasiregular mappings,
respectively for mappings of finite distortion and satisfying condition (A).

Theorem 3 Let n > 3,B C D closed in D, f : D\ B — R” be a local
homeomorphism satisfying condition (N) and having local ACT™ inverses such that
My, (sy(B) = 0. Then f extends to a homeomorphism eround each point b € B. If
in addition M, (s)(c0) = 0 and there exists ro > 0 such that CB(0,rp) C D, then f
extends to a homeomorphism around oo.

We remark that our condition M, (s)(B) = 0 is apriori weaker than the condition
Mpo(syn-1(B) = 0 imposed in the analogue result of Rajala.

Theorem 4 Let n > 3, E C D be closed, countable, f : D\ E — R" be a local
homeomorphism satisfying condition (N) and having local ACL™ inverses and assume
that [ satisfies in each point z € E one of the conditions from Theorem 2. Then f
extends to a local homeomorphism f:D— R

We also extend some results from [1], [3] and [4] proving some Zoric’s type theo-
rems with ”singularities”.



Theorem 5 Let n > 3, K C R™ be closed, B'C R™\ K be closed in R\ K, f:
R" \ (K U B) — R™ be a local homeomorphism satisfying condition (/) and having
local ACL” inverses such that My, (r)(B U {co}) = 0. Then we can extend [ to a
homeomorphism around each point b € B and we also denote by f the extend map.
We have:

1) If f is unbounded and C(f,K U B) is compact, there exists rg > 0 such that
K C B(0,rg) and f is injective on CB(0,1).

2) If C(f, K U B) is compact, Imf\ C(f, K) # ¢ and R™\ C(f, K) is connected,
then f is injective on R™\ K. If [ is continuous on K then fIR"\ K : R\K —
R"\ f(K) is a homeomorphism and if in addition f can be extended to an open,
discrete map on K, then f : R" - R" is a homeomorphism.

For K = ¢ we obtain the following Zoric type theorem.

Theorem 8 Let n > 3,B C R™ be closed, f : R*\ B — R be a local
homeomorphism satisfying condition (N) and having local ACL™ inverses such that
My, (5(BUoo) = 0. Then f extends to a homeomorphism f: R™ — R".

We find in Lemma 2 and Lemma 3 some conditions in order Lo ensure thal
Mg, (s)(00) = 0 and using these conditions, we find the following generalization of

Zoric’s theorem.

Theorem 7 Let n > 3, f : R® — R™ be continuous so that there exists p > 0
such that f|CB(0,p) : CB(0,p) — f(CB(0, p)) is a local homeomorphism satisfying
condition (N) and having local ACL™ inverses on f(CB(0,p)) and suppose that one
of the following conditions are satisfied:

a) there exists 0 < a < n.—1 such that lim supm%; J K[(f)(m)ﬂ;ﬁg:dm <

=rod CB(0,r
. (0,7)
b) there exists 0 < o < 7 — 1 such that lim sup f Kj(f)(:n)mdri); < 0.
T RB(or)

Then, if f is unbounded, there exists ro > 0 such that f is injective on CB(0,7o)

and if f is open, discrete on R”, then f: R™ — R™ is & homeomorphism.

In [21] it is proved that if n > 3, f : R — R™ is an ACL" local homeomorphism,

having local ACL™ inverses such that lim sup f Kf(:t:)"_ldz < oo, then f is
Tl B(0,r)
a homeomorphism. Since K(f)(z) < Ks(z)"~" a.e., it results that for such maps
the relation lim sup f K;(f)(z)dz < oo holds and hence our Theorem 7 extends
r—oo B(0.r)
Perovic's result, since in our theorem we permit the average f Ki(f)(z)dx < oo
B(0,7)

to have a logarithic growth to infiuity and we still obtaiu a Zoric’s type result. The
preceding theorem also extends our earlier result from [4], established for maps of
finite distortion and satisfying condition (A).

We extend now a known theorem from the theory of quasiregular mappings con-
cerning the injectivity radius of a local homeomorphism, generalizing a result es-
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tablished by Martio Rickman and Viisdld for quasiregular mappings in [17] and by
Koskela, Onninen and Rajala in |14] for mappings of finite distortion and satisfying
condition (A).

Theorem 10 Let n > 3,a > 0, [ : B(0,a) — R" be a local homeomorphism
satisfying condition (N) and having local ACL™ inverses such that there exists 0 <
a <n—1sothat My = sup f F\’I(f)(x)ﬁ—nd—;j; < o0o. Then f is injéective on

0<r<ap(0,a) r
B(0,4,), where d, > a- e - exp(—ezp(C - Ma)%), with C a constant depending only
on n.

Theorem 12 Let n > 3,a > 0, f : B(0,a) — R™ be a local homeomorphism
satisfying condition (N) and having local ACL™ inverses so that there exists @@ €

IL (B(0,a)) such that K(f) < Q ae. in B(0, a) and let Q, = f Q(x)dz and
B(0,%2)

M,= sup f |Q(z)— QB(O",)I(]D‘Z)“, where 0 < a < n — 2. Then [ is injective
0<r<apB(0,a) r

on B(0,6,), where §, > a-e: exp(—exp(CiMa + CQQG)%), with C; and Cs constants

depending only on n.

Our paper may be considered as an attempt of considering mappings of finite
distortion under minimal assumptions. One of the natural minimal assumption is to
consider mappings / : D — R" a.e. diflerentiable with J;(z) # 0 a.e., since for much
maps we can calculate a.e. the dilatations Ko(/f), K 1(f), and of course, a map of
finite distortion and satisfying condition (A) verifies this minimal assumption.

The class of local homeomorphisms f : 1) — R™ satisfying condition (N) and
having local ACL™ iuverses is a special class of mappings of finite distortion. Indeed,
we see from Proposition 1 such that a map [ : D — R is a.e. differentiable with
Ji(z) # 0 a.e., and since f is an a.e. differentiable local homeomorphism, we use
Theorem 24.4, page 84 [27] to see that J; € Lj,(D). Let now g : V — U be a
local inverse of f. Since g is an ACL™ homeomorphism, is a.e. differentiable, and
if A= {y € V|g is differentiable in y and Jy(y) = 0}, we use Sard’s lemma [3] to
see that jtn(g(A)) = 0, and using the fact that f satisfies condition (NN), we obtain
that p,(A) = 0. It results that g is ACL™, a.e. differentiable on V and Jy(y) # 0
ae. in V, and from Theorem 6.1, page 150, [7], we see that f € Wllt;j(U, R™) hence
fewWLHD,R").

Working in the class of local homeomorphisms satisfying condition (V) and having
local ACL™ inverses, we don’t need such a map to belong to Wllo'c"(D, R"), and we
don’t impose the map K to be in LP(D) for every p > 0, as is supposed in the case
of the mappings of finite distortion and satisfying condition (A4), or in the case of Q-
homeomorphism, and in these conditions, we still obtain important qualitative results
based on the modular inequalities from Theorem 1 and 2. An important subclass is the
class of ACL™ local homeomorphisms having local ACL™ inverses, since such maps
satisfy condition (N), are a.e. differentiable with Jy (z) # 0 a.e. and the local inverses
also satisfy condition () and arc a.c. diffcrentiable with non-vanishing jacobian a.c.

In Example 1 we find a homeomorphisin f : D — D' satisfying condition (NV)

[@5
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having ACL™ inverses for every m 2 1, which is not a map of finite distortion and
satisfying condition (A) or a Q- homeomorphism, which shows that our theory is
consistent. More precisely, [ ¢ W,f;f([), R") for every p > 1 and the distortion map
Ko(f) ¢ LL,.(D). It results that our extensions are effective and lead to the conclusion
that many of the assumptions fromn the theory of mappings of finite distortion and
satisfying condition (A) or from the theory of @-mappings are redundant in order to

extend some basic properties of quasiregular mappings.

In the present paper we considered only local homeomorphisms. We used the
modular inequalities 1) and 2) and basically the methods from [4], [5], [10], {11},
[14], [15], [18], [19], [21] to improve some results concerning Zoric’s theorem, the
calculus of the radius of injectivity and some eliminability results. Using the usual
technique developed in the above paper, we can consider problems such as boundary
extension, distortion estimates, equicontinuity results. We don’t attack this problems
now, in the particular case of local homeomorphisms, since we shall do this thing
in full generality in a more general setting. We give here only some extensions to
some known theorems from the theory of quasiconformal mappings from the book
of Viiisild |27| which arc specifically for howecotnorphic wappiugs. In a forthcowing
paper we shall consider the problems mentioned before for open, discrete mappings
f: D — R™ with pa(By) =0, pn(f(By)) = 0, giving in this way further extensions
to the theory of the so called mappings of finite distortion and satisfying condition
(A) from [9], (12}, [13], [14}, [15], [29] and to the theory of -mappings from [10}, [11],

(18], [19], [24], [25], [26]-

2 Preliminaries

If T is a path family from R", we set FI)={p: R" — [0, 00] Borel maps| [ pds > 1
v

for every v € T}, and if w : D — [0,00] is finite and measurable a.e.. we put
& R - [0,00),0(z) = w(z) if z € D,(z) = 0if z ¢ D and we set M, (1)
eiln‘gr) [ p*(z)o(z)dz, the w modulus of the path family I and for w =1 we ob-
pcst R"

tain the usual modulus. If [';,Tz are path families, we say that I'y > I'2 if ev-
ery path v € Ty has a subpath is T’y and as in the classical case, we prove that if
[, > Iy, then M,(I'1) < M, (Ty) and if T3, ;... Ty, ... are path families, we have

MUZT) £ X M, (). Also, if wp < we, then M,, (T) < My, (). We define
1=1

for E,F ¢ D,A(E, F, D) to be the family of all paths, open or not, which joins E
with Fin D. f A C D and w: D — [0,00] is measurable and finite a.e., we say
that A is of zero w-modulus (and we write M,,(4) = 0) if the w-modulus of all paths
in 1 having some limit point in A is zero, and if w > 1 and M, (A) = 0, then cap
A=0.If¢:[0,1) — R" is an open path and x € R™ we say that 2 is a limit point
of g if there exists ¢, — 1 such that q(tp) — 2. If A C D is at most countable and

limo M,(AB(z,r) N D,CB(z, R) N D, D) = 0 for every © € A, we prove as in the

classical case that A1,(A) = 0 and we give such conditions in Theorem 2.
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A domain A ¢ R is a ring if CA has exactly two-components Gg and C; and
we denote A = R(Co,C1) and 'y A(Cp, C1,R™). We say that a domain DcR®
has property P in the point b € 8D if M(A(E, F,D)) = oo for every connected
sets E and F from D with b € ENF and we say that D has property P in b
if for every by € OD,by # b, there exists a continua F C D and § > 0 so that
M(A(E, F, D)) '2 o for every E C D connected with b,b; € E. Ifa,b e R", we set

— la—b]| s n — 1 : n
q(a,b) = TR T if a,b € R™ and g(a,0) = W ifa € R—,nthe
chordal distance between a and b. Then ¢ is a metricon R and if A, B C R we
set g(A) and (A, B) the diameter of A, respectively the distance between A and B,
considering the chordal metric on R". If Dy,.... Dj, ... is a sequence of domains from
R", we set ker D; = {y € R"| there exists V € V(y) and j, € N so that V C D; for
J gy}

Given r > 0, we set H,,(r) = inf M(T'4), where the infimum is taken over all
rings A = R(Cy, C1) so that Cy contains 0 and a point a € S (0,1) and C; contains
oo and a point b € S(0,7). Then H, : (0,00) — (0,00) is decreasing, Eir% H(r) = oo,

lim H(r) =0 and if A= R(Co,C1),0,b € Co,c,00 € Ch, then M(L'4) > HH(H%EEH)

(see Theorem 11.9, page 36, [27]). Given 0 < r < 1 we denote Mn(r) = infM(T 1),
where the infimum is taken over all rings A = R(Cp, C1) with ¢(Co) > r,q(Ch) >
and we know from Theorem 12.5 page 38 that A, : (0,1) —» (0,00) is increacing and
lim An(r) = 0.

If f € LY(A) for every A C D bounded, we set f4 = [ % for A C D bounded
A
and we write f4 = f f(z)dz. Here p, is the Lebesgue measure from R™ and we denote

A
by m,, the p-dimensional Hansdor(l measure from R”™. We say that [ : D — R” is of

finite mean oscillation in a point z € D if imsup f |/(2) — fB(xn|dz < co and
r—=0  B(x,r)

we say that f is of bounded mean oscillation on D (and we write f € BM o(D)) if
there exists M > 0 so that f |f(z) — fgldz < M for every ball B C D. We denote by
B

Wllo’f (D.R™) the Sobolev space of all functions f : /7 — R™ which are locally in 7P
together with their first order weak partial derivatives. Using Proposition 1.2, page
6. [23], we see that f € C(D,R") is ACLP for some p > 1 if and only if f belongs to

the Sobolev space W17 (D, R™).

loc

If B, F are Hausdorff spaces and f : E — F is a map, we say that [ is open if
f carries open stes into open sets, and we say that f is discrete if f ~1(y) is discrete
or empty for every y € F. If p: [0,1] — F is a path and z € E, we say that a
path ¢ : [0,1] — F is a lifting of p from z if ¢(0) = x and [ o ¢ = p and we say that
¢ :[0,a) = F is a maximal lifting of p from zif ¢(0) = 2.0 <a < 1, fog = ][0, @) and
« is maximal with this property. We say that f : & — I lifts the paths if f lifts every
path p : [0,1] — F from every point z € E with f(z) = p(0). A local homeomorphism
f: E — Fis a covering space if for every y € F there exists V € V(y) and Q; so that
[~YV) = UicrQ: and f|Q; : Q; — F is a homeomorphism for every i € I.

If f: D— R"is amapand b€ 9D we set C(f,b) ={we R"| there exists b, €
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D, by # b,bp — b so that f(bp) = w} and for B C 9D we set C(f, B) = UpeBC(f,b)-
IfQ C D, weset for be 8D,C(f.h,Q)={we R"| there exists b, € Q,bp # b,bp = b
so that f(b,) — w}. If /: D — R" is a map, we say that [ salisfies condition (N) if
pia(f(A)) = 0 for every A C D with un(4) =0.

We can extend in a natural way the definition of a local homeomorphism satisfying
condition (N) and having local ACL™ inverses to R" valued maps as follows: Let
f:D—-TR". Then f is alocal homeomorphism satisfying condition (N) and having
local ACL™ inverses if for each z € D there exists U € V(z) and a Mobius map g
so that g o (f(U)): U — R™ is a local homeomorphism satisfying condition (N) and
having local ACL™ inverses.

If a : [a,b] — R™ is a rectifiable path, we denote by sq : [a,b] — [0,{(a)] its length
function, and we have o = a® o s, where ¢ is the normal representation of o (see
[27], page 5). If f : D — R" is continuous, open, discrete, o : [a,b] — D is a path and
B = f o o is rectifiable, we can define o, a reparametrization of o by the property
a = a* o sg, and the dcfinition is correct, duc to the discrectness of the map f. We

have the relations 8° = f o a*, (a*)? = °.

If f: D— Rrisamap, A C D,y € R*, weput N(y, J, A) = Card [~}(y)NA and

N(f,A) = sup N(y,f,A). If A€ L(R"R") we put ||A]| = sup AW, U(A) =
yeR" [All=1

" 'ltﬁf‘ . [|A(h)|| and we denote by V,, the volume of the unit ball from R™ and by wn—1
the area of the unit sphere from R™.

If £ € D,a >0 and ¢: (0,2) — (0,00) is a map, we say that x is a g-point of
D if pn(B(z,er) 0 D) < @(r) - pa(B(z, 1) N D) for every 0 < r < £. If (t) = c for
¢ > 0 small enough, we say as in [11] that D satisfies a doubling condition in z. If
£ € IntD, then z is a w-point of D, with ¢ = c™. We shall need the following lemma
from [29]:

Lemma A Let [ : D — R" be a local homeomorphism A, B C D such that
flA: A— f(A),f|B: B— [f(B)isa homeomorphism, AN B # ¢ and f(A) N f(B)
is connected. Then flJAUB: AUB — f(AUR)isa homeomorphism.

3 Proofs of the results

Proposition 1 Let f : 1 — R™ be a local homeomorphism having local ACT™
inverses. Then f is a.c. differcutiable ou D and J s(z) #0 a.e. on D.

Proof Let U ¢ D be a domain so that flU : U — V is a homeomorphism
and h = (f|(U))~! : V — U is ACL". Then h salisfies condilion (N) and is a.e.
differentiable (see [22], page 190) and let An = {y € V|h is not differentiable in y}
and Zy, = {y € V \ Ap|Jn(y) = 0}. Then i (h(44)) =0 and we see from [2] that
pin(R(Zn)) = 0. Then Ini(A, U Z,) = ¢ and let yo € V\ (Ax U Z1) and zo = A(yo)-
Then h is differentiable in yo and Ja(yo) # 0 and ||f(z) = f(z0) — R (yo) Mz —z0)l| =
1A (yo) ~HI(llz = w0 = h'(wo)(f (=) = f(zo))ll = 1A (yo) I - [1A(f(z) — A(f(z0)) —
1 (yo)(f(x) — f(xo)]l — 0if x — z0. It results that f is differeutiable in 2o and
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I (zo) = h'(yo) %, hence Jy(zo) # 0. We proved that f is differentiable and Jy(x) # 0
on U\ h(Ax U Z),) and the proof is finished.

Proposition 2 Let f: D — R" be a local homeomorphism having local ACL™
inverses and lel T be a path family in D and T = {y € T'|[ o~ is locally reclifiable
and there exists a closed subpath a of 7 such that a* is not absolutely continuous}.
Then M(f(T) = 0.

Proof Let U;,V; be open sets such that f(D) C URV; and f|U; : Ui = Vi
is & homeomorphism and g; = (f|U:)~! : V; — U; is ACL" for every i € N. Let
I = {8 € f(T')|8 is rectifiable and for every a € [ such that § = foa and every
compact interval I C [0,1(B)] such that B°(I) C V; for some ¢ € N it results that
a*|I = g; o °| is absolutely continuous on I}. Using a theorem of Fuglede (sce
[27], Theorem 28.2, page 95), we see that M(/(T') \ ) =0and let [y = {7 € T
such that foy € I'}. Then f([1) = " and let @ € Ty and 3 = foa. We
have that 8° = foa*,a* : [0,I(8)] — D and using the compactness of (0,1(8)]
we can cover this interval with intervals Iy, ..., Im such that 3°(f;) C Vi, for some
ki,,km € N,i=1,...,m. Since a* is absolutely continuous on each interval I, ...,Im
it results that a* is absolutely continuous on [0,1(8)]. We proved that I cr\Iy,
hence M(f(F)) < M(f(I'\ [1)) = M(f(L)\I") = 0.

Proof of Theorem 1 Let I be a path family in D and Dy, D1, ..., Din; ..., domains
so that D,, / D. Lel Ty = {a € T|Ima C D} and Ty, = {a € Tkla is a closed
path, f o« is rectifiable and o* is absolutely continuous} for k € N. We fix k € N
and let fx = fIPr : D — f(Di). We cover f(I;) with domains V; such that
DN f~Y(V;) = Uég)l(/ﬁ,f[(/ji 2 = Viis a homeomorphism such that g;; =
(f|U;:)~1 : Vi = Uji is an ACL™ map for j = 1, oy j(i),i € N. Let Aj; = {y € Vilg:
is not differentiable in y}, Z;; = {y € Vi\ AjilJy,, (y) = 0} for j =1, .., j(@),7 € N and
let A= u;‘;lu?,.(;)l g;i(A;iUZj;) and C = UR, Ui(:l A;;UZj;. Using Sard’s lemma (see
[2]), we see that p1n(A) = 0 and since f satisfies condition (N) and C = f(A) it results
that p1,(C) = 0. We see that A and C' are Borel sets of null measure, f(A)=C, fis

differentiable on Dy \ A and J(z) # 0 and D \ A.
p(z)

Let now p € F(T'x) and p : R™® — [0, c0] be defined by p(y) = SUP ¢ 1= (y) T(F ()
ifye f(Dy)\C,p(y) =coonC and p (y) = 0 otherwise. Then p' () = sup p(g5:(¥))-
g;: W)l g = 1,...,j(3) for every y € V \ C and every i € N. Since V; \ C are Borel
sets for i € N, we see that y;iiVi \ C are Borel maps for i € N,j =1, .., j(4), hence
p' is a Borel map on V; \ C for every i € N and this implies that p' is a Borel map.

Let now a € [, 8 = foa and Ag = {t € [0,1(8)]|8%(t) € C}. If p1(Ag) > 0, then
L(B)
1<oo= [oods< [ p'(BOQt))dt = [p'ds.
Ao 0 B

Suppose now that yuq(Ag) = 0. Let By = {t € [0,{(B)]|a* or (Y is not differ-
entiable in ¢ or ||8°(t)]| # 1}. Then p1(Bo) = 0 and let Co = Ag U Bo. We fix
t € [0,1(8)] \ Go. Then 3°(t) € V; for some i € N and since fe(a*(t)) = B°(t),
there exists j € {1,....j(i)} such that o*(t) € Uj; and since BO(t) ¢ C, we see
that g;: is differentiable in °(t) and Jg, (4°(t)) # 0. Differentiating in the equality



a*(t) = gi(B(0)), we see that ” (1) = gi(AENE (1) = g(fle*O)(B° (1) =
(F (@) (&), ence 1 = (18 (@)l = 17 (@) @I 2 1/ (@ @)lle” Ol
It results that I(f'(a*(t))lle* (t)]| < 1for ae. L€ [0,1(B)]-

Since o* is absolutely continuous on [0.1(B)] it results that Sq- is absolutely
continuous on [0, (/3)]. Using a change of variable formulae for absolutely continuous

and increasing real mappings, we obtain

i(B) (g i(B)
[ pis= [ fE0)= [ ez [ e ennis o
3 4] 1] 0

i(3) 1(B)

[ e @)t e = [ ol o)) s (0=

4] 0

1(3) B)

(p00° 0 5a-) () (N)dt = | p(a®(t))dt = [ pds 2 1.
/ [ weena= |

We proved in both cases that [ p'ds > 1, hence p € F(Ty).
3

We take now as in [23], Theorem 8.1, page 49, 7jp / p Borel maps so that

® 0 < mp(y) < piy)if0 < p(y). Lety € f(D)\C. Theny € V; for some i € N and
5 /o (y) is a finite set from Dy and we can find z € Dy \ A such that y = f(z) and
«'f piflz)) = ﬁ% For such a point z we have n,(f(z)) < p(f(z)) = T(%%)—)’ hence
é the set Q, = {z € Di \ Alnp(f(z)) £ F{fl%ﬁ} is nonempty for every p € N. We also
; remark that f Yy)NQp # ¢ for every y € f(DE)\C. Since f is an a.c. diffcrentiable
4 local homeomorphism, we see from [27], Theorem 24.4, page 84 that J; € L}, (D)
3 and since / satisfies condition (V). we use the change of variable formulae from (7],

Theorem 5.23. page 132 and we have

[ asiy)dy = / iy (y)dy < / iy (N (y, £, Qp)dy =
. R J(DN\C (D NC

/ ()N (. £, Qp)dy = / i (f Ty (z)]dz <
W 11Qy) Qs
hic
ik Iz ;
7 [t < [ @i
@)
‘)\%’ Qp Rn

It results that [ 7p(y)dy < I\IK!(I)(I:)C) for every p € N and letting p — 00, we
RH

obtain that [ o (y)dy < MK,(”(f“k), hence we see that M(f(L)) < MK,(“(f‘k)
Rn
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for every k € N. Using the generalization of Poleckii’s lemma given in Theorem 1,
we see that M(f(I'x)) = M(f(Tx)) € Mk, (5)(Ux) < M, ()(L) for cvery k e N.
Now Iy / T. hence [(Tx) / J(T') and using a resull of Ziemer [28], we see Lhal
M(f(T)) / M(f(T)). It results that M(f(I)) < Mg (1)(T) and the theorem is
proved.

Proof of Theorem 2 If condition 1) holds, we use Theorem 53, page 24, [15]
(see also Lemma 2 from [5]) to see that 6111{.10 M, (Tz4,4,0) = 0.

Suppose that condition 2) holds. We can take z =0 and let p: R" - [0, 0] be
defined by p(z) = 1/Inln & oy In iy for z € Co 50,0, p(2) = 0 otherwise. Let t =
ae* By = B(0,tx)s Ak = Cotepsue.p for k € N. Then Ay C B, |l2l|™ < 455
if z € Ap.k+1 <lInqg for every z € Brand [ w(z)dz < Mp,(Bj)k* for every

BrND

k € N. Let m € N be such that {41 < J < tm. Since p € F(Tos,a,0), We have

1 w(z)dz
]V[ur a S/YLZWZ(]Z——T—' / —_—_—u:(:'__s
Coser) < | PO Gy [zl (b 757"
Rn 0,5,0,D

1 i / w(z)dz Vae “ / w(z)dz
<
(Inln )" EA [EIRCY =t 0nln%$>"§,4 pin (Bl 57" =
k Ak

Ve

=1
. <
(Inln )" f\;-‘; (k+1)° -

) tn(Br) ~ (Inln %9)“

/' w(z)dz MV,e™ly
BNl

Suppose now that condition 3) holds. Then n > 3 and 0 < a < m— 2 and let
Qr = f{ Q(z)dz for k € N. Keeping the notations used before, we have that

B.ND
f 1Q(z) — Qildz < Mk for k € N and let §; = i f JQ,SZ)_?fl,,dz il
BxnD K=0A, lul ilnmi
So=3% ”—zllr(([%k—a_c—)—ndz. We have
k=0 A =1

fl=li

s 1 (e -G,
s e Zounwk)A/ (ngmyr S

k=
71 1
Vn(%”' R e / 2) — (]zS]V[VnPn] )
,;J o (Br) (b +1)7 1Q(z) — Q& 1
B BrxND

1

Also, [Qrr1 - Qul = oy [ (Q2) - Qudal < XERy [ 1) -

Bk+1ﬁD BrnD

k=1
Qildz < MEk*p(try1) for every k € N, hence Qx < Qo + S |Qupt — Qi € Qo +
=0
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wWn—1

k—1 .
M - 2 la(ﬂ(tH'l) < Qo+ A"Ik“+1¢(tk) for k € N. Since f ﬂ?lT""Udfﬁ_F < T+ for
=1 Ap *

: m
every k € N, we see that Sz < wy—1- > (&‘{7; < Wy—1Qois + Mwy—1ls. Now
k=0

MulTagan) < [ s < [ QM < Gy

R~ R»

/ ?(Z)dfe < S +af2 5(Ml,lv,,e"+w,,_1Q013+Mw,,_112)/(1n1ni?)".
llzl]*(In i)™ ~ (oo 55)" y

0,6,0,.D
Suppose now that condition 4) holds. Then n = 2,a = 0, @ = c and we follow the

proof from [11]. We have Sy < 27Qql3 +27MC S L < 27Qols + 2 MC(lnmn —
1) < 27Qols + 2rMC(lnln(§) — 1), hence M,(Tos0,0) < [Mrhe? + 2mQols +

2rMC(Inn(2) — 1)}/(Inln %)%

Remark 1 We see that if z € IntD and limsup f w(2)dz < 0o, then, fora >0
r—0  B(x,r)

fixed and small enough, we have }irr}J M(Cz 6,0,0) = 0. Also, if limsup fB(I D 1Q(2)—
— r—0 1
QB(z,r)npldz < 00 (i.e. Q has finite mean oscillation in z) and the domain D satisfies
a doubling condition in z € D, it results that }ir% M,(Tz66,0) = 0, and this case
was proved in [11]. Of course, condition 3) is satisied when Q € BMQ(D), and this
case was proved in [18], Lemma 2.2, page 52. Also, for z € IntD, we can take in case

o0

3) p = e" and we see that > ;_—n—_l;ﬁ' is convergent for 0 < @ < n—2. Forn >4
k=1

and 0 < « < 1 — 3, we can take in case 3) p(t) =In$ fort € (0, £) and we see that

X o) o 1
b= ) oS Y mma=z <00
k=1 k=1

Lemma 1 Let D, D' be domains from R™, f : D — D' a diffeomorphism, w :
D' — [0,00] be measurable and finite a.e. and let T be a path family from 1. Then
Mo (f(T) € Myos.i,(s)(T). If f is conformal, i.e. if K1(f)(x) = Ko(f)(z) in D, then
My(f(T)) = Muog(T)-

Proof Let p € F(T') and let p' : R* — [0,00] be defined by py) = o(f7t (W)
() ()| forye D', p'(y) =0fory ¢ D'. Then p' € F(f(I')) and we have

M) < [ v e [ wwr oI Gl =

(D) f(D)

et KIUT W)
[ wwer T T

f(D)
[ U U ) KU Il =
(D)
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D
Since p € F(T") was chosed arbitrarily, we proved that M, (f(T)) < M o5.k,(s)(T)-
If [ is conformal, then also [~ is conformal, henee K (f)(f~1(w)) - Ki(f~!)(y) =
Ko(f~Y)(y)K1(f~Y)(y) = 1 for every y € D'. Using the result proved before, we see
that M, (f(T)) < AIwo]-Kl(f) (T) < M,(f(T)).
We proved that AL.(f(T)) = A[NQI.K,U)(F).
Lemma 2 Let D C R™ be an unbounded domain, w : D — [0, oo] be measurable

and finite a.c. so that there exists 0 < o < n—1 such that lim sup (l—"—_)';‘ I ﬂ'ﬁf’};dy <
r—00 CB(0,r)ND

o0, and let Ty, = A(B(0,r)ND,CB(o,s)ND, D) for 0 < r < s. Then lim M, (C,s) =
0 for 1 < r fixed. -

Proof Let ¢ : R" — R",g(z) = i for z # 0,9(0) = oco. Then g is con-
formal .:md let A« = A(g(D)NB(0,1).9(D) N CB(0,1),¢g(D)) for 1 < r < s.

Then e [ w(g(z))dz = [ w(a(®)Jgm1(g(®)- Jy(z)de grmys =
9(D)NB(0,1) B(D)QB(O,%)
7)™ 1) w(y)Jg-1(y)dy = ln_r)“ J ﬁ%dy < M for r > rq.
a(MNR(0,1) DNC B(o,r)

Using Theorem 2, condition 2) and Lemma 1, we see that M., (T'ys) = Muog(Ars) —
0 if r > 1 is kept fixed and great enough and s — oo.

Lemma 3 Let D C R™ be an unbounded domain, w : D — [0, 00] be measurable

and finite a.c. so that there exists 0 < a < n— 1 such that limsup [  w(z)dz/r"
¥—00  B(0,r)ND

(In7)® < oo. Then there exists rg > 1 such that lim M, (T'.s) = 0 for r > 7o fixed,
where T, is the path family from Lemma 2.

Proof Lat M > 0 and rg > 2 be such that [ w(z)dz < Mr*(Inr)* for
B(0.r)ND

r > rg. We have for r > rg:

" w(r) =
(Inr)e / 1k HQ" lnr g

CB(0,r)ND L DN(B(0,r-2k+1)\ B(0,r-2%))

wiz) oo i 1 / w(x)dx<__g__.

[[z]]? TS (Inv)e 92kn p2n =~ r*(lnr)®
=0 B(0,r2%+1)"D
e (2k+lr)n -~ M o 2kn2n,rn
o AT - | @
2 3 (In(r2*7h)) o (Inr)e I;) 92kn
((k+1)I2+Inr)® nm M(k+2)" e
TBE <2 ;)—————zkn <M.2".3 -Z?)—Q—H<oo
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We apply now Lemma 2.

Remark 2 The conditions from Lemma 2 and Lemma 3 imply that M, (0) =0.
Also, if A C D is a countable set and w satisfies one of the conditions from Theorem
2 in each point from A it results that M, (A) =0.

Proposition 3 Let 2 > 3,B C D such that BN D is closed in D, f : D\ B — r"
be a local homeomorphism satisfying condition (N) and having local ACL™ inverses
such that My, ((B) = 0. Let z € D\ B,p:[0,1) = R*p(t) = (1-t)f(z) +ty
for ¢t € [0,1) be such that Tmp N C(f,D\ B) = ¢,q : [0.1) = D\ Bbea path
such that g(0) = z,f ogq = p and there exists a domain U C D\ B such that
ITmg Cc U, flU : U — f(U)isa homeomorphism and let g be its inverse. Then, if
D is bounded, there exists z = lx_r& g(t) € D,rg > 0 and a local inverse of f,gr, :
f(U)U B(y,m0) = U U gro(B(y,10)) C D extending g, with g, (y) = 2. If D is
unbounded and M, (s)(c0) = 0, there exists z = }1_171} q(t) € DU {oo},ro > 0 and
a local inverse of f,gr, : f(U)U B(y,0) — U U gro(B(y, 10)), extending g, with
gro(y) = z and in the case z = 00, gro(B(y,70)) is a neighborhood of oo.

Proof. Step 1. Suppose that I is bounded. Let d be the line containing Imp, dp =
d(y,C(f,0D\ B)) > 0 and let ro = min{do, || f(z) — yll}. We see that for 0 < 1 <
r0,S(y,r) intersects d in two points, S, (south pole) and N, (north pole), and we
choose S, so that d(f(z). S,) < d(f(z),Ny) for 0 <1 < 7o We cover S(y,r) \ Nr
with disjoint meridians starting from S, and we also denote by Ar the set of all
such meridians for 0 < r < rg. Let §, = p(s,) and we consider the spherical caps
Cs,» with center y and radius r opening from S, and having opening angles s for
0 < r < rg. Let t(r) be the supremum of those opening angles s for which g extends
to C, - as a homeomorphism for 0 < r < rg. Then g(Cy),) C D and if t(r) < m,
we can find yr € OCyryr and Yp € Ci(r)rr¥p = Ur such that g(y,) — z € B and

if t(r) = m, we take yr = N,. We set E.. = (B (yr,€) N Cyry.r), Br = N Ey. for
e>0

0 <r<rgandc >0 Then E;  are compact subsets from D, E,. N 0D C B,
f(Eren(D\ B)) C B(yr,¢) hence E, is a compact subset from D,E.NnOD C B
and f(E.N(D\ B)) = {y,} for 0 < r < 10. Since capB = 0 and [ is a local
homeomorphism on D\ B it results that Cardl, = 1and if ¢(r) < 7, Er = {b,} with
b, € B, for 0 < r < rg.

Let A = {r € (0O,r0)|E- N B # ¢}.T = {7 : [0,1) = Ci),- path lv(0) €
S,.9(1) = ¥, 7([0,1)) C Cyryr) forr € (0, 7o) and let I'y = {y:10,1) = D path
|7(0) = q(s,) and there exists ~ €Tl with foy= ~" and 7 has at least a limit point

in B} for r € (0,r0). Let T' = U I, T = U I, Then My, () =0 and we see
reA r€EA
from [27], Theorem 10.2, page 28, that there exists a constant c,, depending only on 7

such that ¢, | 4 < M(T"). Since I' > J(T), we have ¢ [ & < M(I") < M{/(I)) <
A ]
My, (5)(T) = 0, hence pi(A) =0.

We proved that for r € (0,70) \ A, ¢ extends to a homeomorphism on S(y, r) and
that B, = ¢(S(y,r)) bounds a Jordan domain D, from D. Let I = p([$r,.1)). Let

14



W= |J A,UI Then g extends to a homeomorphism on W and Q = g(W) C
r€(0,r0)\ A

Step 2. Arguing as in [29], [30], we consider for simplicity the case n = 3. We can
take p(1) = 0 and the polar coordinates (p, @, %) so that the coordinates of a point
from the segment I are ¢ = 0,0 < p < po. We consider for 0 < p; < pg.0 < o < 2m
the maximal surfaces L'(gg) = {20 < p1 < p < po,¥ = ¥0,0 < ¥ < ¥(po)}
for which the components L(izg) of f~1(L'(o)) intersecting g([sr,,1)) are mapped
homeomorphically by f on L'(gg). If 0 < ¥(pg) < 7, we can find at least a point
Ugo € L'(0) N {2l = 9(wo),» = @o} such thal il Ty, = {7: [0,1] — L'(wo) path
[7(0) € I,7(1) = Yy}, it results that every maximal lifting of some paths 7€ I‘;,O
starting from some point from g([s,, 1)) has at least a limit point in B and let

Ty, be the family of all such paths. Tet A= |J T A= U T, and
0<p(p)<n 0<¥(p)<m

E = {¢ € [0,2m)|0 < ¥(p) < 7}. Then Mg, (s)(A) = 0 and as in [29], {30} we show
that there exists a constant a,, (depending in general on n) so that Af (T) > anp (E).
We have anpir(E) < My, (s)(A) = 0, hence i (E) = 0. Letting py — 0, we can find
E C [0,27) with z;(E) = 0 so that L'(wg) = {20 < p < po,¢ = 0,0 <9 < 7}
has the property that the component L(yp) of f~(L (o)) intersecting q([sr,,1)) is

mapped homeomorphically onto . (o) for @ € [0,27) \ F. Let G = U L(p).
WG[O»ZW)\E
Then G C D and H = f(G) = U L(p) and let M = W U H. We see that
wE[0,2m)\ E

flQ:Q— W and |G : G — H is a homeomorphism and from Lemma A we see that
flQUG : QUG — M is a homeomorphism, hence g extends to a homeomorphism on
M and g(M)=QUG C D.

Step 3. We can suppose that ro ¢ A hence B, C A(QUG). Let K = B(y,ro)\ M.
Then K is nowhere disconnecting, hence C(g,b) is a continua from D for every b €
B(y,ro) and since capB = 0, f(C(g,b) \ B) = {b} for every b € B(y,ro) and [
is a local homeomorphism on D \ B, we see that C(g,b) is a point for every b €
B(y,ro). We can therefore extend the map g to a continuous map defined on B(y, ro).
Now, since [ is a local homeomorphism around each point from 9(Q U G) \ B and
F(A(QUG)\ (BU B,,)) C K, it results that also 8(Q U G) \ (B U By,) is nowhere
disconnecting. Then Q U G = D,, and C(f,b,Q U G) is connected for every b € Dy,.

We define F: D,, —» P(R") by F(b) = C(f,b,QUG) for b € Dy,. Then F(z) =
f(x) on Dy, \ B and let us show that F is injective on Dy, i.e. F(b1) N F(by) = ¢
if by # ba, b1,ba € D.,. Indeed, otherwise there exists by, b2 € Dy, b1 # by so that
F(b))NF(b2) # ¢ and let z € F(b1)NF(b). We can find ap, ¢, € QUG,ap — b1, ¢p —
by such that f((ay) — z, f(cp) — 2. Let ¢ > 0 be such that f(ap), f(cp) € B(z,¢)
for p > p.. Then a,,c, € g(B(z,¢) \ K) for p > p. and letting p — oo, we see that
b, by € g(B(z,€) \ K). Letting ¢ — 0, we obtain that b, bs € C(g,2) = g(z) hence
by = be. We proved that F' is injective on D, .

Now f| Dy \ B: Dry \ B — B(y,r0) \ F(B) is a homeomorphism. Suppose that
capF(B) > 0 and let Tg = A(By,. B, Dyy), Ty = A(S(y,r0). F(B), B(y,70)). We see
that Ty € f(To), hence 0 < M(T'g) < M(f(To)) < Mg, ()(To) = 0, and swe reached
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a contradiction. It results that capF(Dy, N B) = 0 and since F(b) is a connected
sct for cvery b € Dy,, wc obtain that F(b) is a point for cvery b € D,,, hence
F:D,, — B(y,r0) isa homeomorphism whose inverse is an extension of g.

The proof is gimilar in the case when D is unbounded.

Remark 3 The proof of Proposition 3 is the key for obtaining Zoric’s type theo-
s and is based on the ideas of Zoric [29], [30]. The arguments used in Step 1 are
basically the samc as in the papers of Agard and Marden [1], Cristea (3], Dairbekov
6] and Rajala [21]. Thc arguments from [1] and [3] remain valid only in the case
when B is a fnite seb. In [21] there is & gap in the proof of Theorem 1 from [21} in
applying Lemma A, so we had to go back to the original proof of Zoric from [29] and
(30} in Step 2.

Proof of Theorem 3 Let By = {5 € B} f cannot be extend to a homeomorphism
around b} and suppose that By # and let b € By. Let 2, € D\ B,z — ¥ and
ye = f(zx) — y, and using if necessary a Mobius transform, we can presume that
y € R™. Sincc capB = 0, wc can take p > 0 such that S(b, p) N B = ¢ and wc can

uppose that z; € B{(b,p) for every k € N and ry = d{y, F{S{,p)) > 0. For each
k € N there exists gi a local inverse of f around zj and let ti = sup{s > Olgi exists
on B(yk,s) and Im gx. C B(b,p)\ B} for k € N. We also denote by gi the extension
of gi on B(yk,tx) for every k € N. If ¢ = oo, then C(gk,00) C B(b, p) is a connected
sct and since capB = 0 and there cxists ¢ C D \ B at most countablc so that [
takes finite values on D\ (B U C), we see that CardC(gi,o0) = 1, hence g, maps
R" homeomorphic onto a proper subset of R™, which is topologically impossible. It
results thet ¢ < co for every k € N.

Let Dy = gi(B{yk,tx)) for k € N. Suppose that there exists k € IN so that Dg
has a boundary point by € Bo N B(b, p). We can find b,, € Dy s0 that cm = f(bm) —
€ S(yk. t)- Let po > O be such that S(bo, po) 1 B = ¢ and let r = d(c, f(S(bo, p0))

c
and wc can suppesc that by, € Blbg,po) for m C Nand 7 > 0. Let pm 1 [0,1] —
Ble,71),pm(t) = (1 = Ocwm + Lc for L € [0,1] and let g [0,1) — B(by,po): G =

qk © Pm]|[0,1) for m € N. We see that C(gx,c) is a connected set from B(bo, po) and
since f is a local homeomorphism on B(bg, po)\ B, capB = 0 and f(C(gk, c)\B) ={c},
it results that CurdC(yx,c) = 1. Since bm € Dk, J(bm) = ¢m € B(yk, L) for every
m € N and ¢, — ¢ we sc that C(ge,c) = {bo}, hence lz_xg gm(t) = bg. Using
Proposition 3, we can extend gi to a homeoworphism around b and this contradicts
<he fact that by € Dy. It results that each domain D, has at least a boundary point
ax € (b, p) for k € N. Let yi be so that ||yx — y| < 2. Then B(y, 3) C B(yk, Li)-
Indeed, if a € B(y, ), then |jyx — all < [l —yll +lly—all < F +F =10~ <
1F(ax) = 9l = N = ull < 11 (k) = yxl| = tk, henee € B(yk, tr). We can thercfore
suppose that y, € B(y, ) and that B(y, ) C B(y, tx) for every k € N. It results
that g exists on B(y, ) for every k € N and let pr = sup{s > Olgi extends on
R(y,s) and Im gi C B(b,p)\ B} and we denote this extension of gx on B(y, pk) by
Iy for k € N. As before, we show that pp < 00 and each domain Qx = hi(B(y, px))
has at lcast a boundary point ax € S(b, p) for & € N.

We have pi = ||/ (ax) — yl| < ro for k € N and taking if necessary a subsequence,
we can suppose that there exists a € S(b, p) such that ap — a, and let O, € V,,V, €
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V(f(a)) be such that f|Oy: 0, — Vs is a homeomorphism, V. = B(f(a), 8) for some
3 > 0 and that a; € O, for k € N. Since By, ) C B(yk,tx) and B(yk,tx) is the
domain of definition of the map g, we see that hi and gi are defined on B(y, %)
and ge|B(y, ) = hilB(y, ®). Then 2, = gi(yk) = he(yi) € ha(B(y, 3)) C Qi for
k € N.

o0
Let Q = |J Qk. We show that f is injective on Q. Indeed, if this is false,
k

=]
we can find k,m € N,k # m and @ € Qk,c € Qm such that fla) = f(o). I
QkNQm # ¢, we see from Lemma A that [ is injective on Qi U Qy, and we reached a
contradiction, since f(a) = f(c). If QN Qm # &, we use the fact that ax € 0Qk N Qe
to see that Qr N Qa # ¢ and since f(Qk) N f(Qq) is connected and nonempty, we
see from Lemma A that f is injective on Qi U Qo Now (Qix U Qa) N Qm # ¢ and
J(QrUQu) N f(Qm) = B(S(a), ) U B(y. o) N B(y, pm.) is connected and nonempty,
and applying again Lemma A, we obtain that [ is injective on Qk U Qo U Qm. We
reached again a contradiction, and hence f is injective on Q. Then f(Q) = B(y,A),
with A = sup px and let h : B(y,A) — Q be its inverse. Then b = klix{:o I =

keN
klim hie(ye) = klim Ii(yr) = h(y), and using Brouwer’s theorem, we see that Q € V(b)
—o —00
and f|Q : Q — B(y.)) is a homeomorphism. We reached a contradiction, since we
supposed that b € Bg. We therefore proved that we can extend f to a homeomorphism
around each point b € B.

Suppose now that b = co. Then there exists ro > 0 so that CB(0,r9) C D and
let T = {y:[0,1) — CB(0,r0) path |y has some limit point in B U {oc}}. Let
g:R"—>R",g(z) = meEifze R\ {0}, 9(0) = 00, g(c0) = 0. Then g is conformal
and g(CR(0,r0)) = B(0,L)\ {0}. We also see that if A, B € L(R™ R™), then

T‘

((AoD)= inf NABIN > mE BN = U - D)

We have:

gl _ Upe(e) Jy(a)
Kilf 2 9)) = o gy @~ I @)@ @)

[Js (gl 1Jo(z)]
: * T = Kr(fog)(z)

IS (gl Ly ()"
for a.e. z € B(0,), hence K;(fog) < Ki(f)eogon B(0, %) Using Lemma, 1, we
see that My (10g)(g(17)) < My, (neg(g()) Mg pn(l) 0. Irom what we have
proved before, it results that f o g extends to a homeomorphism around 0, hence [
extends to a homeomorphism around co.

Remark 4 The preceding theorem holds if f satisfies condition (/) and has local
ACL™ inverses only in some neighborhood of each point b € B J{co}.

Proposition 4 Let n > 3,K C R" be closed, B C R" \ K be closed in R™\
K, f:R*\ (K UB)— R" be a local homeomorphism satisfying condition (N) and
having local ACL" inverses such that Mg, (;)(B) = 0. Then we can extend f to
a homeomorphism around each point b € B and we also denote by f the extended
map. If also Mk, (s)(co) = 0, extending if necessary the map f to a homeomorphism
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around oo and also denoting by f the extended map, we can lift every path p : [0,1] —
R"\ C(f, K) from every z with f(z) = n(0).

Proof From Theorem 3, we can extend f toa homeomorphism around each beB.
We can easily see that if / can be extended to a homeomorphism around oo, then we

—e—

can lift every path p: [0,1] = R*\ C(/, K) from every = with f(z) = p(0).

Suppose now that we cannot extend [ to a homeomorphism around co. Let
z € R™\K besothaty = f(z) € R*\C(f,K),ro = d(y: C(f,K))andlety € B(y, ro)-
Let p : [0,1] — B(y, 7o) be defined by p(t)=(1—-tyy+tyfort € [0,1] and suppose
that we cannot lift p from z. Then there exists 0 < a < land ¢:[0,a) > R*\ K a
path so that ¢(0) =z, foqg = pl|[0,a) and oo is a limit point of g. We can find Q open
sothat ImgC Qand flQ: Q — f(Q) isa homeomorphism and let g : f(Q) — @
be its inverse. Using Proposition 3 applied to the domain D = R™ \ K, we can
find + > 0 and a local inverse of f, g. : f(Q)U B(p(a),r) = QU D; extending g
such that g,(p(a)) = oo and D, is the exterior of a Jordan domain and 0o € Dr.
It results that we can extend f to a homeomorphism around oo and we reached a
contradiction. We proved that we can lift p from x, hence we can lift every line
p:[0,1] = R*\C(f,K),p(t) =(1 - t)y + 7.t € [0,1],7 € B(y, o) from every point
z with f(z) = p(0).

Let now p : [0,1] — R™\ C(/,K) be a path and let = € R™\ K be so that
f(z) = p(0) and let V be the component of R™ \ C'(f, K) containing Imp and let U
be the component of f~!(V) containing z. Then fIU : U = V is a covering space,
hence f|I/ : U — V lifts the paths and hence [ lifts p from z.

Proof of Theorem 5 Suppose that condition 1) holds and let p > 0 be so that
C(f,KUB) C B(0,p). Since f is wibounded, we can find 2 € R™ \ K, such that
f(z) € CB(0,p). Let V = CB(0,p) and U be the component of f~!(V) containing
z. Using Proposition 4, we see that f \U : U — V lifts the paths, V is simply
connected and since f is a local homeomorphism on U, we see that flU: U —Visa
homeomorphism and let g : V' — U be its inverse. Then dg(V) has two components,
one being g(S(0, p)), which bounds a Jordan domain D,, and the other one s C (g,00).
Since V N C(f, K U B) = ¢, we see that C(g,00) is a compact, connected subset of
R"\ (K U B) and since f is a local homeomorphism on R™\ (K U B), it results that
CardC(g,00) = 1 and C(g,00) = 0. This implies that U = CD, and if ro > 0 Is
such that D, C B(0,ro), then CB(0,ro) C [/ and f is injective on C'B(0,70). K C
D, C B(0,r0) and lim f(z) = co.

Suppose that condition 2) holds. We see from Proposition 4 that, extending
if necessary f to a homeomorphism around oo, we can lift every path p : 0,1 —
R™\ C(f,K) from every z € R" with f(z) = p(0). The hypothesis implies that
R"\ C(f,K) C f(R™\ K) and hence f is unbounded. We show first that [ is
injective on R™ \ E, where £ = K U [7}(C(/, K)). Let 21,22 € R™ \ E be so that
f(z1) = f(z2). Keeping the notations used before, we see that flU : U — Visa
homeomorphism and since U = Cﬁp with D, a Jordan domain, it results that U is the

single component of f (V) and U = FUV). Lety€ Vandp: [0,1] — R*\C(f, K)
a path such that p(0) = f(x1),p(1) = y. Let g : [0,1] — R™\ K be paths such that
@(0) = 21, [ oqr = p,k = 1,2. Then qi(1) € [7(V) = U, [(a(1) = y.k = 1;2,
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hence g1(1) = g2(1). We use now the property of the uniqueness of path liftings for
local homeomorphisms to see that 7, = z2. We proved that f is injective on R” \ E.

We show that if a € R™ \ K is so that f is open in a, then f~'(f(a)) = {a}.
Indeed, suppose that there exists b € R™ \ K,b # a such that [ (a) = f(b). Let
U, € V(a),Us € Vs be disjoint such that f |Us: Us — f(Us) 82 homeomorphism and
f(1) € f(U,). Since IntC(f, K) = ¢, we cen find w € FU)\C(f, K), hence we can
find € U, \ E, B € Uy \ E such that f(a) = f(J) and we reached a contradiction,
since we proved that f is injective on R™\ E. It results that f~Y(f(a)) = {a} if
a € R™\ K and since f(o0) = oo, we see that [ is injective on R"\ K.

Suppose now that f is continuous on K. Then f~'(f(K)) = K and f(R"\ K) =
R™\ f(K) and since f(oo) = oo, we see that fR\ K : R'\K =R\ f(K) is
a homeomorphism. If in addition f is also open, discrete on K, then K C D, and
fICD, : CD, — f(CD,) is a homeomorphism, hence f is injective on 3§D, and open,
discrete on 1), and using the univalence on the border theorem from [3], we see that
f is injective on D, and hence f : R" — R is a homeomorphism.

We obtain the following generalization of Zoric’s theorem:

Theorem 6 Let n > 3, K ¢ R™ be compact, f : R® — R" be continuous on R”
and a local homeomorphism and satisfying condition (N) on R\ K, having local
ACL™ inverses on f(R™\ K) so that Mk, (y)(c0) = 0. Then, if f is unbounded, there
exists rg > 0 such that f is injective on C'B(0,7¢) and if f is open, discrete on K,
then f: R* — R is a homeomorphism.

Proof Using Theorem 5, condition 1), we only have to show that f is unbounded
if ! is open. discrete. Let z € R*\ K, U, € V(z),1. = B(f(z),r) such that [(U.) =
V.. f00,) = 0Vs. Ify € S(f(x).r), we let 7 : [1,00) = R™. (1) = (1=t)f(z)+ty
for + > 1 and let E = {y € S(f(z),r)|yy cannot be lifted from some point o € U,
with y = f(a)}. Leu T" = {7,|y € E} and lel " be the family of all maximal liflings ol
come aths from ' starting from some point a € U, and having oo as a limit point.
We have M{T™) < M(f(T)) < Mk, (5)(T) =0, hence M(T") = 0 and pn1(F) = 0. It
resulrs that we can lift a.e. path -, from some point « € OUy and this implies that f is
unbounded. Now. there exists rg > 0 so that f|CB(0, 7o) : CB(0,70) — f(CB(0, o))
is = nomeomorphism. Since f is injective on S(0,rg) and open, discrete on B (0,70),
we us<e the univalence on the border theorem from [3] to see that f is injective on
B0, 2 and hence that f: R — R’ is a homeomorphism.

&L

Remark 4 Let [ : R* — R f(z) = z if z € B(0,1), [(2) = 7¢I [|lz|] > 1.
Trer ‘ is bounded. conformal on R™\S(0,1), is not open on $(0,1) and it is not
injective. This shows that the openness of the map f on the "singular” set K, or the
unboundedness of the map f are necessary conditions in Theorem 6.

Proof of Theorem 7 We apply Theorem 6, Lemma 2 and Lemma 3.

Proof of Theorem 8 We see from Theorem 3 that [ extends to a local home-
omorohism on R". If U is a component of f~!(R"). then f[U : U — R* lifts the
paths and hence it i3 a homeomorphism and if g is its inverse, we see that g(R™) has
a sirgle boundary component. namely C(g,20) and C(g, o0) is connected. Since f is
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a local homeomorphism on R™\ B and capB = 0, we see that C(g, 00) = {b} for some
b e BU {oo} and hence f: R" - R" is a homeomorphism.

We also have

Theorem 9 Let n > 3, K C R™ be closed, B C R™\K be closed in R™\K, f:
R"™\ (K|JB) — R" be a local homeomorphism satisfying condition (N') and having
local ACL™ inverses such that Mg, sy (B U{co}) = 0 and suppose that IntC(f,K) =
é. C(f, K) is compact and R™ \ C (f, K) is connected. Then we can extend f to a
homeomorphism around each point b € B and we also denote by f the extended map.

Suppose that one of the following conditions holds:
1) K is compact.

2) CardB = j < 00.

3) C(f,00) is bounded.

Then there exists m € N so that N(f,R™\ K) < m and each value y € R™\
C(f.K) is taken by f by exactly ¢-times, with g < m.

Proof We see from Theorem 3 that we can extend f to a homeomorphism around
each point b € B, and let p > 0 be so that C(f,K) C B(0,p) and let 1" = CB(0,p).
We use Proposition 4 and the preceedings arguments to see that f (V) # ¢ and let
(U:):en be the components of f ~1(V). Then f|U;: U; » Visa homeomorphism and
let g, : V — U, their inverses for i € N. We see that 60U, has two components, one
being 9:(5(0, p)) and the other is C(g;. 00), which contains just one point b; € BU{co}
so that f(b;) = 00,0 € N.

If K is compact, we see from Theorem 3 that f can be extended to a homeo-
morphism around 2o, hence the set I = (b;);en cannot have 0o as a limit point and
cannot have some limit point in K, since C(f, K) is compact. Tt results that £ can
have some limit point b € R™ \ K, and we reached a contradiction, since f is a local
homeomorphism in b. We find that the set E is finite. Also, if C(f,00) is bounded,
the set F cannot have some limit point in K U {oo}, and we obtain again that E is
finite. Let ¢ = CardE, and we see that ¢ < J if CardB = j < 00.

If we have points 21.....Zm € R™\ K such that f(z1) = flzp).p = 1om.
let O, € V(2;) be disjoint such that f(Q;) = W = B(f(z1),r),i = 1,...,m and let
w € WA C(fR). Then we cau find ¢; € \ f7Uf(C(f.K)) such that fla;) =
wi=1 .. .mandletyeV andp:[0,1] = R"\C(f.K) be a path so that p(0) =
fla:).p(1) =y. We can find ¢; : [0,1] — R™\ K paths such that ¢;(0) = a:. foq, =p.

5 1
i =1...m. Since g;(1) € f~1(V) = J U; and using the property of the uniqueness

=1
of path lifting for local homeomorphism, we find that m < gq.

Proof of Theorem 10 We sketch the proof from [14] and for the sake of com-
pleteness we give a slightly elaborate proof. We can take f(0) = 0 and we de-
note bv U(0, f.r) the component of f~Y(B(0,r)) containing 0 for r > 0 and let
ro = sup{r > 0[U(0. f.r) € B(0,a)}. Let I} = inf{z € R"z € dU(o, f,r)} and
L7 = sup{z e R* = € 9U/(0. [. r)} for 0 < r < ro. Then [ maps (0. f. r) homeomor-
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phically, hence f is injective on B(0.1*) for 0 < r < rg and L} — a if r — 7o.

We take z,,y, € OU(0, f,r) such that ||z.]| = L; and ilyr]| = 1z Then f(z,) and
f(v.) € 5(0,7) and from Lemma 3.1 [14], there exists p, € B(0,7) so that for every
t e (£, ’—‘2@) we have f(z,) € B(pr,t) and either 0 or f(y-) belongs to B(pr,t), but
not both. Since f(B(0,1%)) is connected, we can find 2 € S(pr,t) N f(B(0,17)) and
let z; be the unique point from F~Yz) N B(0.1}) for t € (3, r_\2§) We denote by
Ci(¢)  S(pr,t) the spherical cap of center z and opening angle ¢. Let C; C S(pr,t)
be the spherical cap of center z; and opening angle ¢;, where ¢; is the supremum of

all ¢ for which z; component of f~*(C;(¢)) is mapped homeomorphically onto Cy(4),
and let C; be the component of f~HGC) for t € (5, 532@) As in [14], we see that
Cr N S(0,L7) # 6 and let z7 € Cf N §(0,L;) and z, = [(a7) for ¢ € (5, 8y, Let T,

be the family of all paths joining z; with z in C; and let fi = fiC% for t € (5, 525)

LetT'= | T,T= U {fiterlrer}
te(5.083) te(5,28%)
Let p € F(T'). We see from [27], Theorem 10.2, page 28, that there exists a
constant C depending only on n such that % < f )p”(x)dc for t € (5, ’“‘2/5)
S{prt

Integrating over ( € (5. ’;/3), we find a constanl (' depending only on n such that

0< C; < M. Using Theorem 1 and Theorem 2, condition 2), we find a constant
C4 depending only on n such that (7 < M{T) < Mg, () £ CMy  Taking

< T
(In ln(—(L,i))"
i

11
Cy = % we obtain that 17 > L] - ¢ - exp(— exp(Cy M3')) and letting r — 7o, the

theorem is proved.
Theorem 11 Let n > 3.f : R® — R” be a local homeomorphism satisfying
condition {N) and having local AC'L™ inverses, and let 0 < o < n—1and M, =
f ’—‘—,%‘;“iﬂ for « > 0. Suppose that there exists r; — 00 such that
B(0.r) '
A, < x for j € N and suppose that 71i‘nﬁ'1< infr, - e exp(—exp(C - M,.j)?’t) = 00,

SUPpcr<a

where C is the constant from Theorem 10. Then f is injective on R”.

Theorem 13 Let n > 3./ : R® — R”" be a local homeomorphism satisfying

condition (V) and having local ACL" inverses so that there exists Qe L), (R") with
A — . S o e P L
K1(fi < Qae onR*andlet @, = f Qz)dzand = sup f ‘-i—’<7—t’>”——'—
B(0,2) G<ir<ia p(0,a) ’

for u > 0. where 0 < « < 1.—2. Suppose that there exists r; — such that M, < oc

m

for j € N and suppose that lim infr; - €-exp(~ exp(CL M, + (TQQ,J)%) = 0, Where

('y and (5 are the constants from Theorem 12. Then [ is injective on R™.

Step 1 we remove [ = (% %) at Step 2 we remove [y = (g %) U (%: %) At Step m

me

Example 1 We take 7 = (0.1} and we define the Cantor set £ C I as follows: At

we remove from each interval J from I\ | Ex an interval having the same center
Lk g
k=
as J and of length %51, and we denote by Ey, the union of all such removed interval



at Step m.- We see that y1(Em) = g‘;(%)"‘“ for m > 1. We continue this infinite
[o o]
process, we let E =1\ | E. and we see that p1(E) =0.
m=1

We take 0 < @ < 1 and we define p : I — R by p(t) = a™ ! for t € Em,m 2 1.
5 (%)’"a"‘k <oofork€Nandletg:[0,1] = R
0

7=

1
Then p is measurable, [ p*(t)dt = 3
D

be defined by ¢(z) = [ p(t)dt for « € I. Then g € L(I),g' = p ae., g is strictly
0

1 .
increasing, salisfies condilion (V) and flg1F(0)dt < oo for k € N. If (o, ) is an
0

interval from E,,, then (g(ct), g(0)) is the corresponding interval of length (—)a™ !
for every m € N, hence g(F¥) is also a Cantor set with p1(g(E)) = 0, obtained in
the same way as the Cantor set E, where the union of intervals E,, of total length
1(2)m~" is replaced by the union of intervals F,, of total length 3 (%2)™~ form € N.
Let J = g(1).

Then J C I,I(J) = (—3—:157) andlet h: J — I,h = g~!. We see that if (a,f) is
an interval from kK, and (g(a),g(B)) is the corresponding interval from F,, then h
is differentiable on (g(e),9(8)) and K'(Y) = sy = al-™ for y € (9(a),9(B))- It

20 ¢
results that [h'(1)dL =} 2. (3)™ < coandifp>1is fixed, we have [[h ({)]Pdl =
g m=0 J

(s3]
LS Gal )" = if wetake 0 <2 < (%)P_}‘ and we also see that h' ¢ LP(Jo) if

m=0

Jo C J is an interval with Jo N g(F) # &

1

We take now 1. > 3, we fix p > land we take 0 < o < (%’_‘—‘ Let Q = JxI™" ! and
f:Q — I" be defined by f(z1,.,%n) = (h(z1), B2, -, Tn) for T = (31,.,3n) € Q-
Then f is an a.c. differentiable homcomorphism, Jy(z) # 0 a.e. on Q, f satisfics
condition (N) and f € Wil(Q,R™)\ WhP(Q,R"). The inverse fFl:Irr—=Qis
given by f W1, n) = (@®1), Y2, Ua) fOr y = (W1, 9n) € T hence ™! €
wLm™(» R™) for m € N. Since Ko(/)(z) = R (z1)"! ae. in Q), we see that Ko(/)
is not integrable on every interval Jo X -1 C Q so that Jy N g(E) # ¢, hence

Ko(f) ¢ Liac(Q)-

4 Homeomorphisms satisfying condition (N) and
having ACL™ inverse

The maps involved in the following theorems are considered apriori homeomorphisms,
and for such maps we solve problems like eliminability, boundary extension, equicon-
tinuity, modulus of continuity and characterize the limit map. As we said before,
the general setting of the theory will be possed in a forthcoming paper for open,
discrete maps. The following 10 theorems are the corresponding versions of Theo-
rem 17.3, 17.13, 17.15, 18.1, 18.2, 19.2, 19.4, 21.1, 21.9, 21.10, 21.11,21.13,21.14 from
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[27] given for quasiconformal mappings. We give the proof only for a few of them,
since the proofs follow the classical line from [27], and we just replace the classical
modular inequalities with our improved versions 1) and 2). Similar results given for
Q-homeomorphisms can be found in [10], [18], [19], [24], [25], [26] and for mappings
of finite distortion and satisfying condition (A) you can see [5}, [15].

Theorem 14 Let D' C R be a domain, b € A1 be an isolated point of D, [ :
D — D' be a homeomorphism satisfying condition (N) and having an ACL™ inverse
so that M, (s)({b}) = 0. Then f extends to a homeomorphism f : DU{b} — D'U{b’}.

Proof. Let r > 0 be such that B(b,r) C D, A = R({b}, CB(b. ), A" = R(C(f,b),
Cf(B(b,r))). Then M, (yy(Ta) =0 and M(Ty) = M(f(Ta)) < Mk, (5)(Ta) =0
and this implies that CardC(/,b) = 1.

Proposition 5 Let Cp, C; be continua in R*, A = R(Co, C1) and w € Ll (R™).
Then M, (C4) < 0.

Proof Let r = d(Co,C1) and D C R™ so that CoUC, C D and D is compact
and let p: R" — [0,00),0(z) = 2 if z € D,p(z) =0ifz ¢ D. Then p € F(T4) and
M,(Ca) < [ p*(z)w(z)dz = % [w(z)dz < co.

Re b

Theorem 15 Let D' ¢ R be a domain, f : D — D’ be an ACL"™ homeomor-
phism so that f~! salisfies condition (N ), b € AL such that D has property P in b
and [ K;(f~)(y)dy < co. Then C(f,b) has at most one point at which D' is finitely

o

connected.

Proof Suppose that D' is finitely connected at two distinct points by, b from
C(f,b). Let z; — b,y; — b so that f(z;) — by, flyy) — b, and let [y € V(br)'
be balls so that U; N Uy = ¢,k = 1,2. Extracting if necessary a subsequence,
we can find K C Ui, F; C Uz connected such that flz;) € By, f(y;) € Fy for

every j € N, and let E} = fYE), Fy = f~Y(F}). Then b € E; 0 F; and let
r A(El,Fl,D),l" A(E,,F;,D') and A = R(U;,Us). Using Proposition 5,
Theorem 1, the P; property of the domain L in the point b and the fact that T° > Ty,
we have that co = A[(F) = M(f‘l(I“)) < 1\1Kl(f—1)(r‘) < MK,(f—l)(FA) < 00, and

we reached a contradiction.

Theorem 16 Let ' ¢ R be a domain, [ : P — D' a homeomorphism satisfying
condition (N) and having ACL™ inverse, b € 0D so that D is locally connected in
b, K1(f) satisfies one of the conditions from Theorem 2 in b and suppose that D has
property P, in some point from C(f,b). Then [ has a limit in b.

Proof Suppose that C(f,b) contains two distinct point b‘l,b‘Q and that D' has
property P, in bj. Let ' C D' be compact and 4 > 0 be so that M(A(E,F,D)) >34
for every £ C D' connected so that b}, by € E. Since D is locally connected in b, there
exists U; € V(b) such that U; N D is connected, U; C B(b, r;),7 € N and r; — 0. Let
T, = A(; N D, f7H(F), D), T; = A(f(I; N D), F, N for j € N. Using Theorem 1
and 2 and the P, property of D' in b}, we have 6 < A{(F;) < My, (p(T;) — 0, and
we reached a contradiction.
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Theorem 17 Let w : D — [0,00| be measurable and finite a.e. and satisfying in
each point = € D one of the conditions from Theorem 3, W be a family of homeo-
morphisms [ : D — Dy C R satisfying condition (N) and having ACL™ inverses so
that K7(f) < w for f € W and there exist r > 0 so that each f € W omits at least
two points ay, by with q(a £,bg) > r. Then W is equicontinuous.

Proof Let zg € Dand 0 < e < r. Let Qo = B(zo, @), Q1 = B(20,8), 0 < a < 8,
be so that B(xzg,) C D and let A = R(Qy,CQ1). Then f(A) = R(f(g_o),Cf(Ql))
and g(Cf(Q1)) > a(as.by) > r,a(f (@) > a(/(z), f(z0)) for every z € Q and every
feW. Let feW,z€Qpand (= min{r,q(f(z). f(z0))}. We keep § >0 fixed and
we choose o >.0 small enough so that M, (I'a) < An(c). Then An(t) € M(Tpay) =
M(f(T1)) € Mg, (5)(Ta) £ My(Ta) < An(c), and since ), is increasing, we see that
t < ¢. Since ¢ < r, we obtain that ¢ = a(f (), f(z0)), hence g(f(z), f(z0)) < € for
every z € Ug = B(zo, ) and every f € W, i.e. the family W is equicontinuous in Tg.

Theorem 18 Let w : 1) — [0,00] be measurable and finite a.e. and satisfying in
each point 2 € D one of the conditions from Theorem 2, W be a family of homeo-
morphisms [ : D — Dy C R", satisfying condition (V) and having ACL™ inverses
so that Kj(f) < w for every f € W, and suppose that one of the following conditions
hold:

1) there exists x1,T2 € D and 7> 0 so that each f € W omits a point ay with
(I(af?f(xi)) ->— T',i = 112~

2) there exists z; € D and r > 0,i = 1,2,3 s0 that q(f(z:). f(z;)) > 7 for
i#j,4,j=1,2,3 and every f € W.

Then W is equicontinuous.

Theorem 19 Let w € L}, (D) satisfying in each point x € D one of the conditions
from Theorem 2, f; : D — D; C R” be homeomorphisms satisfying condition (V')
and having ACL™ inverses so that Kj( fj) € w for every j € N and suppose that
[, — [. Then, if CardIm [ > 3, it results that [ : D — D' is a homeomorphism onto
a domain D' c R". If f  — [ uniformly on the compact subsets from D, then f is
either a homeomorphism onto a domain N c R, or a constant c. If we suppose in
addition that f; are AC'L™ maps for every j € N, that CardoD > 2 and there exists
wo € Liloc(R") satisfying in each point one of the conditions from Theorem 2 so that
KNi(f;) Swo for every j € N, then D' is a component of KerD; if f: D — Disa
homeomorphism, and if f = ¢, then ¢ € C(KcrD; U KerCDj). Also, if f: D — D
is a homeomorphism and F' C D' is compact, there exists jo € N such that /* C D;
for j > jo and fj_l — f~! uniformly on F.

Theorem 20 Let D, D’ be domains in R* with CarddD > 2,w € Ll (D).wo €
L}OC(D‘) satisfying in each point one of the conditions from Theorem 2, let f; : D — D'
be ACL"™ homeomorphisms with ACL" inverses so that K;(J;) < w,K,(fj"l) < wg
for every j € N and f; — f. Then the convergence is uniformly on the compact
subsets from D and the limit map is either a homeomorphism onto D', or a constant
¢ € 0D, Tu the first case, fj‘1 — f~! uniformly on the compact subsets from D',
and the second case can occur only if D has only one component, or infinitely many
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components or exactly two pointwise components.

Theorem 21 Let D. D' be domains in R* with CarddD’ > 2, F C D be compact
and let W be a family of homeomorphisms f : D — D’ satisfying condition (N) and
having ACL™ inverses so that there exists w € L}, (D) satisfying in each point one of
the conditions from Theoremn 2 such that K;(f) < w for every f € W. Then, for every
¢ > 0, there exists & > 0 so that q(f(F)) < € if ¢(f(F),0D") < 8. If CarddD > 3
and D has exactly k components, with 2 < k < oo, CurdF > 2, f; are ACL™ maps
for every j € N and there exists wg € L} (D') satisfying in each point one of the
conditions from Theorem 2 so that Kj(/; ?3 < wp for every j € N, then there exists

5 > 0 such that ¢(f(F)) > 6 and q(f(F),c’)D ) > 6 for every f € W.

Theorem 22 Let D, D' be domains in R”, z € D,a = d(x,0D), W be a family of
homeomorphisms f : D — D' satisfying condition (N) and having ACL™ inverses so
that there exists w € L},.(D) satisfying one of the conditions 2), 3) or 4) from Theorem
2 in the point z so that w € L}(B) for every ball B C D and K(f) < w for every
[ € W. Then there exists a continuous, increasing function 8, .., : (0,1) — (0,00)
such that hm 0,.,,,,(1') =0, hm On,zw(r) = 0o and ||f(y) — (:z:)ll/d(f(a:) oD") <

On,x W(Uull) for every y € B(x a) and every f e W. If mll)lzwfw(z)dz < o0, then
BC R
the function 6, ., does not depend on 7.

Proof Let y € B(z.a),d = d(f(z),0D"), A = R(B(x,|ly—=z||,CB(z,q)) and f €
W. Then A C D, f(A) = R(Co, C1), where Co = f(B(z,|ly - 2I|)). C1 = Cf(B(,4))
and f(z), f(y) € Co, C1 contains oo and a point b € D" so that d' = Hf(a:) — bl
Usmg Theorem 1 and 2 and Theorem 11.9 page 36, [27], we have Hn(d'/||f(y) —

z)l) < M@ f(4)) < My, n(Ta) € M,(a). If w satistics coudition 2) or 3)
from Theorem 2 in z, we take O ».,(r) = 1/H,; 1(C/(lnln €)™} for r > 0 and if w
satisfies condition 4) from Theorem 2 in z, we take 0r, 5., (1) = 1/H;*(C1/(Ilnln £ )2 4
C2/(Inln £)) for r > 0, where the constants C, C1,Cz depend on z,n,w. In the case

sup J‘w(z Jdz = M < oco. we take C = Ml;V,e", which is a constant depending

BCDball B
only on n and w, hence 6, .(r) = 1/H;*(C/(Inln £)™) depends only ox n and w.

Theorem 23 Let W be a family of homeomorphisms f : B(0,1) — B(0,1)
satisfving condition (N), having ACL™ inverses, so that f(0) = 0 for every f € W and
there exists w € L'(B(0, 1)) satisfying one of the conditions 2), 3) or 4) from Theorem
2 for z =0 and a = 1 and so that K;(f) < w for every f € W. Then there exists
Znw  (0,1) — (0,1) continuous, increasing, with }_i_lg Vnw(r) =0, 111311 Pralrt =1
such that ||f(z)|| < ¢n,(z) for every z € B(0,1) and every f € W.

REFERENCES

1) S. Agard and A. Marden, A removable singularity theorem for local homeomorphisms, Indiana
Univ. Math. Journal, 28, 5(1970),455-461.

2) M. Cristea, A generalization of Sard’s theorem. A Jacobian condition for interiority, Demon-
stratio Mathematica, 21(1988),399-405.



3) M. Cristea, A generalization of a theorem of Zoric, Bull. Math. Soc. Sci. Roumaine,

34,3(1990), 207-217.

4) M. Cristca, Mappings of finitc distortion: Zoric's t
17, dec. 2004, Instit. Matem. Acad. Romane.

heorcm, cquicontinuity results, Preprint

5) M. Cristea, Mappings of finite distortion: Boundary extension, Preprint 18, dec. 2004, [nstit.
Matem. Academici Romane.
6) N. S. Dayrbekov, Removable singularities for locally quasiconformal mappings, Siberian Math.

Journal, 33,1(1992),159-161.

7) 1. Fonseca and W. Gangbo, Degree Theory in Analysis and Appl.,, Oxford Univ. Press, 1995.

8) J. Heinonen and P. Koskela, Sobolev mappings with integrable dilatation, Arch. Rat. Mech.
Anal, 125(1993), 81-97.

9) I. Iolopaincn and I Pankka, Mappings of finitc dilatation: Global homcomorphism t
Ann. Acad. Sci. Fenn., Math., 29(2004),135-151.

10) A. Ignatiev and V. Ryazanov, On the boundary behavior of space mappings, Preprint 350,
2003, Reports Math. Dept. Univ. of Helsinki.

11) A. Ignatiev and V. Ryazanov, Finite mean oscillation in the mapping theory,
2002, Reports Math. Dept. Univ. of Helsinki.

12) T. Iwaniec and G. Martin, Geometric function theory and nonlinear analysis, Oxford Math.
Monogr., 2001.

13) J. Kauhanen. P. Koskela, J. Malg, J. Ouniuen and X. Zhong. Mappings ol finile distortion:
Sharp Orlicz conditions, J. Eur. Math. Soc. (JEMS),5(2003),95-105.

14) P. Koskela, J. Onninen and K. Rajala, Mappings of finite distortion: Injectivity radius of
local homeomorphisms, Future Trends in Geometric Function Theory, RNC Workshop Jyviskyla
2003, Rep. Univ. Jyvaskyld, Dep. Math. Stat., 92(2003),169-174.

15) . Koskcla and J. Onninen, Mappings of finite distortion: Capacity and modulus incqualitics,
Preprint 257, Univ. of Jyvaskyld, 2002.

hcorem,

Preprint 332,

16) J. Manfredi and E. Villamor, An extension of Reshetnyak’s theorem, Indiana Univ. Math.

Journal, 43,3(1998),49-69.

17) O. Martio, S. Rickman and J. Viisdla, Definitions for quasiregular mappings, Ann. Acad.
Sci. Fenn., Ser Al, Math., 448 (1969).1-40.

18) O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, On Q-homeomorphisms, Ann. Acad.
Sci. Fenn., Math., 30(2005),49-69.

19) O. Martio, V. Ryazanov, U. Srcbro and E. Yakubov, Mappings of finitc lenght distortion,
Preprint 322, 2002, Reports Math. Dept. Univ. of Helsinki.

20) M. Perovic, On the problem of radius of injectivity for the mappings quasiconformal in the
mean, Glasnik Math., 20(40)(1985),345-348.

21) K. Rajala, Mappings of finite distortion: Removable singularities for locally homeom
mappings, Proc. Amer. Math. Soc.. 123(2004),3251-3258.

22) Y.G. Reshetnyak, Space Mappings of Bounded Distortion, Transf. of Math. Monogr., Amer.
Math. Soc., Providence, RI, 73(1989).

orphic

23) S. Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, 26,
Springer-Verlag,1993.

24) V. Ryazanov, U. Srebro and E. Yakubov,To the theory of BMO-quasiregular mappings,
Dokl. Akal. Nauk. Rosii, 369(1999),13-15.

95) V. Ryazanov, U. Srebro and E. Yakubov, Plane mappings with dilatations dominated by

26



functions of bounded mean oscillation, Siberian Adv. Math., 11(2001), 94-130.

26) V. Ryazanov, U Srebro and E. Yakubov, BMO-quasiconformal mappings, J. Anal. Math.,
83(2001),1-20.

27) J. Vaisald, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math,
229, Springer-Verlag,1971.

28) W.P. Ziemer, Extremal length and p-capacity, Michigan Math. Journal, 16(1969),49-51.

29) V.A. Zoric, On a theorem of M.A. Lavrentiev on quasiconformal mappings in space, Math.
Sb., 74(116), (1967), 417-433 (russian).

30) V.A. Zoric, On isolated singularities of mappings with bounded distortion, Math. Sb.,
81(123), (1970),634-636 (russian).

27






