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Lower semi-continuity of integrals with
G-quasiconvex potential
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Abstract. This paper introduces the proper notion of variational quasiconvexity associated to a
group of bi-Lipschitz homeomorphisms, with possible applications in elasticity. We prove a lower
semicontinuity theorem connected to this notion, which improves a result of Dacorogna and Fusco
[7]. In the second part of the paper we apply this result to a class of functions, introduced in [5].
Such functions are GL(n,R)* quasiconvex, hence they induce lower semicontinuous integrals.
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1. Introduction

Lower semi-continuity of variational integrals

u — I(u) :/Qw(Du(x)) dx

defined over Sobolev spaces is connected to the convexity of the potential w. In
the scalar case, that is for functions v with domain or range in R , the functional 1
is weakly WP lower semi-continuous (weakly * W12 ) if and only if w is convex,
provided it is continuous and satisfies some growth conditions. The notion which
replaces convexity in the vector case is quasiconvexity (introduced by Morrey [14]).

We shall concentrate on the case u : £ C R® — R™ which is interesting for
continuum media mechanics. Standard notation will be used, like:

gl(n,R) the linear space (Lie algebra) of n x n real matrices
GL(n,R) the group of invertible n x n real matrices
GL(n,R)* the group of matrices with positive determinant
sl(n,R) the algebra of traceless n x n real matrices

SL(n,R) the group of real matrices with determinant one
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CO(n) the group of conformal matrices
id the identity map

1 the identity matrix

o function composition

In this frame Morrey’s quasiconvexity has the following definition.

Definition 1.1. Let Q@ C R™ be an open bounded set such that | 9Q |= 0 and
w: gl(n,R) — R be a measurable function. The map w is quasiconvez if for any
H € gl(n,R) and any Lipschitz n : Q@ — R™, such that n(x) =0 on 0Q, we
have

[ wtm < [ i+ Do) (1)

Translation and rescaling arguments show that the choice of €2 is irrelevant in
the above definition.

In elasticity the elastic potential function w is not defined on the Lie algebra
gl(n,R) but on the Lie group GL(n,R) or a subgroup of it. It would be therefore
interesting to find the connections between lower semicontinuity of the functional
and the (well chosen notion of) quasiconvexity in this non-linear context. This
is a problem which floats in the air for a long time. Let us recall two different
definitions of quasiconvexity which are relevant.

Definition 1.2. Let w: GL(n,R)™ — R. Then:
(a)(Ball 2]) w is quasiconvez if for any F € GL(n,R)™ and any n € CX(Q,R")
such that F + Dn(z) € GL(n,R)T for almost any x € Q we have

/Q w(F + Dn(z)) > | Q| w(F)

(b) (Giagquinta, Modica & Soucek [10], page 174, definition 3) w is Diff-quasiconvex
if for any diffeomorphism ¢ : Q — ¢(Q) such that ¢(x) = Fx on 0Q, for
some F € GL(n,R)T we have:

[wmota)) > [ we)

These two definitions are equivalent.

It turns out that very little is known about the lower semicontinuity proper-
ties of integrals given by Diff-quasiconvex potentials. It is straightforward that
Diff-quasiconvexity is a necessary condition for weakly * W>° (or uniform con-
vergence of Lipschitz mappings) (see [10] Proposition 2, same page).

More is known about the properties of polyconvex maps. A polyconvex map w :
GL(n,R)T — R is described by a convex function g: D C RM — R (the domain
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of definition D is convex as well) and M rank one affine functions vy,...,v\ :
GL(n,R)T — R such that for any F € GL(n,R)"

w(F) = g(h(F),...,vm(F))

The rank one affine functions are known(cf. Edelen [8], Ericksen [9], Ball, Curie,
Olver [4]): v is rank one affine if and only if v(F) can be expressed as a linear
combination of subdeterminants of F . Any rank one convex function is also called
a null Lagrangian, because it generates a trivial Euler-Lagrange equation.

Polyconvex function give lower semicontinuous functionals, as a consequence
of Jensen’s inequality and continuity of (integrals of) null lagrangians. This is a
very interesting path to follow (cf. Ball [3]) and it leads to many applications.
But it leaves unsolved the problem: are the integrals given by Diff-quasiconvex
potentials lower semicontinuous?

In the case of incompressible elasticity one has to work with the group of
matrices with determinant one, i.e. SL(n,R). The ”linear” way of thinking has
been compensated by wonders of analytical ingenuity. One purpose of this paper
is to show how a slight modification of thinking, from linear to nonlinear, may give
interesting results in the case w : G — R where G is a Lie subgroup of GL(n,R).
Note that when n is even a group which deserves attention is Sp(n,R) , the group
of symplectic matrices.

From now on linear transformations of R™ and their matrices are identified.
G is a Lie subgroup of GL(n,R).

Definition 1.3. For any Q C R™ open, bounded, with smooth boundary, we
introduce the set [G](Q) of all bi-Lipschitz mappings u from Q to R™ such that
for almost any = € Q we have Du(x) € G. The subset [G].(Q) contains all
¢ € [G](QY] such that ¢ — id has compact support in .

The set Q C R™ is the unit cube (0,1)™.
The departure point of the paper is the following natural definition.

Definition 1.4. The continuous function w : G — R is G -quasiconvex if for
any F € G and u € [G](Q) we have:

/Q w(F) dr < / w(FDu(z)) d @)

Q

We describe now the structure of the paper. After the formulation of the lower
semicontinuity Theorem 2.1, in section 3 is shown that quasiconvexity in the sense
of definition 1.2 is the same as GL(r,n)" quasiconvexity. Theorem 2.1 is proved
in section 4. In section 5 is described a class of GL(n,R)" quasiconvex functions
introduced in Buliga [5]. Theorem 2.1 is used to prove that any such function
induces a lower semicontinuous integral.
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2. G-quasiconvexity and the lower semicontinuity result

We denote by [G]. the class of all Lipschitz mapping from R™ to R™ such that
u — 4d has compact support and for almost any x € R® we have Du(z) € G.
The main result of the paper is:

Theorem 2.1. Let G be a Lie subgroup of GL(n,R), Q an open, bounded set
with |0Q]=0 and w: G — R locally Lipschitz.

a)Suppose that for any sequence uy, € [G]. weakly * WL>° convergent to id we
have:
/w(F) dr < lihminf w(FDuy(x)) dx (3)
Q —o Jo
Then for any bi-Lipschitz u € [G]. and for any sequence uj, weakly * W1
convergent to u we have:

h—o00

/w(Du(x)) dr < liminf/w(Duh(os)) dx (4)
Q Q

Moreover, if (4) holds for any bi-Lipschitz u € [G]. and for any sequence wuy,
weakly * WH> convergent to u then w is G -quasiconvez.

b)Suppose that G contains the group CO(R™) of conformal matrices. Then (4)
holds for any bi-Lipschitz u € [G]. and for any sequence uj, weakly * W1
convergent to u if and only if w is G -quasiconvex.

The fact that weakly * lower semicontinuity implies G quasiconvexity (end of
point (a)) is easy to prove by rescaling arguments (cf. Proposition 2, Giaquinta,
Modica and Soucek op. cit.).

The method of proving the point (a) of the theorem is well known (see Meyers
[13]). For the point (b) we have to use a convex integration result of Dacorogna,
Marcellini [6], as a replacement of a controlled Lipschitz extension argument not
known to be true for bi-Lipschitz maps. In the paper Dacorogna, Fusco [7] the au-
thors needed the hypothesis of ”slow homotopies” in order to prove a result which
resembles to Theorem 2.1, for the whole group of bi-Lipschitz homeomorphisms.

3. G-quasiconvexity

This section contains preliminary properties of G -quasiconvex continuous func-
tions.

Proposition 3.1. a)ln the definition of G -quasiconvexity the cube @ can be
replaced by any open bounded set Q0 such that | 00 |=0.
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b) The function w is G -quasiconver if and only if for any F € G and u €
[Gle(Q) we have:

/w(F) dr < /w(Du(m)F) dx (5)

Q Q

¢)For any U € GL(n,R) such that UGU™! C G and for any W : G — R
G -quasiconver, the mapping Wy : G — R, Wy(F) = W(UFU1) is G-
quasi-convez.

Remark 3.1. The point b) shows that the non-commutativity of the multiplica-
tion operation does not affect the definition of G -quasiconvexity. The point c) is
a simple consequence of the fact that G is a group.

Proof. The point a) has a straightforward proof by translation and rescaling argu-
ments.

For b) let us consider F € G and an arbitrary open bounded ©Q C R”
with smooth boundary. The application which maps ¢ € [G].(Q) to Fl¢F €
[G]o(F~1(Q)) is well defined and bijective. By a), if the function w is G-
quasiconvex then we have

/ WFD(FGF) (2)) de >| F~1(Q) | w(F)
F-1(0)

The change of variables # = F~'y resumes the proof of b).

With U like in the hypothesis of ¢), the application which maps ¢ € [G].(Q2)
to UpU ! € [G].(U1(Q)) is well defined and bijective. The proof resumes as for
the point b). O

The following proposition shows that quasiconvexity in the sense of definition
1.2 is a particular case of G -quasiconvexity.

Proposition 3.2. Let us consider F € GL(n,R)*. Then w is GL(n,R)" -
quasiconvez in F if and only if it is quasiconvex in F in the sense of Ball.

Proof. Let E C R™ be an open bounded set and ¢ € [GL(n,R)"].(E) . The vector
field n = F(¢ —id) verifies the condition that almost everywhere F + Dn(z) is
invertible. Therefore, if w is quasiconvex in F , we derive from the inequality:

[ wDot) dy = £ W) |
E
We implicitly used the chain of equalities

F+Dn(y) = F+FD¢(y) — F = FDo(y) .

We have proved that quasiconvexity implies GL(n,R)" -quasiconvexity.
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In order to prove the inverse implication let us consider n such that almost ev-
erywhere F+Dn(z) is invertible. We have therefore ¢ = F~14 € [GL(n,R)¥](E)
and FD¢ = F + Drn. We use now the hypothesis that w is GL(n,R)* -
quasiconvex in F and we find that w is also quasi-convex. O

Finally, notice that one has to be careful about the domain of definition of a
function which has a polyconvex expression.

Proposition 3.3. The function w: GL(n,R) — R defined by
w(F) = —log|detF |

is not GL(n,R) quasiconvez.

Proof. The map has a polyconvex expression. It is not quasiconvex though. To see
this fix € € (0,1), A € GL(n,R) and ©Q = B(0,1). There is a Lipschitz solution
to the problem (see Dacorogna-Marcellini Theorem 7.28, Chapter 7.4. [6])

Du(z) € O(n) a.e. in Q
{ v(z) =ex x € 00

We have then, for u(z) = v(z)/e € [GL(n,R)](Q):

/Qw(ADu(x)) = /Q—log\detA| + /inogs < /Qw(A)

Next proposition justifies this result.

Proposition 3.4. For any w: G — R define tw: G — R by:
w(F) = detF | w(F™1)

If w is G quasi-convex then for any u € [G](Q2) we have:

| wEpu) = [ wE)

Proof. Take u like in the hypothesis. Then for any (continuous) w we have

Jwmu@) = [ o)

by straightforward computation. Use now the definition 1.4 and the Proposition
2. O
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Let us apply this proposition to w(F) = —log | detF |. Remark that when
det F goes to zero the function goes to +0o. Now, (w(F) = | detF |log | detF |
and this function can be continuously prolongated to matrices with determinant
zero by setting (w(F) =0 if detF = 0. It is easy to see that the prolongation of
tw is not rank one convex, hence it is not quasiconvex.

4. Proof of Theorem 2.1

The proof is divided into three steps. In the first step we shall prove the following:

(Step 1.)Let w : GL(n,R) — R be locally Lipschitz. Suppose that for any
Lipschitz bounded sequence up, € [GL(n,R)] wuniformly convergent to id on Q
and for any F € GL(n,R) we have:

/w(F) dr < liminf/w(FDuh(x)) dx (6)
Q Q

h—o00

Then for any bi-Lipschitz u : R™ — R™ and for any sequence up € [GL(n,R)]

uniformly convergent to id on Q we have:

/ w(Du(z)) de < liminf / w(D(up 0 u)(x)) do 1)
Q Q

h—o0

Remark 4.1. This is just the point a) of the main theorem for the whole group
of linear invertible transformations.

Proof. For € > 0 sufficiently small consider the set:
U = {B:E(x,r) cQ: 3AeGL(nR), / | Du(z) —A|<e|B }
B

From the Vitali covering theorem and from the fact that w is bi-Lipschitz we
deduce that there is a sequence B; = B(z;,7;) € U® such that:

[ Q\U, By =0
-for any"j wu is approximatively differentiable in z; and Du(z;) € GL(n,R)
-we have

| 1Dutz) = Dutay) | < <[ By |
By

Choose N such that v
o\ |JB;jl< ¢

Jj=1

‘We have therefore:

/Q WD 0 w)(@)) = / w(D(uy 0u)(x)) — Ce
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Z/ D(up o u)(z)) = J1 + Jz + Jg

where the quantities J; are given below, with their estimates.

5= Z / w(Dup (u(2))Du(x)) — w(Dup (u(z)) Duz;))]
B |<Z / w(Dup (u(z))Du()) — w(Dun(u(x))Du(z;)) | < Ce

Js = Z / w(Dun(u(w))Du(;)) — w(Dun (@ (2))Du(z;))]

where @;(x) = u(;vj) + Du(z;)(z — x;) . We have the estimate:
| J2 ‘S Ce
Indeed, by changes of variables we can write:

L = /B w(Dup (u(z))Du(z;)) = / w(Dup(y)Du(z;) | det Du~(y) |

j u(B;)

= / w(Dup (5(2))Du(z;)) = / w(Duy (1) Du(z) | det(Du(z;) " |

j a;j(B;)
The difference |I; —17 | is majorised like this
G-t < [ ClldeDuto) |~ | det(Duta) ™ || +C]u(B,)An(3,)]
u(B;)Na; (By)

The function | det- | is rank one convex and satisfies the growth condition
| detF | < ¢(1+ | F |") for any F € GL(n,R). Therefore this function satis-
fies also the inequality:

|detF | —|detP || < C|F=P|(14+|F """ +|P[")

Use now this inequality, the properties of the chosen Vitali covering and the uni-
form bound on Lipschitz norm of u, uy , to get the claimed estimate.

N
15=3 [ WO )Pur,)

By the change of variable y = @;(z) and the hypothesis we have

liminf J3 > hmlan/ (Du(z;))

h—o00
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Put all the estimates together and pass to the limit with N — oo and then
e—0. O

(Step 2.) If we replace in Step 1. the group GL(n,R) by a Lie subgroup G
the conclusion s still true.

Proof. Indeed, remark that in the proof of the previous step it is used only the
fact that GL(n,R) is a group of invertible maps. O

Step 3. The point b) of the Theorem 2.1 is true.

Remark 4.2. In the classical setting of quasiconvexity, this step is proven by an
argument involving Lipschitz extensions with controlled Lipschitz norm. This is
not known to be true in the realm of bi-Lipschitz maps. That is why we shall use
a different approach.

Proof. Because G is a group, it is sufficient to make the proof for F =1.
Let up € [G]. be a sequence weakly * convergent to id on Q and D CC Q.
For € > 0 sufficiently small and C > 1 we have

Do = [JB(x,Ce) € Q
zeD

It is not restrictive to suppose that

lim [ w(Duy) dx

h—o0 Q
exists and it is finite. For any & > 0 there is N. such that for any h > N,
Up, (D) CcD..

Take a minimal Lipschitz extension

= . no o _J uwn(z) ,2€dD
miDe\C =R me) = { 0 T2
The Lipschitz norm of this extension, denoted by kj, , is smaller than some constant
independent on h .
Now, for any h define:

1 _
Y = —— Up

Qkh D \D

According to Dacorogna-Marcellini Theorem 7.28, Chapter 7.4. [6], there is a
solution o of the problem

Dop € O(n) a. e in D \D
Op = wh on 8(DE\D
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Let

] up(x) zeD
vn(z) = { kZUh(x) z€Q\D

Note that Dwv, € CO(n).

The following estimate is then true:

| / w(Duy) doz — /w(Dvh) dz | = | w(Dup) dz | <
D Q DCE\D

g/ | w(Dup) | de < C|D.\D|
DCE\D
w is G-quasiconvex, therefore:
/ w(Dvy) dz > | D | w(1)
D.
We put all together and we get the inequality:

hlim w(Dup) dz > | De | w(l) = C | D\ D |
— 00 D

The proof finishes after we pass € to 0. O

5. Application: a class of quasiconvex functions

The goal of this section is to give a class of quasi-convex isotropic functions which
seem to be complementary to the polyconvex isotropic ones. We quote the follow-
ing result of Thompson and Freede [15], Ball [2], Le Dret [11].

Theorem 5.1. Let g: [0,00)" — R be convex, symmetric and nondecreasing in
each variable. Define the function w by

w:gl(n,R) =R, w(F)=g(c(F)).

Then w is conver.

We shall use the Theorem 6.2. Buliga [5]. We need a notation first. Let
z = (z1,..,2,) € R™ be a vector. Then the vector zt = (z},..,2}) € R" is
obtained by rearranging in decreasing order the components of z. Remark that
for any symmetric function h: R™ — R there exists and it is unique the function
p: R™ — R defined by the relation:

k
p(z z;) = hlzx)
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Theorem 5.2. Let g : (0,00)" — R be a continuous symmetric function and
h:R"™ - R, h=goexp. Consider also the function p : R" — R, previously
defined, associated to the symmetric function h .

Suppose that:
(a) h is convex,
(b) p is nonincreasing in each argument.

Let Q C R™ be bounded, with piecewise smooth boundary and ¢ : Q — R be
any Lipschitz function such that Dp(x) € GL(n,R)T a.e. and ¢(x) =z on 0.
Define the function

w:GL(n,R)T =R, w(F)=g(c(F))
Then for any F € GL(n,R)" we have:

KkMFD¢@» > 10| w(F) (8)

A consequence of Theorem 5.2 and Theorem 2.1 (a) is:

Proposition 5.1. In the hypothesis of Theorem 5.2, let ¢p : 2 — R™ be a
sequence of Lipschitz bounded functions such that

(a)for any h D¢y (z) € GL(n,R)* a.e. in Q.

(b)the sequence ¢y, converges uniformly to w: Q — Q, bi-Lipschitz function.
Then

liminf [ w(Dep(z)) > /w(Du(x)) (9)

h—o0 O 9

Proof. 1t is clear that Theorem 5.2 implies the hypothesis of point (a), Theorem
2.1. Indeed, the conclusion of Theorem 5.2 can be written like this: for any
u € [GL(n,R)T](Q2) such that

- 1
Du(Q) = —/ Du(z) dz € GL(n,R)"
2 Jo
we have the inequality

/Qw(Du(x)) dz > /w(ﬁu(Q)) dx

Q

Take a sequence of mapping (up) C [GL(n,R)*](Q) uniformly convergent to
F € GL(n,R)™ . The previous inequality and the continuity of w imply:

[ o) < [ wOu) a

Q
Apply now Theorem 2.1 (a) and obtain the thesis. O
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We close with two examples of functions which we can prove that are GL(n,R)™
quasiconvex using Theorem 5.2.

For the first example we begin by making the notation F = RpUp for the polar
decomposition of F € GL(n,R)", with Ur symmetric and positive definite. The
first example is then the function:

w:GL(n,R)T — R, w(F)=detF log(trace Ur)

With the notation introduced in Proposition 3.4, let’s look to the the function
w = ww . It has the expression:

W:GL(n,R)" = R, @(F) = log( trace Uy ")
It is a matter of straightforward computation to check that w verifies the hy-
pothesis of Theorem 5.2. Tt is therefore GL(n,R)T quasiconvex. By Proposition
3.4 w is GL(n,R)T quasiconvex, too, hence lower semicontinuous in the sense of
Theorem 2.1 (a).
For the second example set

k
IFll = (Ha}w)

1/k

N———

and define:

1
W) = 3 JFe

for some o > 2. The associated function A is then

n k
h(zq,...,zn) = Zexp ((—a/k) fo)
k=1 i=1
which again satisfies the hypothesis of the Theorem 5.2.

The class of functions w described in Theorem 5.2 and the class of polycon-
vex functions seem to be different. Further investigations are needed in order to
make stronger assertions. Notice that by picking h linear we obtain a polyconvex
function, like

w(F) = —log | det F |

We have seen in Proposition 3.3 that this function is not GL(n,R) quasiconvex
but Proposition 5.1 tells that w is GL(n,R)" quasiconvex.
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