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Introduction

Introduction

Together with Marius Măntoiu we have considered quantum hamiltonians
with magnetic fields and replaced the usual translations with magnetic
translations, generalizing some former results from constant magnetic
fields to bounded smooth magnetic fields.

This approach allowed us to obtain a pseudodifferential Weyl calculus,
twisted by a 2-cocycle associated to the flux of the magnetic field and we
developped this calculus in colaboration with V. Iftimie.

Magnetic modular spaces can be defined in this new setting.

An interesting fact that we pointed out is that the algebra of observables
is defined only in terms of the magnetic field without the need of a vector
potential.

Using these techniques we proved a number of spectral results for
quantum Hamiltonians in magnetic fields.
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Introduction

At the classical level the magnetic field may also be described by a
deformation of the canonical symplectic form of the phase space and
hence, a deformation of the Poisson bracket of the classical
observables.

At the quantum level, we can define a twisted Moyal algebra, with the
Moyal product twisted by a 2-cocycle associated to the flux of the
magnetic field.

These two descriptions may be put together in a strict deformation
quantization in the sense of M. Rieffel.

In colaboration with Marius Măntoiu and Serge Richard we have
defined and studied associated coherent states quantization and
Bargmann representation.
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In colaboration with Marius Măntoiu and Serge Richard we have
defined and studied associated coherent states quantization and
Bargmann representation.

Radu Purice (IMAR; LEA Math-Mode) Harmonic Analysis, Bucharest, 2012 September 21, 2012 3 / 51



Introduction

Contents

1 Introduction

2 The ’magnetic’ Weyl system

3 The magnetic Moyal algebra

4 The magnetic Weyl calculus

5 The magnetic Bargmann representation

Radu Purice (IMAR; LEA Math-Mode) Harmonic Analysis, Bucharest, 2012 September 21, 2012 4 / 51



Introduction

Some notations

The configuration space: X := Rd

The phase space: Ξ := TT∗X ∼= X × X ′
with momentum space X ′, the dual of X ,
(canonically isomorphic to Rd).

The canonical symplectic form on Ξ:
σ
(
(x , ξ), (y , η)

)
:=< ξ, y > − < η, x >

with < ., . > the duality application X ′ ×X → R.
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Introduction

The magnetic field

The magnetic field is described by a closed 2-form B on X :

B =
n∑

j ,k=1

Bjk(x)dxj ∧ dxk , Bjk(x) = −Bkj(x), dB = 0.

On Rn there always exists a 1-form, the vector potential A such that
B = dA.

The association of a vector potential to a magnetic field B is highly
non unique and we have that

A− A′ = ∇Φ ⇔ dA = dA′ = B.

If B has components of class C∞pol(X ), then the following formula
always provides a vector potential with components of class C∞pol(X ):

Aj(x) := −
n∑

k=1

∫ 1

0
ds Bjk(sx)sxk .
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Introduction

The magnetic field - the classical picture

In the Hamiltonian formalism, the Lorentz force can be described by
replacing the usual canonical pair of variables

(x , ξ) on Ξ by the pair of variables (x , ξ + A(x))

defined once we have chosen a vector potential A for B.

Appearently this prescription is highly non-unique due to the gauge
ambiguity.

But, one can easily see that the Hamilton equations of motion only
depend on the magnetic field B, through the usual Lorentz force term:(

∂2
t xj
)
(t) =

∑
1≤k≤d

Bj ,k(x(t))
(
∂txk

)
(t).
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Introduction

The gauge invariant formalism

Let π̃ : Ξ→ X , (x , ξ) 7→ x , be the canonical projection.

Let σB := σ + π̃∗[B].

This σB defines a new symplectic form on Ξ.

We associate to σB a new Poisson bracket:{
f , g
}B

:= σB(j−1
B (df ), j−1

B (dg))

where jB is the canonical isomorphism

jB : Ξ→ Ξ∗, < jB(X ),Y >:= σB(X ,Y ).
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Introduction

The gauge invariant formalism

Using the canonical global coordinates we have:{
f , g
}B

(x , ξ) :=

=
n∑

j=1

[(
∂ξj f

)
(x , ξ)

(
∂xjg

)
(x , ξ)−

(
∂xj f

)
(x , ξ)

(
∂ξjg

)
(x , ξ)

]
+

n∑
j ,k=1

Bjk(x)
(
∂ξj f

)
(x , ξ)

(
∂ξkg

)
(x , ξ)
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Introduction

The quantum picture

Let us recall that the quantum description of the classical mechanical
system described above is done in terms of a Weyl system.

The Weyl system

Consists in a complex Hilbert space H

and two strongly continuous unitary representations:

X 3 x 7→ U(x) ∈ U(H)
X ′ 3 ξ 7→ V (ξ) ∈ U(H)

satisfying the Weyl commutation relations:

U(x)V (ξ) = e iξ(x) V (ξ)U(x), x ∈ X , ξ ∈ X ′.
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Introduction

The quantum picture

We may put the definition of the Weyl system in the following form
involving the symplectic form on Ξ:

The Weyl system - symplectic form

Is given by a complex Hilbert space H
and a strongly continuous map

Ξ 3 X 7→W (X ) ∈ U(H),

satisfying the relations

W (X )W (Y ) = exp

{
i

2
σ(X ,Y )

}
W (X + Y ), W (0) = 1.

(just take W (x , ξ) := e(i/2)ξ(x)U(−x)V (ξ))
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Introduction

The quantum picture

It is well known that the classical observables are the (sufficiently regular)
functions

F : Ξ→ R.

The quantum observables

For any test function φ ∈ S(Ξ;R)

we can define the associated quantum observable

Op(φ) :=

∫
Ξ

[F−1φ](X )W (X ) dX ∈ B(H)

where F−1 is the inverse Fourier transform on S(Ξ).

And we can extend this formula by duality to S ′(Ξ;R).
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Introduction

The quantum picture

In order to obtain the quantum description of systems in magnetic fields,
the ’paradigm’ is to quantize the system with the usual canonical variables
(x , ξ) replaced by the ’magnetic’ canonical variables’ (x , ξ − A(x)) with A
a vector potential for the magnetic field B. Thus

Suppose chosen a gauge A for the magnetic field B.

On L2(X ) we define Q1, . . . ,Qn,

the multiplication with the variables,

and

ΠA
1 := D1 − A1, . . . ,Π

A
n := Dn − An, with Dj := −i∂j

representing the canonical momenta in the magnetic field.

While for the usual Hamiltonian h(x , ξ) =
(
ξ2/2

)
+ V (x) the

quantization is rather clear (and by chance gauge covariant) things
are rather difficult for some ’general’ Hamiltonians (relativistic,
effective Hamiltonians) and other observables of the system.
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Introduction

The quantum picture

A procedure that appears in the literature is to just make the replacement
at the ’symbol level’:

For any test function φ ∈ S(Ξ;R)

one associates the magnetic quantum observable

OpA(φ) :=

∫
Ξ

[F−1φ](x , ξ − A(x))W (X ) dX ∈ B(H).

Unfortunately this procedure produces operators that are no longer gauge
covariant! (except the case discussed before).
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The magnetic Weyl system
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The ’magnetic’ Weyl system

The magnetic Weyl system

We consider the unitary groups associated to the above 2n self-adjoint
operators Q1, . . . ,Qd ,,Π

A
1 , . . . ,Π

A
d .

The strongly continuous unitary group associated to the first d commuting
self-adjoint operators is evidently

V A(ξ) := e−i<ξ,Q>

Using the Kato-Trotter formula we obtain the family of one-parameter
strongly continuous unitary groups:

UA(x) := e
−i

∫
[Q,Q+x] A e i<x ,D>.

They satisfy: UA(x)UA(y) = ΩB(Q; x , y)UA(x + y).
with ΩB(Q; x , y) := exp (−i

∫
<Q,Q+x ,Q+x+y> B).
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The ’magnetic’ Weyl system

Defining now

W A((x , ξ)) := e−i<ξ,x/2)>V A(ξ)UA(x) =

= e−i<ξ,(Q+x/2)> e
−i

∫
[Q,Q+x] A e i<x ,D>

.

We notice that

W A(X )W A(Y ) = e(i/2)σ(X ,Y )ΩB(Q; x , y)W A(X + Y ).

Thus

W A(X )W A(Y ) = e iσ(X ,Y ) ΩB(Q; x , y)

ΩB(Q; y , x)
W A(Y )W A(X ).
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The ’magnetic’ Weyl system

The magnetic Weyl calculus - definition

For any test function f : Ξ→ C we define the associated magnetic
Weyl operator:

OpA(f ) :=

∫
Ξ
dX f̂ (X )W A(X ) ∈ B[H]

that leaves S(X ) invariant [M.P., J. Math. Phys. 04].

In fact for any tempered distribution F ∈ S ′(Ξ) we can define the
linear operator:

OpA(F ) :=

∫
Ξ
dX F̂ (X )W A(X ) ∈ B[S(X );S ′(X )]

It defines a linear bijection [M.P., J. Math. Phys. 04].

Observation:Gauge covariance

The Schrödinger representations associated to any two gauge-equivalent
vector potentials are unitarily equivqlent:

A′ = A + dϕ ⇒ OpA
′
(f ) = e iϕ(Q)OpA(f )e−iϕ(Q).
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The ’magnetic’ Weyl system

Integral kernels associated to Weyl symbols

OpA(f ) is an integral operator having the following integral kernel that
can be defined in terms of f

OpA(f ) := Int(KAf ),
[(
Int(Φ)

)
u
]
(x) :=

∫
Φ(x , y)u(y)dy ,

with
KAf := ΛAΘ−1F−f ;

ΛA(x , y) := exp
(
−i
∫

[x ,y ] A
)

,(
F−f

)
(x , y) := (2π)−n

∫
X ′ dηe

iη·y f (x , η),(
Θf
)
(x , y) := f (x − y/2, x + y/2),

(
Θ−1g

)
(x , y) = g

( x+y
2 , y − x

)
.

We denote by K 0f := Θ−1F−f .
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The ’magnetic’ Weyl system

The ’standard’ representations

Let us denote by ΛA
• (x) := ΛA(0, x) and notice that it defines a

unitary operator on L2(X ).

Let us define
ÕpA(f ) := ΛA

•OpA(f )
(
ΛA
•
)−1

and notice that it has the integral kernel[
K̃A(f )

]
(x , y) = ΛA(0, x)ΛA(y , 0)ΛA(x , y)

[
K 0(f )

]
(x , y)

= ωB(0, x , y)
[
K 0(f )

]
(x , y).

with ωB(0, x , y) := exp
(
−i
∫
<0,x ,y> B

)
.
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The ’magnetic’ Weyl system

The ’standard’ representations - unitary equivalence

Let us choose some q ∈ X and denote by ΛA
q (x) := ΛA(q, x) and

ÕpAq(f ) := ΛA
qOpA(f )

(
ΛA
q

)−1
.

Then, denoting by ωB
0,q(x) := ωB(0, q, x), we have

ÕpAq(f ) = ωB
q,0ÕpA(f )

(
ωB
q,0

)−1
.

We have obtained a class of unitary equivalent representations
indexed by the points in X , depending only on the magnetic

field B. We shall use the notation Õp
B

(f ) := ÕpA(f ).
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The magnetic Moyal algebra

The magnetic Moyal algebra
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The magnetic Moyal algebra

The magnetic Moyal product

Definition

The above ’magnetic’ functional calculus induces a magnetic composition
on the complex linear space of test functions S(Ξ):

OpA(f ]Bg) := OpA(f ) · OpA(g)

It only depends on the magnetic field B!
in fact on the ’magnetic’ deformation of the symplectic form on Ξ.

Explicitely we have:

(f ]Bg)(X ) := 4n
∫

Ξ
dY

∫
Ξ
dZ e

−i
∫
TX (Y ,Z) σ

B

f (X − Y ) g(X − Z )

where TX (Y ,Z ) is the triangle in Ξ having vertices:

X − Y − Z , X + Y − Z , X − Y + Z .
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The magnetic Moyal algebra

The magnetic Moyal product

Theorem [M.P., J. Math. Phys. 04]

For a magnetic field B with components of class C∞pol(X ), the composition

]B defines a bilinear map

S(Ξ)× S(Ξ) 3 (φ, ψ) 7→ φ]Bψ ∈ S(Ξ)

that is jointly continuous (for the usual Fréchet topology on S(Ξ)).

Proposition [M.P., J. Math. Phys. 04]

For a magnetic field B with components of class C∞pol(X ), we have:∫
Ξ

(
φ]Bψ

)
(X ) dX =

∫
Ξ
φ(X )ψ(X ) dX , ∀(φ, ψ) ∈

(
S(Ξ)

)2
,∫

Ξ

(
φ]Bψ

)
(X )χ(X )dX =

∫
Ξ
φ(X )

(
ψ]Bχ

)
(X )dX , ∀(φ, ψ, χ) ∈

(
S(Ξ)

)3
.
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The magnetic Moyal algebra

Definition

We ca extend the product ]B by duality to bilinear maps:

S ′(Ξ)]BS(Ξ)→ S ′(Ξ); S(Ξ)]BS ′(Ξ)→ S ′(Ξ).

The magnetic Moyal algebra

We set:

MB(Ξ) :=
{
F ∈ S ′(Ξ) | F ]Bφ ∈ S(Ξ), φ]BF ∈ S(Ξ), ∀φ ∈ S(Ξ)

}
This defines a ∗-algebra for the composition ]B

and the usual complex conjugation as ∗-conjugation.
Moreover, the above algebraic structures may be organized as a strict
deformation quantization of the algebra of observables in the sense
of Rieffel. [M.P. 05]
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Moreover, the above algebraic structures may be organized as a strict
deformation quantization of the algebra of observables in the sense
of Rieffel. [M.P. 05]
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The magnetic Moyal algebra

The topology

Theorem [M.P. 11]

For a magnetic field B with components of class C∞pol(X ), we have
two natural linear applications

MB(Ξ)→ B
(
S(Ξ)

)
, MB(Ξ)→ B

(
S ′(Ξ)

)
.

If we consider the usual topology of uniform convergence on bounded
sets on the spaces of continuous linear applications, then both the
above maps define the same locally convex topology on MB(Ξ) and
this space is complete for this topology.

We shall usually consider this locally convex topology on the ∗-algebra
MB(Ξ).

Proposition [M.P. 11]

The topologies induced on MB(Ξ) by restriction from S ′(Ξ) are coarser
then the above locally convex topology.
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The magnetic Moyal algebra

The norm

The familly:

CB(Ξ) :=
{
F ∈ S ′(Ξ) | OpA(F ) ∈ B[L2(X )]

}

does only depend on the magnetic field B.

On CB(Ξ) we can define the map:

‖F‖B := ‖OpA(F )‖B[L2(X )]

that does not depend on the choice of A
and is in fact a C∗-norm on CB(Ξ).

CB(Ξ) is a C∗-algebra isomorphic to B[L2(X )].
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The magnetic Moyal algebra

Suppose that the magnetic field B has components of class C∞pol(X ).

Proposition [M.P., J. Math. Phys. 04]

The space of indefinitely differentiable functions with uniform polynimial
growth on Ξ is contained in MB(Ξ).

Hörmander type symbols

For m ∈ R and 0 ≤ δ ≤ ρ ≤ 1 we define ∀F ∈ C∞(Ξ) the seminorms

|F |(m;ρ,δ)
(a,α) := sup

(x ,ξ)∈Ξ
< ξ >−m+ρ|α|−δ|a| ∣∣(∂ax∂αξ F )(x , ξ)

∣∣ ,
and the Fréchet space

Sm
ρ,δ(Ξ) :=

{
F ∈ C∞(Ξ) | ∀(a, α), |F |(m;ρ,δ)

(a,α) <∞
}
.

Proposition [I.M.P., Proc. RIMS 07]

For m ∈ R and 0 ≤ δ ≤ ρ ≤ 1 we have Sm
ρ,δ(Ξ) ⊂MB(Ξ).
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The magnetic Moyal algebra

Symbols of 1-dimensional projections

Given a 1-dimensional orthogonal projection

Pφ := |φ >< φ| for some φ ∈ L2(X ) with ‖φ‖2 = 1

its usual Weyl symbol is given by

pφ = FΘ(φ⊗ φ).

Notice that the magnetic operator associated to the above symbol is
no longer a 1-dimensional projection!

Notice further that taking φA :=
(
ΛA
•
)−1

φ we have that(
ΛA
)−1(

φA ⊗ φA
)

= ωB(φ⊗ φ).
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The magnetic Moyal algebra

The magnetic symbols of 1-dimensional projections

Definition

Let us put pBφ := FΘ
[
ωB(φ⊗ φ)

]
= FΘ

(
ΛA
)−1[

(φA ⊗ φA)
]
.

Then
pBφ ]

BpBφ = pBφ , pBφ = pBφ ,

and

OpA(pBφ ) = Int
[
ΛAΘ−1F−FΘ

[
ωB(φ⊗ φ)

]]
= Int

[(
φA ⊗ φA

)]
.

Thus the state |φ >< φ| in the magnetic field B has associated an
idempotent real symbol pBφ .
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The magnetic Weyl calculus

The magnetic Weyl calculus
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The magnetic Weyl calculus

’Magnetic’ pseudo-differential operators

Definition

Choosing any vector potential A for B we define the associated classes of
magnetic pseudodifferential operators on H := L2(X ) with Hörmander
type symbols:

Ψm
ρ,δ(A) := OpA[Sm

ρ,δ(Ξ)].

Theorem [I.M.P., Proc. RIMS 07]

If the magnetic field B has components of class C∞pol(X ), for any m1 and
m2 in R and for any 0 ≤ δ ≤ ρ ≤ 1 we have:

Sm1
ρ,δ (Ξ) ]B Sm2

ρ,δ (Ξ) ⊂ Sm1+m2
ρ,δ (Ξ).

Under the above hypothesis on the magnetic field B, for any vector
potential A we have that in the Schrödinger representation:

Ψm1
ρ,δ(A) ·Ψm2

ρ,δ(A) ⊂ Ψm1+m2
ρ,δ (A).
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The magnetic Weyl calculus

L2-continuity

Theorem [I.M.P., Proc. RIMS 07]

If the magnetic field B has components of class BC∞(X ), then S0
ρ,ρ(Ξ),

with 0 ≤ ρ < 1 and S0
ρ,δ(Ξ), with 0 ≤ δ < ρ ≤ 1 are contained in CB(Ξ)

and there exist two constants c(n) ∈ R+ and p(n) ∈ N, depending only on
the dimension n of the space X , such that we have the estimation:

‖F‖B ≤ c(n)|F |(p(n),p(n)).

where
|F |(p,q) := max

|a|≤p
max
|α|≤q

sup
(x ,ξ)∈Ξ

∣∣(∂ax∂αξ F)(x , ξ)
∣∣

are the seminorms defining the topology of S0
ρ,δ(Ξ).
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The magnetic Weyl calculus

Sobolev spaces

Suppose that the magnetic field B has components of class BC∞(X ).

We shall define the scale of Sobolev spaces starting from a special set
of symbols.

For any m > 0 we define:

℘m(x , ξ) :=< ξ >m≡ (1 + |ξ|2)m/2

so that ℘m ∈ Sm
1,0(Ξ) ⊂MB(Ξ) and for any potential vector A we

can define:
pAm := OpA(℘m).
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The magnetic Weyl calculus

Sobolev spaces

Definition

Suppose that the magnetic field B has components of class BC∞(X ) and
suppose chosen a vector potential A for it. For any m > 0 we define the
complex linear space:

Hm
A (X ) :=

{
u ∈ L2(X ) | pAmu ∈ L2(X )

}
.

Proposition [ I.M.P., Proc. RIMS 07]

The space Hm
A (X ) is a Hilbert space for the scalar product:

< u, v >(m,A):= (pAmu, p
A
mv)2 + (u, v)2.
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The magnetic Weyl calculus

Sobolev spaces

Definition

Suppose that the magnetic field B has components of class BC∞(X ) and
suppose chosen a vector potential A. For any m > 0 we define the space
H−mA (X ) as the dual space of Hm

A (X ) with the dual norm:

‖φ‖(−m,A) := sup
u∈Hm

A (X )\{0}

| < φ, u > |
‖u‖(m,A)

that induces a scalar product.

We also denote H0
A(X ) := L2(X ).
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The magnetic Weyl calculus

Elliptic symbols

Definition

For m > 0 a symbol F ∈ Sm
ρ,δ(Ξ) is said to be elliptic

if there exist two positive constants R and C such that
for any (x , ξ) ∈ Ξ with |ξ| ≥ R one has that

|F (x , ξ)| ≥ C < ξ >m

.

Radu Purice (IMAR; LEA Math-Mode) Harmonic Analysis, Bucharest, 2012 September 21, 2012 37 / 51



The magnetic Weyl calculus

Elliptic symbols

Theorem [I.M.P., Proc. RIMS 07]

Suppose that the magnetic field B has components of class BC∞(X )
and suppose chosen a vector potential A for it.

Suppose m ≥ 0 and F ∈ Sm
ρ,δ(Ξ) is a real symbol (elliptic if m > 0),

with either 0 ≤ δ < ρ ≤ 1 or δ = ρ ∈ [0, 1).

Then the operator
OpA(F ) : Hm

A (X )→ L2(X )

is self-adjoint.

If F ≥ 0 then OpA(F ) is lower semibounded and we have a strong
Gårding inequality.

If A is chosen in C∞pol(X ), then OpA(F ) is essentially self-adjoint on
S(X ).
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Then the operator
OpA(F ) : Hm

A (X )→ L2(X )

is self-adjoint.

If F ≥ 0 then OpA(F ) is lower semibounded and we have a strong
Gårding inequality.

If A is chosen in C∞pol(X ), then OpA(F ) is essentially self-adjoint on
S(X ).
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The magnetic Weyl calculus

Extension of the Weyl calculus

Let us denote by B[V1;V2] the space of continuous operators from the
locally convex space V1 to the locally convex space V2.

Suppose B has components of class C∞pol(X ) and we have chosen A
with the same property.

Then we have (with isomorphisms of linear topological spaces):

[M.P. JMP 04]

OpA (S(Ξ)) ∼= B
[
S ′(X );S(X )

]
; OpA

(
S ′(Ξ)

) ∼= B
[
S(X );S ′(X )

]
OpA

(
MB(Ξ)

)
∼= B [S(X )]

⋂
B
[
S ′(X )

]
OpA

(
L2(Ξ)

) ∼= B2

[
L2(X )

]
(Hilbert-Schmidt operators)
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The magnetic Weyl calculus

An inversion result

Let m > 0 and F ∈ Sm
1,0(Ξ) be an elliptic symbol that does not

depend on the x ∈ X variable.

Let −a < inf
ξ∈X ′

F (ξ) and Fa(ξ) := F (ξ) + a.

Let us denote by F−1
a (ξ) := 1/Fa(ξ) its usual inverse

(for pointwise multiplication).

We define: rBa [F ] := Fa]
BF−1

a − 1 ∈MB(Ξ).
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The magnetic Weyl calculus

An inversion result

Theorem [M.P.R., J.Func. Anal. 07]

Suppose that the magnetic field B has components of class BC∞(X ) and
let m > 0, F ∈ Sm

1,0(Ξ) ∩ C∞(X ′) be elliptic and a ∈ R+ large enough.

Then Fa has an inverse for the ]B product, F−a in CB(X ) and this inverse
is given by the formula

F−a = F−1
a ]B

(∑
k∈N

(rBa [F ])]
Bk

)

with the series converging in the C ∗-norm ‖.‖B .

Radu Purice (IMAR; LEA Math-Mode) Harmonic Analysis, Bucharest, 2012 September 21, 2012 41 / 51



The magnetic Weyl calculus

A Beals type Criterion

For (m, a) ∈ R+ × R+ let us denote by
℘m,a(X ) := a + ℘m(X ) = a+ < ξ >m.

Our inversion result implies that ℘−m,a ∈ CB(Ξ), ∀a ≥ am > 0.

Thus let us define s0 := 1

sm := ℘m,am , form > 0; sm := ℘−|m|,a|m|
, form < 0

For any X ∈ Ξ let us define

lX (Y ) := σ(X ,Y ), adBX [F ] := lX ]
BF − F ]B lX , ∀F ∈ S ′(Ξ).
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The magnetic Weyl calculus

A Beals type Criterion

Theorem [I.M.P. Comm.PDE 10]

A tempered distribution F ∈ S ′(Ξ) is a symbol of class Sm
ρ (Ξ)

(0 ≤ ρ ≤ 1) iff for any (p, q) ∈ N2

and for all the families u1, . . . , up ∈ X and µ1, . . . , µq ∈ X ′
we have that:

s−m−qρ]
B
(
adBu1

· . . . · adBupad
B
µ1
· . . . · adBµq [F ]

)
∈ CB(Ξ).

The following two families of seminorms:
‖s−m−|α|ρ∂

α
ξ ∂

a
xF‖∞, with (a, α) ∈ N2n,

and ‖s−m−qρ]B
(
adBu1

· . . . · adBupad
B
µ1
· . . . · adBµq [F ]

)
‖CB ,

with (p, q) ∈ N2 and vectors from Ξ,
define equivalent topologies on Sm

ρ (Ξ).
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The magnetic Bargmann representation

The Bargmann magnetic representation
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The magnetic Bargmann representation

The magnetic Bargmann transformation

Definition

We fix some v ∈ L2(X ) with ‖v‖L2(X ) = 1;

for any u ∈ L2(X ) and for any point X ∈ Ξ we define

BB
v (u)(X ) :=

〈(
ΛA
)−1

v ,W A(−X )
(
ΛA
)−1

u
〉
L2(X )

=:
〈
v , W̃ B(−X )u

〉
L2(X )

.

We call the magnetic Bargmann transformation of u the function

BB
v (u) : Ξ 3 X 7→ BB

v (u)(X ) ∈ C.
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The magnetic Bargmann representation

The magnetic Bargmann transformation

Theorem [MPR 11]

The magnetic Bargmann transformation of u ∈ L2(X ) satisfies:

1 The map Ξ 3 X 7→ BB
v (u)(X ) ∈ C is continuous.

2 The map L2(X ) 3 u 7→ BB
v (u) ∈ L2(Ξ; dX

(2π)d
) is well defined and

isometric.

3 We have the estimation∣∣∣BB
v (u)(X )

∣∣∣ ≤ ‖u‖2 =
∥∥∥BB

v (u)
∥∥∥

2
.

Let us denote by

KB
v (Ξ) := BB

v

[
L2

(
X ;

dX

(2π)d

)]
⊂ L2

(
Ξ;

dX

(2π)d

)⋂
BC (Ξ)
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The magnetic Bargmann representation

The inverse transformation

Let us compute now the inverse map of the magnetic Bargmann
transformation:

B̃B
v : KB

v (Ξ)→ L2(X ).

We have 〈
B̃B

v (F ), u
〉
L2(X )

:=
〈
F ,BB

v (u)
〉
KB

v (Ξ)

and after some computations we obtain

B̃B
v (F ) = Õp

B(
FΞF

)
v ∈ L2(X ).
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The magnetic Bargmann representation

The reproducing kernels

Definition

Let EB,v be the evaluation map on KB
v (Ξ) (subspace of the bounded

continuous functions on Ξ):

∀X ∈ Ξ, EB,v
X

[
BB

v (u)
]

:= BB
v (u)(X ).

For any X ∈ Ξ there exist a vector EB,vX ∈ KB
v (Ξ) such that〈

EB,vX ,BB
v (u)

〉
KB

v (Ξ)
= EB,v

X

[
BB

v (u)
]

= BB
v (u)(X ).

After some computation we get that

EB,vX (Y ) =
〈
W̃ B(Y )v , W̃ B(X )v

〉
KB

v (Ξ)
.

EB,vX (X ) = 1,
∣∣∣EB,vX (Y )

∣∣∣ ≤ 1.
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The magnetic Bargmann representation

The reproducing kernels

Proposition

For any F ∈ KB
v (Ξ) we have in weak sense:

(2π)−d
∫

Ξ
dX

〈
EB,vX ,F

〉
EB,vX = F in L2

(
Ξ;

dX

(2π)d

)
.

Thus the following weak-operator integral

PB
v := (2π)−d

∫
Ξ
dX

∣∣∣EB,vX

〉〈
EB,vX

∣∣∣ : L2

(
Ξ;

dX

(2π)d

)
→ KB

v (Ξ)

is the orthogonal projection on the closed subspace KB
v (Ξ).
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The magnetic Bargmann representation

The Bargmann calculus

Let us study now the Bargmann transformation of the Schrödinger
representation OpA.

For φ ∈ S(Ξ) let us compute

BaBv (φ) := BB
v ◦OpA(φ) ◦ B̃B

v .

Finally one obtains[
BaBv (φ)F

]
(X ) =

〈
B̃B

v

[
EB,vX

]
,OpA(φ)B̃B

v (F )
〉
.
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The magnetic Bargmann representation

Thank you for your attention !
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